Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Excipients
2.3. Vaccine Lyophilization
2.4. Screening of Heat-Resistant Freeze-Dried Formulations
2.5. Long-Term Stability Assessment
2.6. Virus Titration
2.7. Vacuum and Moisture Content
2.8. Scanning Electron Microscopy (SEM)
2.9. X-ray Powder Diffraction (XRD) Analysis
2.10. Fourier-Transformed Infrared (FTIR) Analysis
2.11. Vaccine Immunogenicity and Safety
2.12. Statistic Analysis
3. Results
3.1. Screening of Heat-Resistant Freeze-Dried Formulations
3.2. Physicochemical Characteritics of the Vaccine
3.2.1. Vacuum Degree and Remaining Moisture
3.2.2. Scanning Electron Microscope
3.2.3. Fourier-Transformed Infrared (FTIR)
3.2.4. X-ray Diffraction
3.3. Long-Term Vaccine Stability
3.4. Vaccine Immunogenicity and Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Yuan, J.; Qin, H.; Luo, Y.; Cong, X.; Li, Y.; Chen, J.; Li, S.; Sun, Y.; Qiu, H. A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China. Vaccine 2014, 32, 3379–3385. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, P.; Chen, H.; Wang, Z. Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022, 14, 1638. [Google Scholar] [CrossRef]
- Romero, N.; Wuerzberger-Davis, S.M.; Van Waesberghe, C.; Jansens, R.J.; Tishchenko, A.; Verhamme, R.; Miyamoto, S.; Favoreel, H.W. Pseudorabies Virus Infection Results in a Broad Inhibition of Host Gene Transcription. J. Virol. 2022, 96, e00714-22. [Google Scholar] [CrossRef]
- Luo, Y.; Li, N.; Cong, X.; Wang, C.H.; Du, M.; Li, L.; Zhao, B.; Yuan, J.; Liu, D.D.; Li, S.; et al. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet. Microbiol. 2014, 174, 107–115. [Google Scholar] [CrossRef]
- Chen, J.; Hu, J.-H.; Sun, R.-C.; Li, X.-H.; Zhou, J.; Zhou, B. Porcine Mx proteins inhibit pseudorabies virus replication through interfering with early gene synthesis. Vet. Microbiol. 2023, 280, 109706. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, L.; Fu, Z.F. Effective cross-protection of a lyophilized live gE/gI/TK-deleted pseudorabies virus (PRV) vaccine against classical and variant PRV challenges. Vet. Microbiol. 2022, 267, 109387. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Wang, C.-H.; Yuan, J.; Li, N.; Song, K.; Qiu, H.-J. Control of swine pseudorabies in China: Opportunities and limitations. Vet. Microbiol. 2016, 183, 119–124. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, Z.; Hu, D.; Zhang, Q.; Han, T.; Li, X.; Gu, X.; Yuan, L.; Zhang, S.; Wang, B.; et al. Pathogenic Pseudorabies Virus, China, 2012. Emerg. Infect. Dis. 2014, 20, 102–104. [Google Scholar] [CrossRef]
- Yan, S.; Huang, B.; Bai, X.; Zhou, Y.; Guo, L.; Wang, T.; Shan, Y.; Wang, Y.; Tan, F.; Tian, K. Construction and Immunogenicity of a Recombinant Pseudorabies Virus Variant with TK/gI/gE/11k/28k Deletion. Front. Vet. Sci. 2022, 8, 797611. [Google Scholar] [CrossRef]
- Alcock, R.; Cottingham, M.G.; Rollier, C.S.; Furze, J.; De Costa, S.D.; Hanlon, M.; Spencer, A.J.; Honeycutt, J.D.; Wyllie, D.H.; Gilbert, S.C.; et al. Long-Term Thermostabilization of Live Poxviral and Adenoviral Vaccine Vectors at Supraphysiological Temperatures in Carbohydrate Glass. Sci. Transl. Med. 2010, 2, 19ra12. [Google Scholar] [CrossRef]
- Chen, X.; Fernando, G.J.P.; Crichton, M.L.; Flaim, C.; Yukiko, S.R.; Fairmaid, E.J.; Corbett, H.J.; Primiero, C.A.; Ansaldo, A.B.; Frazer, I.H.; et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release 2011, 152, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kristensen, D. Opportunities and challenges of developing thermostable vaccines. Expert. Rev. Vaccines 2009, 8, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Peetermans, J. Factors affecting the stability of viral vaccines. Dev. Biol. Stand. 1996, 87, 97–101. [Google Scholar] [PubMed]
- Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.P.; De Beer, T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine 2015, 33, 5507–5519. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, B.S.; Bogner, R.H.; Pikal, M.J. Protein stability during freezing: Separation of stresses and mechanisms of protein stabilization. Pharm. Dev. Technol. 2007, 12, 505–523. [Google Scholar] [CrossRef]
- Wang, W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000, 203, 1–60. [Google Scholar] [CrossRef]
- Allison, S.D.; Molina, M.D.C.; Anchordoquy, T.J. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: The particle isolation hypothesis. Biochim. Biophys. Acta-Biomembr. 2000, 1468, 127–138. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Crowe, J.H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989, 28, 3916–3922. [Google Scholar] [CrossRef]
- Eriksson, H.J.C.; Hinrichs, W.L.J.; van Veen, B.; Somsen, G.W.; de Jong, G.J.; Frijlink, H.W. Investigations into the stabilisation of drugs by sugar glasses: I. Tablets prepared from stabilised alkaline phosphatase. Int. J. Pharm. 2002, 249, 59–70. [Google Scholar] [CrossRef]
- Stone, C.A., Jr.; Hemler, J.A.; Commins, S.P.; Schuyler, A.J.; Phillips, E.J.; Peebles, R.S., Jr.; Fahrenholz, J.M. Anaphylaxis after zoster vaccine: Implicating alpha-gal allergy as a possible mechanism. J. Allergy Clin. Immunol. 2017, 139, 1710–1713. [Google Scholar] [CrossRef]
- Johnson, F.B. Transport of viral specimens. Clin. Microbiol. Rev. 1990, 3, 120–131. [Google Scholar] [CrossRef]
- Zuo, X.-X.; Zhao, Y.-H.; Zhou, M.-X.; Deng, B.-H.; Hu, L.-G.; Lv, F.; Lu, Y.; Hou, J.-B. Live vaccine preserved at room temperature: Preparation and characterization of a freeze-dried classical swine fever virus vaccine. Vaccine 2020, 38, 8371–8378. [Google Scholar] [CrossRef] [PubMed]
- de Rizzo, E.; Tenório, E.C.; Mendes, I.F.; Fang, F.L.; Pral, M.M.; Takata, C.S.; Miyaki, C.; Gallina, N.M.; Tuchiya, H.N.; Akimura, O.K. Sorbitol-gelatin and glutamic acid-lactose solutions for stabilization of reference preparations of measles virus. Bull. Pan Am. Health Organ. 1989, 23, 299–305. [Google Scholar] [PubMed]
- Zhao, Y.; Deng, B.; Pan, X.; Zhang, J.; Zuo, X.; Wang, J.; Lv, F.; Lu, Y.; Hou, J. Optimization of Heat-Resistance Technology for a Duck Hepatitis Lyophilized Live Vaccine. Vaccines 2022, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, T.B. Design and analysis of accelerated degradation tests for the stability of biological standards III. Principles of design. J. Biol. Stand. 1984, 12, 215–224. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Agriculture of the People’s Republic of China. Rules for Biological Products of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2000.
- Lyu, F.; Lu, Y.; Hao, Z.; Zhao, Y.; Zhang, l.; Feng, L.; Chen, J.; Wang, L.; Rui, R.; Hou, J. Preparation and heat resistance study of porcine reproductive and respiratory syndrome virus sugar glass vaccine. Vaccine 2016, 34, 3746–3750. [Google Scholar]
- Kumru, O.S.; Joshi, S.B.; Smith, D.E.; Middaugh, C.R.; Prusik, T.; Volkin, D.B. Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies. Biologicals 2014, 42, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Bellali, S.; Khalil, J.B.; Fontanini, A.; Raoult, D.; Lagier, J.-C. A new protectant medium preserving bacterial viability after freeze drying. Microbiol. Res. 2020, 236, 126454. [Google Scholar] [CrossRef]
- Kang, M.S.; Jang, H.; Kim, M.C.; Kim, M.J.; Joh, S.J.; Kwon, J.H.; Kwon, Y.K. Development of a stabilizer for lyophilization of an attenuated duck viral hepatitis vaccine. Poult. Sci. 2010, 89, 1167–1170. [Google Scholar] [CrossRef]
- Chang, L.Q.; Shepherd, D.; Sun, J.; Tang, X.L.; Pikal, M.J. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: Implications for the mechanism of protein stabilization in the solid state. J. Pharm. Sci. 2005, 94, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.S.; Zografi, G. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 1998, 87, 1615–1621. [Google Scholar] [CrossRef]
- Thakral, S.; Sonje, J.; Munjal, B.; Suryanarayanan, R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Adv. Drug Deliv. Rev. 2021, 173, 1–19. [Google Scholar] [CrossRef]
- Yu, L.; Mishra, D.S.; Rigsbee, D.R. Determination of the glass properties of D-mannitol using sorbitol as an impurity. J. Pharm. Sci. 1998, 87, 774–777. [Google Scholar] [CrossRef]
- Mariner, J.C.; House, J.A.; Sollod, A.E.; Stem, C.; van den Ende, M.; Mebus, C.A. Comparison of the effect of various chemical stabilizers and lyophilization cycles on the thermostability of a Vero cell-adapted rinderpest vaccine. Vet. Microbiol. 1990, 21, 195–209. [Google Scholar] [CrossRef]
- Horn, J.; Mahler, H.-C.; Friess, W. Drying for Stabilization of Protein Formulations. In Drying Technologies for Biotechnology and Pharmaceutical Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 91–119. [Google Scholar]
- Hansen, L.; De Beer, T.; Pierre, K.; Pastoret, S.; Bonnegarde-Bernard, A.; Daoussi, R.; Vervaet, C.; Remon, J.P. FTIR spectroscopy for the detection and evaluation of live attenuated viruses in freeze dried vaccine formulations. Biotechnol. Progress. 2015, 31, 1107–1118. [Google Scholar] [CrossRef]
- Abdelwahed, W.; Degobert, G.; Fessi, H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur. J. Pharm. Biopharm. 2006, 63, 87–94. [Google Scholar] [CrossRef]
- Barth, A.; Zscherp, C. What vibrations tell us about proteins. Q. Rev. Biophys. 2002, 35, 369–430. [Google Scholar] [CrossRef]
- Jerne, N.K.; Perry, W.L. The stability of biological standards. Bull. World Health Organ. 1956, 14, 167–182. [Google Scholar]
- Su, K.; Wang, C. Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 2015, 37, 2139–2145. [Google Scholar] [CrossRef]
- Pastorino, B.; Baronti, C.; Gould, E.A.; Charrel, R.N.; de Lamballerie, X. Effect of Chemical Stabilizers on the Thermostability and Infectivity of a Representative Panel of Freeze Dried Viruses. PLoS ONE 2015, 10, e0118963. [Google Scholar] [CrossRef]
- Heldwein, E.E.; Lou, H.; Bender, F.C.; Cohen, G.H.; Eisenberg, R.J.; Harrison, S.C. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 2006, 313, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, F.; Hu, X.; Tan, F.; Qi, J.; Peng, R.; Wang, M.; Chai, Y.; Hao, L.; Deng, J.; et al. Two classes of protective antibodies against Pseudorabies virus variant glycoprotein B: Implications for vaccine design. PLoS Pathog. 2017, 13, e1006777. [Google Scholar] [CrossRef] [PubMed]
Formulation | Gelatin | Trehalose | Sorbitol | Thiourea | PVP | Potassium Phosphate pH 7.0–7.4 |
---|---|---|---|---|---|---|
Final Concentration (% w/w) | mmol/L | |||||
A1 | 1 | 5 | 1 | - | - | 20 |
A2 | 1 | 5 | 1 | - | 0.5 | 20 |
A3 | 1 | 5 | 1 | 0.5 | - | 20 |
A4 | 1 | 5 | 1 | 0.5 | 0.5 | 20 |
A5 | 1 | 5 | - | 0.5 | 0.5 | 20 |
A6 | - | 10 | 1 | - | - | 20 |
A7 | - | 10 | 1 | - | 0.5 | 20 |
A8 | - | 10 | 1 | 0.5 | - | 20 |
A9 | - | 10 | 1 | 0.5 | 0.5 | 20 |
A10 | - | 10 | - | 0.5 | 0.5 | 20 |
Vaccine Batch Lots | The Degree of Vacuum | Remaining Moisture (%) |
---|---|---|
1 | Qualified | 1.7, 2.0, 1.5, 1.9 |
2 | Qualified | 1.8, 2.0, 1.7, 1.8 |
3 | Qualified | 1.6, 1.7, 1.4, 1.9 |
Temperature (°C) | ||||
---|---|---|---|---|
Time (Days) | 25 | 37 | 45 | |
lgTCID50/mL | 0 | 8.47 ± 0.12 | 8.51 ± 0.11 | 8.47 ± 0.15 |
1 | - | 8.4 ± 0.08 | 8.33 ± 0.13 | |
2 | - | 8.32 ± 0.12 | 8.19 ± 0.16 | |
4 | - | 8.28 ± 0.17 | 7.9 ± 0.05 | |
7 | - | 8.1 ± 0.17 | 7.67 ± 0.21 | |
8 | - | 8.0 ± 0.23 | - | |
16 | 8.47 ± 0.13 | 7.9 ± 0.17 | - | |
20 | - | 7.8 ± 0.06 | - | |
28 | 8.05 ± 0.23 | 7.6 ± 0.21 | - | |
60 | 7.8 ± 0.14 | - | - | |
90 | 7.5 ± 0.23 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, S.; Wang, S.; Zhang, C.; Su, X.; Guo, L.; Bai, X.; Huang, Y.; Pang, W.; Tan, F.; et al. Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine. Vaccines 2024, 12, 65. https://doi.org/10.3390/vaccines12010065
Liu Y, Zhang S, Wang S, Zhang C, Su X, Guo L, Bai X, Huang Y, Pang W, Tan F, et al. Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine. Vaccines. 2024; 12(1):65. https://doi.org/10.3390/vaccines12010065
Chicago/Turabian StyleLiu, Yan, Suling Zhang, Shuai Wang, Chunhui Zhang, Xiaorui Su, Linghua Guo, Xiaofei Bai, Yuxin Huang, Wenqiang Pang, Feifei Tan, and et al. 2024. "Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine" Vaccines 12, no. 1: 65. https://doi.org/10.3390/vaccines12010065
APA StyleLiu, Y., Zhang, S., Wang, S., Zhang, C., Su, X., Guo, L., Bai, X., Huang, Y., Pang, W., Tan, F., & Tian, K. (2024). Screening and Stability Evaluation of Freeze-Dried Protective Agents for a Live Recombinant Pseudorabies Virus Vaccine. Vaccines, 12(1), 65. https://doi.org/10.3390/vaccines12010065