Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application
Abstract
:1. Introduction
1.1. Genomic Organization of SECs
1.2. Pathogenicity of SECs in China
1.3. Epidemiology of SECs in China
2. SEC Vaccine Development in China
2.1. Inactivated Vaccines
2.2. Live-Attenuated Vaccines (LAVs)
2.3. Subunit Vaccines
2.4. Other Strategies
3. Status of Approved SEC Vaccines in China
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geoghegan, J.L.; Duchene, S.; Holmes, E.C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 2017, 13, e1006215. [Google Scholar] [CrossRef] [PubMed]
- Kenney, S.P.; Wang, Q.; Vlasova, A.; Jung, K.; Saif, L. Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Vet. Pathol. 2021, 58, 438–452. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.Q.; Lefkowitz, E.J.; Mushegian, A.R.; Adams, M.J.; Dutilh, B.E.; Gorbalenya, A.E.; Harrach, B.; Harrison, R.L.; Junglen, S.; Knowles, N.J.; et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Arch. Virol. 2018, 163, 2601–2631. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Wang, Q.; Kenney, S.P.; Jung, K.; Vlasova, A.N.; Saif, L.J. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Grunewald, M.; Perlman, S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol. Biol. 2020, 2203, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, H.Y. Porcine enteric coronaviruses: An updated overview of the pathogenesis, prevalence, and diagnosis. Vet. Res. Commun. 2021, 45, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lu, H.; Geng, C.; Yang, K.; Liu, W.; Liu, Z.; Yuan, F.; Gao, T.; Wang, S.; Wen, P.; et al. Epidemic and Evolutionary Characteristics of Swine Enteric Viruses in South-Central China from 2018 to 2021. Viruses 2022, 14, 1420. [Google Scholar] [CrossRef]
- Dong, B.Q.; Liu, W.; Fan, X.H.; Vijaykrishna, D.; Tang, X.C.; Gao, F.; Li, L.F.; Li, G.J.; Zhang, J.X.; Yang, L.Q.; et al. Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China. J. Virol. 2007, 81, 6920–6926. [Google Scholar] [CrossRef]
- Ferrara, G.; Nocera, F.P.; Longobardi, C.; Ciarcia, R.; Fioretti, A.; Damiano, S.; Iovane, G.; Pagnini, U.; Montagnaro, S. Retrospective Serosurvey of Three Porcine Coronaviruses among the Wild Boar (Sus scrofa) Population in the Campania Region of Italy. J. Wildl. Dis. 2022, 58, 887–891. [Google Scholar] [CrossRef]
- Wang, Q.; Vlasova, A.N.; Kenney, S.P.; Saif, L.J. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 2019, 34, 39–49. [Google Scholar] [CrossRef]
- Chattha, K.S.; Roth, J.A.; Saif, L.J. Strategies for design and application of enteric viral vaccines. Annu. Rev. Anim. Biosci. 2015, 3, 375–395. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wu, K.; Zeng, W.; Yu, S.; Li, Y.; Sun, Y.; Liu, X.; Ruan, Y.; Huang, J.; Ding, H.; et al. Historical Evolutionary Dynamics and Phylogeography Analysis of Transmissible Gastroenteritis Virus and Porcine Deltacoronavirus: Findings from 59 Suspected Swine Viral Samples from China. Int. J. Mol. Sci. 2022, 23, 9786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zou, C.; Peng, O.; Ashraf, U.; Xu, Q.; Gong, L.; Fan, B.; Zhang, Y.; Xu, Z.; Xue, C.; et al. Global Dynamics of Porcine Enteric Coronavirus PEDV Epidemiology, Evolution, and Transmission. Mol. Biol. Evol. 2023, 40, msad052. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Yu, J.Q.; Huang, Y.W. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res. 2020, 285, 198024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Zhou, J.; Wang, X.; Ma, L.; Li, J.; Yang, L.; Yuan, H.; Pang, D.; Ouyang, H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022, 14, 2434. [Google Scholar] [CrossRef]
- Brian, D.A.; Baric, R.S. Coronavirus Genome Structure and Replication. In Coronavirus Replication and Reverse Genetics; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 287, pp. 1–30. [Google Scholar] [CrossRef]
- Fang, P.; Fang, L.; Hong, Y.; Liu, X.; Dong, N.; Ma, P.; Bi, J.; Wang, D.; Xiao, S. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. J. Gen. Virol. 2017, 98, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Garwes, D.J. Transmissible gastroenteritis. Vet. Rec. 1988, 122, 462–463. [Google Scholar] [CrossRef]
- Saif, L.J. Comparative Pathogenesis of Enteric Viral Infections of Swine. In Mechanisms in the Pathogenesis of Enteric Diseases 2; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; Volume 473, pp. 47–59. [Google Scholar] [CrossRef]
- Jung, K.; Annamalai, T.; Lu, Z.; Saif, L.J. Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs. Vet. Microbiol. 2015, 178, 31–40. [Google Scholar] [CrossRef]
- Jung, K.; Hu, H.; Saif, L.J. Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Res. 2016, 226, 50–59. [Google Scholar] [CrossRef]
- Liu, X.; Lin, C.M.; Annamalai, T.; Gao, X.; Lu, Z.; Esseili, M.A.; Jung, K.; El-Tholoth, M.; Saif, L.J.; Wang, Q. Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain. Vet. Res. 2015, 46, 109. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, X.; Qin, P.; Wang, B.; Zhao, P.; Yang, Y.L.; Wang, L.; Wang, D.; Song, Y.; Zhang, X.; et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 2017, 211, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Li, J.; Zhou, Q.; Xu, Z.; Chen, L.; Zhang, Y.; Xue, C.; Wen, Z.; Cao, Y. A New Bat-HKU2-like Coronavirus in Swine, China, 2017. Emerg. Infect. Dis. 2017, 23, 1607–1609. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, Y.; Gong, L.; Huang, L.; Lin, Y.; Qin, J.; Du, Y.; Zhou, Q.; Xue, C.; Cao, Y. Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets. Transbound. Emerg. Dis. 2019, 66, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Fan, H.; Lan, T.; Yang, X.L.; Shi, W.F.; Zhang, W.; Zhu, Y.; Zhang, Y.W.; Xie, Q.M.; Mani, S.; et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018, 556, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Zhu, X.; Shi, H.; Chen, J.; Shi, D.; Yuan, J.; Cao, L.; Liu, J.; Dong, H.; et al. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerg. Microbes Infect. 2017, 6, e74. [Google Scholar] [CrossRef]
- Guo, R.; Fan, B.; Chang, X.; Zhou, J.; Zhao, Y.; Shi, D.; Yu, Z.; He, K.; Li, B. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China. Virology 2020, 545, 24–32. [Google Scholar] [CrossRef]
- Yuan, D.; Yan, Z.; Li, M.; Wang, Y.; Su, M.; Sun, D. Isolation and Characterization of a Porcine Transmissible Gastroenteritis Coronavirus in Northeast China. Front. Vet. Sci. 2021, 8, 611721. [Google Scholar] [CrossRef]
- Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020, 286, 198045. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, R.; Zhang, Z.; Zhou, P.; Lv, J.; Wang, Y.; Pan, L.; Liu, X. Differences in the pathogenicity of Chinese virulent genotype GIIa and GIIb porcine epidemic diarrhea virus strains and the humoral immune status of one- and two-month-old weaned pigs infected with these strains. Arch. Virol. 2023, 168, 97. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M.; et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–4008. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Byrum, B.; Zhang, Y. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014. Emerg. Infect. Dis. 2014, 20, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- He, W.T.; Ji, X.; He, W.; Dellicour, S.; Wang, S.; Li, G.; Zhang, L.; Gilbert, M.; Zhu, H.; Xing, G.; et al. Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Mol. Biol. Evol. 2020, 37, 2641–2654. [Google Scholar] [CrossRef]
- Boley, P.A.; Alhamo, M.A.; Lossie, G.; Yadav, K.K.; Vasquez-Lee, M.; Saif, L.J.; Kenney, S.P. Porcine Deltacoronavirus Infection and Transmission in Poultry, United States. Emerg. Infect. Dis. 2020, 26, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Hu, H.; Saif, L.J. Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. Arch. Virol. 2017, 162, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, H.; Li, B.; Ding, Q.; Wang, Y.; Gao, W.; Guo, D.; Wei, Z.; Hu, H. Susceptibility of Chickens to Porcine Deltacoronavirus Infection. Viruses 2019, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ding, Q.; Yuan, J.; Han, F.; Wei, Z.; Hu, H. Susceptibility to mice and potential evolutionary characteristics of porcine deltacoronavirus. J. Med. Virol. 2022, 94, 5723–5738. [Google Scholar] [CrossRef] [PubMed]
- Lednicky, J.A.; Tagliamonte, M.S.; White, S.K.; Elbadry, M.A.; Alam, M.M.; Stephenson, C.J.; Bonny, T.S.; Loeb, J.C.; Telisma, T.; Chavannes, S.; et al. Independent infections of porcine deltacoronavirus among Haitian children. Nature 2021, 600, 133–137. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Wang, X.; Zhou, J.; Ma, L.; Li, J.; Yang, L.; Ouyang, H.; Yuan, H.; Pang, D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023, 15, 359. [Google Scholar] [CrossRef]
- Doyle, L.P.; Hutchings, L.M. A transmissible gastroenteritis in pigs. J. Am. Vet. Med. Assoc. 1946, 108, 257–259. [Google Scholar]
- Wang, P.H.; Nawal Bahoussi, A.; Tariq Shah, P.; Guo, Y.Y.; Wu, C.; Xing, L. Genetic comparison of transmissible gastroenteritis coronaviruses. Front. Vet. Sci. 2023, 10, 1146648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Luo, S.; Gu, J.; Li, Z.; Li, K.; Yuan, W.; Ye, Y.; Li, H.; Ding, Z.; Song, D.; et al. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018. BMC Vet. Res. 2019, 15, 470. [Google Scholar] [CrossRef] [PubMed]
- Welter, M.W.; Horstman, M.P.; Welter, C.J.; Welter, L.M. An overview of successful TGEV vaccination strategies and discussion on the interrelationship between TGEV and PRCV. Adv. Exp. Med. Biol. 1993, 342, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Turlewicz-Podbielska, H.; Pomorska-Mol, M. Porcine Coronaviruses: Overview of the State of the Art. Virol. Sin. 2021, 36, 833–851. [Google Scholar] [CrossRef] [PubMed]
- Hu, X., Jr.; Li, N., Jr.; Tian, Z., Jr.; Yin, X., Jr.; Qu, L.; Qu, J. Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China. BMC Vet. Res. 2015, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wang, X.; Wei, S.; Chen, J.; Feng, L. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review. J. Vet. Med. Sci. 2016, 78, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, H.; Liu, Y.; Pan, Y.; Deng, F.; Song, Y.; Tang, X.; He, Q. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg. Infect. Dis. 2012, 18, 1350–1353. [Google Scholar] [CrossRef]
- Sun, R.Q.; Cai, R.J.; Chen, Y.Q.; Liang, P.S.; Chen, D.K.; Song, C.X. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg. Infect. Dis. 2012, 18, 161–163. [Google Scholar] [CrossRef]
- Li, M.; Pan, Y.; Xi, Y.; Wang, M.; Zeng, Q. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China: A review. Microb. Pathog. 2023, 181, 106185. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yuan, W.; Peng, Q.; Zhang, F.; Ye, Y.; Huang, D.; Ding, Z.; Lin, L.; He, H.; et al. Evaluation of Cross-Protection between G1a- and G2a-Genotype Porcine Epidemic Diarrhea Viruses in Suckling Piglets. Animals 2020, 10, 1674. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Huang, J.; Yao, Y.; Zhao, W.; Zhang, Y.; Qing, J.; Ren, J.; Yan, Z.; Wang, Z.; et al. Isolation and oral immunogenicity assessment of porcine epidemic diarrhea virus NH-TA2020 strain: One of the predominant strains circulating in China from 2017 to 2021. Virol. Sin. 2022, 37, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Fang, L.; Zeng, S.; Sun, Q.; Chen, H.; Xiao, S. Porcine Deltacoronavirus in Mainland China. Emerg. Infect. Dis. 2015, 21, 2254–2255. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, Y.; Wu, M.; Ku, X.; Yao, L.; He, Q. Full-Length Genome Characterization of Chinese Porcine Deltacoronavirus Strain CH/SXD1/2015. Genome Announc. 2015, 3, e01284-15. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Zhou, X.; Peng, Q.; Chen, Y.; Zhang, F.; Huang, T.; Zhang, T.; Li, A.; Huang, D.; Wu, Q.; et al. Newly Emerged Porcine Deltacoronavirus Associated With Diarrhoea in Swine in China: Identification, Prevalence and Full-Length Genome Sequence Analysis. Transbound. Emerg. Dis. 2015, 62, 575–580. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yue, H.; Fang, W.; Huang, Y.W. Complete Genome Sequence of Porcine Deltacoronavirus Strain CH/Sichuan/S27/2012 from Mainland China. Genome Announc. 2015, 3, e00945-15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qu, K.; Li, J.; Wang, Y.; Wang, L.; Yu, Y. Prevalence and potential risk factors of PDCoV in pigs based on publications during 2015–2021 in China: Comprehensive literature review and meta-analysis. Microb. Pathog. 2023, 179, 106118. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.S.; Jang, G.; Gim, Y.; Son, H.; Kang, S.; Eo, Y.; Chae, Y.; Koh, P.; Lee, H.; Lee, C. Genomic and Virulence Investigations of a Novel Porcine Deltacoronavirus Strain Identified in South Korea. Transbound. Emerg. Dis. 2023, 2023, 15. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Bi, Z.; Gu, J.; Gong, W.; Luo, S.; Zhang, F.; Song, D.; Ye, Y.; Tang, Y. Complete Genome Sequence of a Novel Swine Acute Diarrhea Syndrome Coronavirus, CH/FJWT/2018, Isolated in Fujian, China, in 2018. Microbiol. Resour. Announc. 2018, 7, e01259-18. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Q.N.; Su, J.N.; Chen, G.H.; Wu, Z.X.; Luo, Y.; Wu, R.T.; Sun, Y.; Lan, T.; Ma, J.Y. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 2019, 66, 2180–2183. [Google Scholar] [CrossRef]
- Sun, Y.; Xing, J.; Xu, Z.Y.; Gao, H.; Xu, S.J.; Liu, J.; Zhu, D.H.; Guo, Y.F.; Yang, B.S.; Chen, X.N.; et al. Re-emergence of Severe Acute Diarrhea Syndrome Coronavirus (SADS-CoV) in Guangxi, China, 2021. J. Infect. 2022, 85, e130–e133. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Y.; Lan, T.; Wu, R.; Chen, J.; Wu, Z.; Xie, Q.; Zhang, X.; Ma, J. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China. Transbound. Emerg. Dis. 2019, 66, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Toh, T.H.; Lee, J.S.; Poovorawan, Y.; Davis, P.; Azevedo, M.S.P.; Lednicky, J.A.; Saif, L.J.; Gray, G.C. Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries. Emerg. Microbes Infect. 2022, 11, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Tse, L.V.; Meganck, R.M.; Araba, K.C.; Yount, B.L.; Shaffer, K.M.; Hou, Y.J.; Munt, J.E.; Adams, L.E.; Wykoff, J.A.; Morowitz, J.M.; et al. Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2118126119. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.H.; Qian, Y.; Wang, Z.; Tang, Q.; Cao, W. Study on the transmissible gastroenteritis coronavirus. Agric. Sci. Technol. Shanghai 1980, 2, 42–45. (In Chinese) [Google Scholar]
- Wang, D.; Fang, L.; Xiao, S. Porcine epidemic diarrhea in China. Virus Res. 2016, 226, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Sinkora, M.; Butler, J.E. The ontogeny of the porcine immune system. Dev. Comp. Immunol. 2009, 33, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Saif, L.J. Enteric viral infections of pigs and strategies for induction of mucosal immunity. Adv. Vet. Med. 1999, 41, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Oroku, K.; Ohshima, Y.; Furuya, Y.; Sasakawa, C. Efficacy of genogroup 1 based porcine epidemic diarrhea live vaccine against genogroup 2 field strain in Japan. Virol. J. 2018, 15, 28. [Google Scholar] [CrossRef]
- Song, D.S.; Oh, J.S.; Kang, B.K.; Yang, J.S.; Moon, H.J.; Yoo, H.S.; Jang, Y.S.; Park, B.K. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res. Vet. Sci. 2007, 82, 134–140. [Google Scholar] [CrossRef]
- Saif, L.J.; Bohl, E.H. Passive immunity to transmissible gastroenteritis virus: Intramammary viral inoculation of sows. Ann. N. Y. Acad. Sci. 1983, 409, 708–723. [Google Scholar] [CrossRef]
- Jantarabenjakul, W.; Chantasrisawad, N.; Nantanee, R.; Ganguli, S.; Puthanakit, T. Global COVID-19 Vaccination in Infants and Children: Effectiveness, Safety, and Challenges. Asian Pac. J. Allergy Immunol. 2023, 41, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Mattei, A.A.; Karuppannan, A.K.; Halbur, P.G. Future perspectives on swine viral vaccines: Where are we headed? Porcine Health Manag. 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Park, J.E.; Jang, H.; Hyun, B.H.; Yang, D.G.; Shin, H.J. Evaluation of antibody response of killed and live vaccines against porcine epidemic diarrhea virus in a field study. Vet. Q. 2014, 34, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.H.; Zheng, L.L.; Song, M.R.; Xu, W.S.; Kou, Y.N.; Zhou, Y.; Zhang, L.W.; Zhu, Y.N.; Wan, B.; Wei, Z.Y.; et al. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses. Nanomedicine 2018, 14, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhao, F.; Ru, J.; Liu, L.; Wang, Z.; Wang, N.; Shu, X.; Wei, Z.; Guo, H. Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells. Viruses 2021, 13, 2158. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Du, L.; Fan, B.; Sun, B.; Zhou, J.; Guo, R.; Yu, Z.; Shi, D.; He, K.; Li, B. A flagellin-adjuvanted inactivated porcine epidemic diarrhea virus (PEDV) vaccine provides enhanced immune protection against PEDV challenge in piglets. Arch. Virol. 2020, 165, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, J.; Liu, Y.; Da, S.; Shi, H.; Zhang, X.; Liu, J.; Cao, L.; Zhu, X.; Wang, X.; et al. Pathogenicity of porcine deltacoronavirus (PDCoV) strain NH and immunization of pregnant sows with an inactivated PDCoV vaccine protects 5-day-old neonatal piglets from virulent challenge. Transbound. Emerg. Dis. 2020, 67, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Liu, L.T.; Wang, Z.; Wang, N.X.; Ma, M.Y.; Jia, X.H.; Lu, S.J.; Xiang, Y.Q.; Zheng, L.L.; Hu, H. Development and immunogenicity evaluation of porcine deltacoronavirus inactivated vaccine with different adjuvants in mice. Vaccine 2022, 40, 4211–4219. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, D.; Zhou, P.; Zhang, L.; Li, M.; Li, W.; Zhang, Y.; Wang, Y.; Liu, X. Characterization, pathogenicity and protective efficacy of a cell culture-derived porcine deltacoronavirus. Virus Res. 2020, 282, 197955. [Google Scholar] [CrossRef]
- Su, F.; Xu, L.; Xue, Y.; Xu, W.; Li, J.; Yu, B.; Ye, S.; Yuan, X. Immune Enhancement of Nanoparticle-Encapsulated Ginseng Stem-Leaf Saponins on Porcine Epidemic Diarrhea Virus Vaccine in Mice. Vaccines 2022, 10, 1810. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Wang, Y.; Zhang, E.; Li, Y.; Yu, Q.; Yang, Q. Upregulation of CD4(+)CD8(+) memory cells in the piglet intestine following oral administration of Bacillus subtilis spores combined with PEDV whole inactivated virus. Vet. Microbiol. 2019, 235, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhao, X.; Zhou, S.; Zhou, T.; Tan, X.; Wu, X.; Tong, W.; Gao, F.; Yu, L.; Jiang, Y.; et al. A Virulent PEDV Strain FJzz1 with Genomic Mutations and Deletions at the High Passage Level Was Attenuated in Piglets via Serial Passage In Vitro. Virol. Sin. 2021, 36, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, S.; Chen, Z.; Yu, J.; Tang, R.; Qiu, W.; Zhao, L.; Liu, Y.; Guo, X.; He, H.; et al. Successive Passage In Vitro Led to Lower Virulence and Higher Titer of A Variant Porcine Epidemic Diarrhea Virus. Viruses 2020, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, W.; Zhou, Q.; Li, Q.; Xu, Z.; Shen, H.; Chen, F. Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain. Virol. J. 2019, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, Y.; Wu, M.; Ku, X.; Ye, S.; Li, Z.; Guo, X.; He, Q. Comparative Genomic Analysis of Classical and Variant Virulent Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus. Viruses 2015, 7, 5525–5538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, G.; Wang, J.; Man, K.; Yang, Q. Cell attenuated porcine epidemic diarrhea virus strain Zhejiang08 provides effective immune protection attributed to dendritic cell stimulation. Vaccine 2017, 35, 7033–7041. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Lin, Y.; Zou, C.; Peng, P.; Wu, Y.; Wei, Y.; Liu, Y.; Gong, L.; Cao, Y.; Xue, C. Attenuation and characterization of porcine enteric alphacoronavirus strain GDS04 via serial cell passage. Vet. Microbiol. 2019, 239, 108489. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cheng, J.; Luo, Y.; Yan, X.L.; Wu, Z.X.; He, L.L.; Tan, Y.R.; Zhou, Z.H.; Li, Q.N.; Zhou, L.; et al. Attenuation of a virulent swine acute diarrhea syndrome coronavirus strain via cell culture passage. Virology 2019, 538, 61–70. [Google Scholar] [CrossRef]
- Fan, B.; Yu, Z.; Pang, F.; Xu, X.; Zhang, B.; Guo, R.; He, K.; Li, B. Characterization of a pathogenic full-length cDNA clone of a virulent porcine epidemic diarrhea virus strain AH2012/12 in China. Virology 2017, 500, 50–61. [Google Scholar] [CrossRef]
- Peng, Q.; Fang, L.; Ding, Z.; Wang, D.; Peng, G.; Xiao, S. Rapid manipulation of the porcine epidemic diarrhea virus genome by CRISPR/Cas9 technology. J. Virol. Methods 2020, 276, 113772. [Google Scholar] [CrossRef]
- Li, J.; Jin, Z.; Gao, Y.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence. PLoS ONE 2017, 12, e0173998. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, L.; Zhang, P.; Ge, X.; Guo, X.; Han, J.; Zhang, Y.; Yang, H. A strain of porcine deltacoronavirus: Genomic characterization, pathogenicity and its full-length cDNA infectious clone. Transbound. Emerg. Dis. 2021, 68, 2130–2146. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Dong, S.; Yu, L.; Si, F.; Li, C.; Xie, C.; Yu, R.; Li, Z. Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells. Microbiol. Spectr. 2023, 11, e0387222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, W.; Zhou, P.; Liu, D.; Luo, R.; Jongkaewwattana, A.; He, Q. Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: A novel strategy for vaccine design. Emerg. Microbes Infect. 2020, 9, 20–31. [Google Scholar] [CrossRef]
- Li, W.; Lei, M.; Li, Z.; Li, H.; Liu, Z.; He, Q.; Luo, R. Development of a Genetically Engineered Bivalent Vaccine against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus. Viruses 2022, 14, 1746. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, Q. Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. Int. J. Mol. Sci. 2019, 20, 5478. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Liu, M.; Yang, S.; Xu, J.; Hou, Y.J.; Liu, D.; Tang, Q.; Zhu, H.; Wang, Q. A recombination-resistant genome for live attenuated and stable PEDV vaccines by engineering the transcriptional regulatory sequences. J. Virol. 2023, e0119323. [Google Scholar] [CrossRef]
- Saif, L.J. Animal coronavirus vaccines: Lessons for SARS. Dev. Biol. 2004, 119, 129–140. [Google Scholar]
- Yap, Y.K.; Smith, D.R. Strategies for the plant-based expression of dengue subunit vaccines. Biotechnol. Appl. Biochem. 2010, 57, 47–53. [Google Scholar] [CrossRef]
- Du, L.; Tai, W.; Zhou, Y.; Jiang, S. Vaccines for the prevention against the threat of MERS-CoV. Expert Rev. Vaccines 2016, 15, 1123–1134. [Google Scholar] [CrossRef]
- Huang, K.Y.; Yang, G.L.; Jin, Y.B.; Liu, J.; Chen, H.L.; Wang, P.B.; Jiang, Y.L.; Shi, C.W.; Huang, H.B.; Wang, J.Z.; et al. Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res. 2018, 247, 84–93. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Z.; Gu, S.; Nie, M.; Wang, Y.; Zhao, J.; Li, F.; Deng, H.; Huang, J.; Sun, X.; et al. The recombinant pseudorabies virus expressing porcine deltacoronavirus spike protein is safe and effective for mice. BMC Vet. Res. 2022, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, L.; Huang, X.; Wang, X.; Chen, S.; Shi, W.; Qiao, X.; Jiang, Y.; Tang, L.; Xu, Y.; et al. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb. Cell Fact. 2018, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Zhang, L.; Zhou, P.; Yu, R.; Zhang, Z.; Wang, C.; Guo, H.; Wang, Y.; Pan, L.; Liu, X. Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice. Vaccine 2023, 41, 6661–6671. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Zhang, L.; Zhou, P.; Zhang, Z.; Yu, R.; Liu, X.; Lv, J.; Wang, Y.; Guo, H.; Pan, L.; et al. Recombinant human adenovirus type 5 based vaccine candidates against GIIa- and GIIb-genotype porcine epidemic diarrhea virus induce robust humoral and cellular response in mice. Virology 2023, 584, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Fan, B.; Sun, B.; Zhou, J.; Zhao, Y.; Guo, R.; Ma, Z.; Song, T.; Fan, H.; Li, J.; et al. LDH nanoparticle adjuvant subunit vaccine induces an effective immune response for porcine epidemic diarrhea virus. Virology 2022, 565, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tang, Y.; Yan, K.; Chen, H.; Zhang, H. Inactivated Pseudomonas PE(ΔIII) exotoxin fused to neutralizing epitopes of PEDV S proteins produces a specific immune response in mice. Anim. Dis. 2021, 1, 22. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Z.; Ma, M.; Jia, X.; Liu, H.; Qian, M.; Lu, S.; Xiang, Y.; Wei, Z.; Zheng, L. Expression of codon-optimized PDCoV-RBD protein in baculovirus expression system and immunogenicity evaluation in mice. Int. J. Biol. Macromol. 2023, 252, 126113. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Huang, X.; Ma, S.; Yu, M.; Shi, W.; Qiao, X.; Tang, L.; Xu, Y.; Li, Y. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV. Viruses 2017, 9, 312. [Google Scholar] [CrossRef]
- Wang, X.N.; Wang, L.; Zheng, D.Z.; Chen, S.; Shi, W.; Qiao, X.Y.; Jiang, Y.P.; Tang, L.J.; Xu, Y.G.; Li, Y.J. Oral immunization with a Lactobacillus casei-based anti-porcine epidemic diarrhoea virus (PEDV) vaccine expressing microfold cell-targeting peptide Co1 fused with the COE antigen of PEDV. J. Appl. Microbiol. 2018, 124, 368–378. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.; Li, Y.; Li, F.; Zhao, H.; Shao, Y.; Zhang, L.; Ding, G.; Li, J.; Jiang, Y.; et al. Evaluation of the Immunogenicity in Mice Orally Immunized with Recombinant Lactobacillus casei Expressing Porcine Epidemic Diarrhea Virus S1 Protein. Viruses 2022, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Tian, Y.; Zhang, Y.; Zhang, M.; Tian, F.; Ma, J.; Jiang, S. Efficacy and immunogenicity of a live L. acidophilus expressing SAD epitope of transmissible gastroenteritis virus as an oral vaccine. Acta Virol. 2019, 63, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.T.; Li, Q.Y.; Ata, E.B.; Jiang, Y.L.; Huang, H.B.; Shi, C.W.; Wang, J.Z.; Wang, G.; Kang, Y.H.; Liu, J.; et al. Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus. Appl. Microbiol. Biotechnol. 2018, 102, 8307–8318. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Zhang, Z.; Liu, X.; Lv, J.; Zhang, L.; Li, J.; Ma, Z.; Wang, Y.; Guo, H.; Zhang, Y.; et al. Mucosal immune responses induced by oral administration of recombinant Lactococcus lactis expressing the S1 protein of PDCoV. Virology 2023, 578, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Jiang, X.; Jiang, Y.; Tang, L.; Xu, Y.; Qiao, X.; Min, L.; Wen, C.; Ma, G.; Li, Y. Oral Immunization against PEDV with Recombinant Lactobacillus casei Expressing Dendritic Cell-Targeting Peptide Fusing COE Protein of PEDV in Piglets. Viruses 2018, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Yu, D.; Zhang, F.; Gao, J.; Wang, X.; Fang, X.; Wang, H.; Sun, T. Recombinant vesicular stomatitis virus expressing the spike protein of genotype 2b porcine epidemic diarrhea virus: A platform for vaccine development against emerging epidemic isolates. Virology 2019, 533, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Z.; Wu, T.; Peng, O.; Huang, L.; Zhang, Y.; Xue, C.; Wen, Z.; Zhou, Q.; Cao, Y. A flagellin-adjuvanted PED subunit vaccine improved protective efficiency against PEDV variant challenge in pigs. Vaccine 2018, 36, 4228–4235. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, D.; Zhou, P.; Zhang, Y.; Wang, Y. Evaluation of the Efficacy of a Recombinant Adenovirus Expressing the Spike Protein of Porcine Epidemic Diarrhea Virus in Pigs. Biomed Res. Int. 2019, 2019, 8530273. [Google Scholar] [CrossRef]
- Yuan, X.; Lin, H.; Fan, H. Efficacy and immunogenicity of recombinant swinepox virus expressing the A epitope of the TGEV S protein. Vaccine 2015, 33, 3900–3906. [Google Scholar] [CrossRef]
- Yuan, X.; Lin, H.; Li, B.; He, K.; Fan, H. Efficacy and immunogenicity of recombinant swinepox virus expressing the truncated S protein of a novel isolate of porcine epidemic diarrhea virus. Arch. Virol. 2017, 162, 3779–3789. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, X.; Ju, N.; Wang, Z.; Sui, L.; Wang, L.; Qiao, X.; Cui, W.; Jiang, Y.; Zhou, H.; et al. Immune Responses in Pregnant Sows Induced by Recombinant Lactobacillus johnsonii Expressing the COE Protein of Porcine Epidemic Diarrhea Virus Provide Protection for Piglets against PEDV Infection. Viruses 2021, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, S.; Zhang, B.; Huang, J.; Peng, Q.; Xiao, L.; Yuan, X.; Guo, R.; Zhou, J.; Fan, B.; et al. A novel recombinant S-based subunit vaccine induces protective immunity against porcine deltacoronavirus challenge in piglets. J. Virol. 2023, 97, e0095823. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.B.; Yang, W.T.; Shi, C.W.; Feng, B.; Huang, K.Y.; Zhao, G.X.; Li, Q.Y.; Xie, J.; Huang, H.B.; Jiang, Y.L.; et al. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets. Appl. Microbiol. Biotechnol. 2018, 102, 8403–8417. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Zhu, L.; Xing, X.; Lin, J.; Yang, Q. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antivir. Res. 2016, 131, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Xu, H.; Xiang, B.; Dang, R.; Yang, Z. Orally Administrated Whole Yeast Vaccine Against Porcine Epidemic Diarrhea Virus Induced High Levels of IgA Response in Mice and Piglets. Viral Immunol. 2016, 29, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, L.; Mou, C.; Zhang, E.; Wang, Y.; Cao, Y.; Yang, Q. Mucosal immune responses induced by oral administration recombinant Bacillus subtilis expressing the COE antigen of PEDV in newborn piglets. Biosci. Rep. 2019, 39, BSR20182028. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Tian, Y.; Li, Y.; Xue, R.; Hu, L.; Zhang, D.; Sun, S.; Wang, G.; Chen, J.; Lan, Z.; et al. Recombinant Lactobacillus acidophilus expressing S(1) and S(2) domains of porcine epidemic diarrhea virus could improve the humoral and mucosal immune levels in mice and sows inoculated orally. Vet. Microbiol. 2020, 248, 108827. [Google Scholar] [CrossRef]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef]
- Rodriguez-Limas, W.A.; Sekar, K.; Tyo, K.E. Virus-like particles: The future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. 2013, 24, 1089–1093. [Google Scholar] [CrossRef]
- Mejia-Mendez, J.L.; Vazquez-Duhalt, R.; Hernandez, L.R.; Sanchez-Arreola, E.; Bach, H. Virus-like Particles: Fundamentals and Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 8579. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Qiao, Y.; Wang, T.; Yao, L. Porcine Deltacoronavirus-like Particles Produced by a Single Recombinant Baculovirus Elicit Virus-Specific Immune Responses in Mice. Viruses 2023, 15, 1095. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, F.; Zheng, X.; Wang, H.; Jin, H.; Wang, C.; Zhao, Y.; Feng, N.; Wang, T.; Gao, Y.; et al. Porcine epidemic diarrhea virus virus-like particles produced in insect cells induce specific immune responses in mice. Virus Genes 2017, 53, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, R.; Ma, Y.; Chang, W.; Ming, S.; Yang, G.; Guo, Y. Chimeric Virus-like Particles of Universal Antigen Epitopes of Coronavirus and Phage Qbeta Coat Protein Trigger the Production of Neutralizing Antibodies. Curr. Top. Med. Chem. 2021, 21, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef] [PubMed]
- Arul, S.S.; Balakrishnan, B.; Handanahal, S.S.; Venkataraman, S. Viral nanoparticles: Current advances in design and development. Biochimie 2023, 219, 3–50. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Y.; Tang, X. In vitro and in vivo evaluation of ofloxacin sustained release pellets. Int. J. Pharm. 2008, 360, 47–52. [Google Scholar] [CrossRef]
- Zahin, N.; Anwar, R.; Tewari, D.; Kabir, M.T.; Sajid, A.; Mathew, B.; Uddin, M.S.; Aleya, L.; Abdel-Daim, M.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ. Sci. Pollut. Res. Int. 2020, 27, 19151–19168. [Google Scholar] [CrossRef]
- Li, B.; Du, L.; Yu, Z.; Sun, B.; Xu, X.; Fan, B.; Guo, R.; Yuan, W.; He, K. Poly (d,l-lactide-co-glycolide) nanoparticle-entrapped vaccine induces a protective immune response against porcine epidemic diarrhea virus infection in piglets. Vaccine 2017, 35, 7010–7017. [Google Scholar] [CrossRef]
- Wen, Z.; Xu, Z.; Zhou, Q.; Li, W.; Wu, Y.; Du, Y.; Chen, L.; Zhang, Y.; Xue, C.; Cao, Y. Oral administration of coated PEDV-loaded microspheres elicited PEDV-specific immunity in weaned piglets. Vaccine 2018, 36, 6803–6809. [Google Scholar] [CrossRef]
Vaccine Type | Strains | Route | Approval Number | Date of Approval |
---|---|---|---|---|
Inactivated vaccines of PEDV | CHYJ | Oral and nasal spray | (2023) New veterinary drug No. 02 | 12 January 2023 |
XJ-DB2 | IM | (2021) New veterinary drug No. 11 | 18 March 2021 | |
Inactivated vaccines of TGEV and PEDV | WH-1 and AJ1102 | IM | (2016) New veterinary drug No. 66 | 25 October 2016 |
Hua and CV777 | Houhai acupoint injection | (1999) New veterinary drug No. 45 | - | |
Live vaccines of TGEV and PEDV | SD/L and LW/L | IM | (2018) New veterinary drug No. 37 | 3 July 2018 |
SCJY-1 and SCSZ-1 | IM and Houhai acupoint injection | (2017) New veterinary drug No. 64 | 27 December 2017 | |
WH-1R and AJ1102-R | IM | (2017) New veterinary drug No. 63 | 27 December 2017 | |
HB08 and ZJ08 | IM and Houhai acupoint injection | (2015) New veterinary drug No. 57 | 18 November 2015 | |
Live triple vaccines of TGEV, PEDV, and PRoV | Hua, CV777 and NX | Houhai acupoint injection | (2014) New veterinary drug No. 54 | 26 December 2014 |
Virus | Expression System | Antigen | Adjuvant or Immune Enhancer | Animal | Route | Amount of Challenge (Homologous Viruses) | Detection Indicators | References |
---|---|---|---|---|---|---|---|---|
TGEV | L. plantarum (NC8) | TGEV strain JS2012 (GenBank accession: KT696544.1) S protein | Dendritic cell-targeting peptide (FYPSYHSTPQRP) | Specific pathogen-free (SPF) mice | Oral | NR | (1) Percentage of B220+ IgA+ B cells in the small intestine lamina propria ↑ (2) Fecal sIgA ↑ (3) Serum IgG and VN antibodies ↑ (4) IFN-γ and IL-4 secretion in splenocytes ↑ | [115] |
L. plantarum (NC8) | TGEV strain JS2012 S protein | Dendritic cell-targeting peptide (FYPSYHSTPQRP) | 1-month-old crossbreed Junmu1 white piglets | Oral | NR | (1) Percentage of MHC-II+CD80+ B cells in the spleens and Peyer’s patches ↑ (2) Number of IgA+ B cells in the small intestine lamina propria ↑ (3) Percentage of CD3+CD4+ T cells in the small intestine lamina propria and mesenteric lymph nodes ↑ (4) Fecal sIgA ↑ (5) Serum IgG ↑ (6) Serum IL-4 and IL-17 ↑ (7) IL-4, IL-17, IFN-γ, and TGF-β in splenic lymphocytes, mesenteric lymph node lymphocytes, and ileum lamina propria lymphocytes ↑ | [125] | |
Swinepox virus-porcine kidney cells (PK-15, ATCC-CCL-33) | TGEV strain SHXB (GenBank accession: KP202848.1) S protein | NR | 6-week-old BALB/C mice, 1-month-old piglets (Large White), and 1-day-old piglets | Oral, nasal, and IP | 1 × 108 PFU | (1) Mice: serum IgG, VN antibodies, IL-4, and IFN-γ ↑ (2) Pigs: serum IgG and VN antibodies ↑ (3) Piglets: mortality ↓ (4) Piglets: intestinal lesions ↓ | [121] | |
B. subtilis (WB800) | TGEV strain SHXB S protein | Spore coat protein | 1-month-old Yorkshire piglets | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Fecal sIgA ↑ (3) Activation of bone marrow dendritic cells ↑ (4) Numbers of ileum local lymphocytes ↑ | [126] | |
L. acidophilus | TGEV stain HN2002 (GenBank accession: AY587882.1) partial S protein (A and D antigenic sites) | NR | 6-week-old female BALB/c mice | Oral | NR | Serum IgG, sIgA, IL-4, and IFN-γ ↑ | [114] | |
PEDV | E. coli BL21 (DE3) | PEDV strain GDS01 (GenBank accession: KM089829.1) COE | Flagellin | 4-week-old crossbred growing piglets (Duroc × Landrace × Big White) | Houhai acupoint | 4 × 106 PFU | (1) Serum IgG, IgA, VN antibodies, IFN-λ, and IL-4 ↑ (2) Saliva and face sIgA ↑ (3) Fecal viral load ↓ | [119] |
E. coli BL21 (DE3) | PEDV strain CH2019 partial S protein (499–789aa + 1368–1378aa) | Pseudomonas aeruginosa exotoxin A without domain III | 6-week-old female BALB/c mice | IN | NR | (1) Serum IgG, IgA, and VN antibodies ↑ (2) Mucosal IgA in the intestinal contents ↑ (3) Spleen lymphocyte proliferation ↑ (4) IFN-λ, IL-2, IL-4, and IL-10 secretion in splenocytes ↑ | [109] | |
Expi293FTMcells and E. coli BL21 (DE3) | PEDV strain AH2012/12 COE | Layered double hydroxide | 6-week-old BALB/c mice | SC | NR | (1) CD3+CD4+ T cells ↑ (2) CD3+CD8+ T cells ↑ (3) Spleen lymphocyte proliferation ↑ (4) IFN-γ and IL-4 secretion in splenocytes ↑ | [108] | |
Yeast (P. pastoris GS115) | PEDV strain CV777 S1 | NR | 5-week-old BALB/c mice and piglets | Oral | NR | (1) Mice: IgG in serum and sIgA in feces ↑ (2) Piglets: sIgA in feces ↑ | [127] | |
L. plantarum (NC8) | PEDV strain CH/ZY/11 (GenBank accession: JQ257007.1) S protein | Dendritic cell-targeting peptide (FYPSYHSTPQRP) | 6-week-old SPF mice | Lavage | NR | (1) IgA+B220+ B cells ↑ (2) Fecal sIgA ↑ (3) Serum IgG ↑ (4) Serum and fecal VN antibodies ↑ | [103] | |
L. casei 393 | PEDV strain LJB/15 COE | Dendritic cell-targeting peptide (FYPSYHSTPQRP) | 6-week-old female SPF BALB/c mice | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Fecal sIgA ↑ (3) Spleen lymphocyte proliferation ↑ (4) IFN-γ and IL-4 secretion in splenocytes ↑ | [111] | |
Swinepox virus-porcine kidney cells (PK-15, ATCC-CCL-33) | PEDV strain SQ2014 (GenBank accession: KP728470.1) partial S protein (386–815aa) | NR | 1-month-old piglets (Large White) | SC and orally (1:1 volume ratio) | 1 × 106 PFU | (1) Serum IgG, IgA, and VN antibodies ↑ (2) IFN-γ and IL-4 in peripheral blood lymphocytes ↑ (3) Mortality of piglets ↓ (4) Intestinal lesions ↓ | [122] | |
L. casei 393 | PEDV strain HLJ-2012 COE | Microfold cell–targeting peptide Co1 | 6-week-old female SPF BALB/c mice | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Intestinal mucus and genital tract sIgA ↑ (3) IFN-γ and IL-4 secretion in splenocytes ↑ (4) Spleen lymphocyte proliferation ↑ | [112] | |
L. casei 393 | PEDV strain LJB/15 COE | Dendritic cell-targeting peptide (FYPSYHSTPQRP) | Crossbred piglets (Large White) | Oral | 5 × 106 PFU | (1) Mucus extract sIgA and serum IgG ↑ (2) TLR-4, TLR-9, and TGF-β in mesenteric lymph nodes ↑ (3) Mortality of piglets ↓ (4) Intestinal lesions ↓ (5) Virus shedding ↓ | [117] | |
L. casei 393 | PEDV strain HLJ-2012 COE | Microfold cell–targeting peptide Co1 and dendritic cell-targeting peptide (FYPSYHSTPQRP) | 6-week-old female SPF BALB/c mice | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Intestinal mucus, genital tract, and fecal sIgA ↑ (3) IFN-γ and IL-4 secretion in splenocytes ↑ (4) Spleen lymphocyte proliferation ↑ | [105] | |
Vesicular stomatitis virus-baby hamster kidney cells (BHK-21) (ATCC-CCL-10) | PEDV strain CHN/SHANGHAI/2012 (GenBank accession: MG83701.1) partial S protein (19 aa deletion in cytoplasmic tail) | MONTANIDETM IMS 1313 VG NPR adjuvant, MONTANIDETM ISA 206 VG adjuvant, or MONTANIDETM ISA15A VG adjuvant | 4-week-old healthy Bama minipigs and sows | IM | 1 × 102 TCID50 | (1) Piglets: serum IgG and VN antibodies ↑ (2) Sows: serum and colostrum VN antibodies ↑ (3) Mortality of piglets ↓ (4) Piglets: fecal score ↓ (5) Piglets: virus shedding ↓ | [118] | |
Ad5Max adenovirus vector system-HEK293A cells | PEDV strain CH/HBXT/2018 (GenBank accession: MH816969.1) S protein | NR | 4-week-old piglets | IM | 1 × 105 TCID50 | (1) Serum IgG, IgA, and VN antibodies ↑ (2) Fecal viral shedding ↓ (3) Fecal scores ↓ | [120] | |
B. subtilis (WB800) | PEDV strain Zhejiang08 COE | NR | SPF piglets (Duroc and Landrace and Yorkshire) | Oral | NR | (1) The area of Peyer’s patches ↑ (2) The villi length of ileum ↑ (3) Saliva and fecal sIgA ↑ (4) Serum IgG ↑ (5) CD3+ T lymphocytes and IgA+ cells in ileum ↑ (6) CD3+CD4+ T cells in small intestinal mucosa ↑ (7) IL-1β and IL-10 levels ↑ (8) Plaque reduction neutralization test ↑ | [128] | |
L. acidophilus (SW1) | PEDV strain CH-SDBZ-1-2015 (GenBank accession: KU133232.1) S1 | NR | 6-week-old female BALB/c mice or pregnant sows | Oral | NR | (1) Mice: serum IgG, sIgA, IFN-γ, and IL-4 ↑ (2) Sow: serum IgG ↑ (3) Sow: sIgA in colostrum ↑ | [129] | |
L. johnsonii (6332) | PEDV strain HLJ-2012 COE | NR | Large white sows at 90 days of gestation and 4-day-old piglets | Oral | 1 × 104 TCID50 | (1) Monocyte-derived dendritic cell (MoDC) maturation ↑ (2) Sow: serum IgG, IgA, IgM, IL-2, IL-4, IL-6, IL-12, and IFN-γ ↑ (3) IgG, sIgA in colostrum ↑ (4) Piglets: serum IgG and sIgA ↑ (5) Piglets: nasal mucosa and rectal mucosa IgG and sIgA ↑ (6) Piglets: fecal viral shedding ↓ (7) Piglets: clinical signs of fecal consistency ↓ (8) Piglets: intestinal lesions ↓ | [123] | |
L. casei deficient in upp genotype (∆upp ATCC 393) | PEDV strain LJB2019 S1 | NR | 35-day-old female SPF BALB/c mice | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Nasal, tears, genital tract, intestinal mucus, and fecal sIgA ↑ (3) Serum IL-2, IFN-γ, IL-4, IL-12, IL-10, and IL-17 ↑ (4) Spleen lymphocyte proliferation ↑ | [113] | |
Human adenovirus type 5 (Ad5) vector-HEK293 cells | PEDV strain CH/HBXT/2018 (GenBank accession: MH816969.1) S or S1 and PEDV strain CH/HNPJ/2017 (GenBank accession: MF152604.1) S or S1 | NR | 6–8 weeks-old SPF female BALB/c mice | IM | NR | (1) Serum IgG, IL-2, TNF-α, and VN antibodies ↑ (2) Percentages of splenic CD8+ T cells ↑ | [107] | |
PDCoV | Human adenovirus type 5 (Ad5) vector-HEK293 cells | PDCoV strain CH/XJYN/2016 (GenBank accession: MN064712.1) S or S1 | NR | 6–8 weeks-old SPF female BALB/c mice | IM | NR | (1) Serum IgG, IL-2, TNF-α, and VN antibodies ↑ (2) Percentages of splenic CD8+ T cells ↑ | [106] |
Baculovirus-High Five (Hi5) and spodoptera frugiperda (sf9) cells | PDCoV strain CZ2020 (GenBank accession: OK546242.1) S or RBD | M103 adjuvant or GEL 01 adjuvant | 6-week-old female BALB/c mice, 3-day-old piglets, and sows | IM | 1 × 107.75 TCID50 or 1 × 107 TCID50 or 2 × 105 TCID50 | (1) Mice: serum IgG, IFN-γ, IL-4, and VN antibodies ↑ (2) Percentages of mice splenocyte CD3+CD4+ T cells, CD3+CD8+ T cells, B220+CD19+ B lymphocytes, and CD3−CD49b+ NK cells ↑ (3) Piglets: serum IgG, sIgA, and VN antibodies ↑ (4) Piglets peripheral blood mononuclear cells (PBMCs) lymphocyte proliferation ↑ (5) Piglets: Il-4 and IFN-γ mRNA levels in PBMCs ↑ (6) Sow: milk IgG and VN antibodies ↑ (7) Piglets: virus shedding ↓ (8) Piglets: no pathological changes in intestinal tissues | [124] | |
Pseudorabies virus-BHK-21 cells | PDCoV strain CH/Sichuan/S27/2012 (GenBank accession: KT266822.1) S | NR | 6–8-week-old female BALB/c mice | IM | NR | (1) Serum IgG, VN antibodies, IL-4, and IFN-γ ↑ (2) Spleen lymphocyte proliferation ↑ (3) Percentage of CD4+ and CD8+ T cells ↑ | [104] | |
L. lactis (NZ9000) | PDCoV strain CH/XJYN/2016 (GenBank accession: MN064712.1) S1 | Microfold cell–targeting peptide Co1 | 6-week-old SPF female BALB/c mice | Oral | NR | (1) Serum IgG, IgA, IFN-γ, IL-2, IL-4, and IL-17 ↑ (2) Fecal sIgA ↑ (3) Intestinal fluid VN antibodies ↑ (4) Percentage of CD3+, CD3+CD4+, and CD3+CD8+ T cells ↑ (5) Spleen lymphocyte proliferation ↑ | [116] | |
Baculovirus-sf9 cells | PDCoV strain HNZK-02 RBD | CPG2395 or aqueous adjuvant | 6-week-old female BALB/c mice | SC | 3 × 108 TCID50 | (1) Serum IgG, IgA, and VN antibodies ↑ (2) IFN-γ, IL-2, IL-4 secretion in splenocytes ↑ (3) Spleen lymphocyte proliferation ↑ (4) CD4+CD8+ T cells ↑ (5) Central memory T cells ↑ (6) Intestinal pathological lesions ↓ | [110] |
Strategy | Virus | Expression System | Antigen | Adjuvant or Immune Enhancer | Animal | Route | Amount of Challenge (Homologous Viruses) | Detection Indicators | References |
---|---|---|---|---|---|---|---|---|---|
Virus-like-particles | PEDV | Baculovirus-Sf9 cells | S, M, and E proteins | NR | 6-week-old female BALB/c mice | IM | NR | (1) Serum VN antibodies ↑ (2) IL-4 secretion in CD4+ T cells ↑ | [134] |
PDCoV | Baculovirus-sf9 cells | S, M, and E proteins | Freund’s adjuvant | 8-week-old female BALB/C mice | IM | NR | (1) Serum IgG and VN antibodies ↑ (2) IFN-γ and IL-4 secretion in splenocytes ↑ | [133] | |
Nanoparticle trapped vaccines | PEDV | NR | Poly (D,L-lactide-co-glycolide) nanoparticle–entrapped inactivated PEDV strain (AH2012/12) | ISA201 adjuvant | Pregnant sows and piglets | IN | 100 LD50 | (1) Sows: serum IgG and VN antibodies ↑ (2) Sows: colostrum IgG, IgA and VN antibodies ↑ (3) Sows: lymphocyte proliferation, IFN-γ production, and mRNA levels in PBMCs ↑ (4) Piglets: serum IgG and VN antibodies ↑ (5) Piglets: fecal viral shedding ↓ (6) Piglets: clinical signs ↓ (7) Piglets: intestinal lesions ↓ (8) Piglets: mortality rates ↓ | [140] |
Virus-loaded microspheres | PEDV | NR | Freeze-dried powders containing PEDV attenuated strain were loaded on sucrose microspheres | NR | 4-week-old weaned piglets | Oral | NR | (1) Serum IgG and VN antibodies ↑ (2) Saliva IgA ↑ | [141] |
Project Name | Strain | Applicant | Term of Validity |
---|---|---|---|
Genetically engineered subunit vaccine of PEDV | CHO-3G12 | Hailong (Zhejiang) Biotechnology Co., Ltd. (Shaoxing, China), and Institute of animal health, Guangdong academy of agricultural sciences. | 21 July 2023–20 July 2025 |
Inactivated vaccine of PEDV | ZJ/15 | Zhejiang University, Jiangsu Academic Science of Agriculture, Meibaolong (Zhejiang) Biotechnology Co., Ltd. (Jinhua, China), and Hongsheng (Zhejiang) Biotechnology Co., Ltd. (Shaoxing, China) | 21 April 2023–20 April 2025 |
Inactivated triple vaccine of TGEV, PEDV and PDCoV | SHXB, ZJ/15 and LYG/14 | Zhejiang University, Jiangsu Academic Science of Agriculture, and Hongsheng (Zhejiang) Biotechnology Co., Ltd. (Shaoxing, China) | 19 December 2022–18 December 2024 |
Inactivated vaccine of PDCoV | LYG/14 | Jiangsu Academic Science of Agriculture, Zhejiang University, Hongsheng (Zhejiang) Biotechnology Co., Ltd. (Shaoxing, China), and Yisikang (Chengdu) Pharmaceutical Technology Co., Ltd. (Chengdu, China) | 6 February 2023–5 February 2025 |
Inactivated vaccine of PEDV | HeN2017 | Henan Animal Disease Control Center (Zhengzhou, Henan, China), Nuoweilihua (Shanxi) Biotechnology Co., Ltd. (Xianyang, China), Longxing (Yangling) Technology Development Co., Ltd. (Xianyang, China), and Tianhexin (Suzhou) Biotechnology Co., Ltd. (Suzhou, China) | 2 March 2023–1 March 2025 |
Inactivated vaccine of PEDV and PRoV | HB17 and JS01 | Keqian (Wuhan) Biology Co., Ltd. (Wuhan, China) | 31 May 2022–30 May 2024 |
Inactivated vaccine of PDCoV and PEDV | AK-R and WN-R | Lufang (Yangling) Bioengineering Co., Ltd. (Xianyang, China), Nuoweilihua (Shaanxi) Biotechnology Co., Ltd. (Xianyang, China), Shengwei (Fujian) Biotechnology Co., Ltd. (Nanping, China), and Beijing University of Agriculture. | 26 January 2022–25 January 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Jia, H.; Xiao, Q.; Fang, L.; Wang, Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines 2024, 12, 11. https://doi.org/10.3390/vaccines12010011
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines. 2024; 12(1):11. https://doi.org/10.3390/vaccines12010011
Chicago/Turabian StyleKong, Fanzhi, Huilin Jia, Qi Xiao, Liurong Fang, and Qiuhong Wang. 2024. "Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application" Vaccines 12, no. 1: 11. https://doi.org/10.3390/vaccines12010011
APA StyleKong, F., Jia, H., Xiao, Q., Fang, L., & Wang, Q. (2024). Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines, 12(1), 11. https://doi.org/10.3390/vaccines12010011