Long-Term Assessment of Antibody Response to COVID-19 Vaccination in People with Cystic Fibrosis and Solid Organ Transplantation
Abstract
:1. Introduction
Cystic Fibrosis and SARS-CoV-2
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. SARS-CoV-2 Antibodies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic fibrosis |
CF-LI | CF liver transplantation |
CF-LU | CF lung transplantation |
S1RBD | Receptor-binding domain of S1 subunit of spike protein |
LCI | Lung clearance index |
BMI | Body mass index |
PA | Pseudomonas aeruginosa |
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Esther, C.R., Jr.; Muhlebach, M.S.; Ehre, C.; Hill, D.B.; Wolfgang, M.C.; Kesimer, M.; Ramsey, K.A.; Markovetz, M.R.; Garbarine, I.C.; Forest, M.G.; et al. Mucus accumulation in the lungs pre-cedes structural changes and infection in children with cystic fibrosis. Sci. Transl. Med. 2019, 11, eaav3488. [Google Scholar] [CrossRef] [PubMed]
- Benden, C. Lung transplantation as standard of care for advanced cystic fibrosis lung disease. J. Heart Lung Transplant. 2020, 39, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Jones, A.M.; Piper Hanley, K.; Athwal, V.S. Review article: Epidemiology, pathogenesis and management of liver disease in adults with cystic fibrosis. Aliment. Pharmacol. Ther. 2022, 55, 389–400. [Google Scholar] [CrossRef]
- Colombo, C.; Burgel, P.R.; Gartner, S.; van Koningsbruggen-Rietschel, S.; Naehrlich, L.; Sermet-Gaudelus, I.; Southern, K.W. Impact of COVID-19 on people with cystic fibrosis. Lancet Respir. Med. 2020, 8, e35–e36. [Google Scholar] [CrossRef]
- McClenaghan, E.; Cosgriff, R.; Brownlee, K.; Ahern, S.; Burgel, P.R.; Byrnes, C.A.; Colombo, C.; Corvol, H.; Cheng, S.Y.; Daneau, G.; et al. The global impact of SARS-CoV-2 in 181 people with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 868–871. [Google Scholar] [CrossRef]
- Bezzerri, V.; Gentili, V.; Api, M.; Finotti, A.; Papi, C.; Tamanini, A.; Boni, C.; Baldisseri, E.; Olioso, D.; Duca, M.; et al. SARS-CoV-2 viral entry and replication is impaired in Cystic Fibrosis airways due to ACE2 downregulation. Nat. Commun. 2023, 14, 132. [Google Scholar] [CrossRef]
- Jung, A.; Orenti, A.; Dunlevy, F.; Aleksejeva, E.; Bakkeheim, E.; Bobrovnichy, V.; Carr, S.B.; Colombo, C.; Corvol, H.; Cosgriff, R.; et al. Factors for severe outcomes fol-lowing SARS-CoV-2 infection in people with cystic fibrosis in Europe. ERJ Open Res. 2021, 7, 00411. [Google Scholar] [CrossRef]
- Terlizzi, V.; Motisi, M.A.; Pellegrino, R.; Padoan, R.; Chiappini, E. Risk factors for severe COVID-19 in people with cystic fibrosis: A systematic review. Front. Pediatr. 2022, 10, 958658. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Manothummetha, K.; Chuleerarux, N.; Sanguankeo, A.; Kates, O.S.; Hirankarn, N.; Thongkam, A.; Dioverti-Prono, M.V.; Torvorapanit, P.; Langsiri, N.; Worasilchai, N.; et al. Immunogenicity and Risk Factors Associated With Poor Humoral Immune Response of SARS-CoV-2 Vaccines in Recipients of Solid Organ Transplant: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e226822. [Google Scholar] [CrossRef] [PubMed]
- Toniutto, P.; Cussigh, A.; Cmet, S.; Bitetto, D.; Fornasiere, E.; Fumolo, E.; Fabris, M.; D’Aurizio, F.; Fabris, C.; Grillone, L.; et al. Immunogenicity and safety of a third dose of anti-SARS-CoV-2 BNT16b2 vaccine in liver transplant recipients. Liver Int. 2023, 43, 452–461. [Google Scholar] [CrossRef]
- Fuchs, T.; Appelt, D.; Ellemunter, H. Is There a Difference in Immune Response to SARS-CoV-2 Vaccination between Liver and Lung Transplant Patients with Cystic Fibrosis? Vaccines 2023, 11, 657. [Google Scholar] [CrossRef]
- Zentralinstitut für Med. u. Chem. Labordiagnostik (ZIMCL). SARS-CoV-2, Quant. IgG Antikörper Gegen S1-RBD Nach WHO (Abbott) 2021. Available online: https://zimcl.tirol-kliniken.at/page.cfm?vpath=parameterdetails&genericpageid=952 (accessed on 6 October 2023).
- Tré-Hardy, M.; Wilmet, A.; Beukinga, I.; Dogné, J.-M.; Douxfils, J.; Blairon, L. Validation of a chemiluminescent assay for specific SARS-CoV-2 antibody. Clin. Chem. Lab. Med. 2020, 58, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.G.; Stocks, J.; Hall, G.L.; Culver, B.; Steenbruggen, I.; Carter, K.W.; Thompson, B.R.; Graham, B.L.; Miller, M.R.; Ruppel, G.; et al. The Global Lung Function Initiative (GLI) Network: Bringing the world’s respiratory reference values together. Breathe 2017, 13, e56–e64. [Google Scholar] [CrossRef]
- Guarino, M.; Esposito, I.; Portella, G.; Cossiga, V.; Loperto, I.; Tortora, R.; Cennamo, M.; Capasso, M.; Terracciano, D.; Lanza, A.G.; et al. Humoral Response to 2-dose BNT162b2 mRNA COVID-19 Vaccination in Liver Transplant Recipients. Clin. Gastroenterol. Hepatol. 2022, 20, 1534–1541.e4. [Google Scholar] [CrossRef]
- Lucca, F.; Bezzerri, V.; Danese, E.; Olioso, D.; Peserico, D.; Boni, C.; Cucchetto, G.; Montagnana, M.; Tridello, G.; Meneghelli, I.; et al. Immunogenicity and Safety of the BNT162b2 COVID-19 Vaccine in Patients with Cystic Fibrosis with or without Lung Transplantation. Int. J. Mol. Sci. 2023, 24, 908. [Google Scholar] [CrossRef]
- Toniutto, P.; Falleti, E.; Cmet, S.; Cussigh, A.; Veneto, L.; Bitetto, D.; Fornasiere, E.; Fumolo, E.; Fabris, C.; Sartor, A.; et al. Past COVID-19 and immunosuppressive regi-mens affect the long-term response to anti-SARS-CoV-2 vaccination in liver transplant recipients. J. Hepatol. 2022, 77, 152–162. [Google Scholar] [CrossRef]
- Manzia, T.M.; Sensi, B.; Conte, L.E.; Siragusa, L.; Angelico, R.; Frongillo, F.; Tisone, G. Evaluation of Humoral Response following SARS-CoV-2 mRNA-Based Vaccination in Liver Transplant Recipients Receiving Tailored Immunosuppressive Therapy. J. Clin. Med. 2023, 12, 6913. [Google Scholar] [CrossRef]
- Di Filippo, L.; Frara, S.; Terenzi, U.; Nannipieri, F.; Locatelli, M.; Ciceri, F.; Giustina, A. Lack of vitamin D predicts impaired long-term immune response to COVID-19 vaccination. Endocrine 2023, 82, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Mariotti Zani, E.; Grandinetti, R.; Cunico, D.; Torelli, L.; Fainardi, V.; Pisi, G.; Esposito, S. Nutritional Care in Children with Cystic Fibrosis. Nutrients 2023, 15, 479. [Google Scholar] [CrossRef]
- Costantino, A.; Morlacchi, L.; Donato, M.F.; Gramegna, A.; Farina, E.; Dibenedetto, C.; Campise, M.; Redaelli, M.; Perego, M.; Alfieri, C.; et al. Hesitancy toward the Full COVID-19 Vaccination among Kidney, Liver and Lung Transplant Recipients in Italy. Vaccines 2022, 10, 1899. [Google Scholar] [CrossRef]
Item | Total | Liver | Lung |
---|---|---|---|
(N) | 12 | 5 | 7 |
Sex n (%) | |||
Male | 8 (67.0%) | 4 (80.0%) | 4 (57.2%) |
Female | 4 (33.0%) | 1 (20.0%) | 3 (42.8%) |
Age (y) mean (range) | 38 (22, 63) | 29 (22, 48) | 44 (33, 63) |
Time since Tx (y) mean (range) | 14 (7, 25) | 16 (11, 24) | 12.5 (7, 25) |
FEV1% mean (range) | 66.3 (31, 88) | 80.0 (43, 108) | |
LCI median (range) | 12.0 (8.8, 16.6) | 9.0 (7.2,12) | |
(BMI/kg/m2) median (range) | 20 (18, 21) | 22 (17, 27) | |
CFRD n (%) | 9 (75.0%) | 4 (80.0%) | 5 (71.0%) |
Insulin therapy (%) | 8 (67.0%) | 3 (60.0%) | 5 (71.0%) |
Mycophenolate mofetil therapy n (%) | 10 (83.0%) | 3 (60.0%) | 7 (100.0%) |
Chron. PA colonization n (%) | 6 (50.0%) | 3 (60.0%) | 3 (43.0%) |
Creatinine (mg/dL) mean (range) | 1.4 (0.6, 2.8) | 0.9 (0.6, 1.4) | 1.8 (1.3, 2.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, T.; Appelt, D.; Ellemunter, H. Long-Term Assessment of Antibody Response to COVID-19 Vaccination in People with Cystic Fibrosis and Solid Organ Transplantation. Vaccines 2024, 12, 98. https://doi.org/10.3390/vaccines12010098
Fuchs T, Appelt D, Ellemunter H. Long-Term Assessment of Antibody Response to COVID-19 Vaccination in People with Cystic Fibrosis and Solid Organ Transplantation. Vaccines. 2024; 12(1):98. https://doi.org/10.3390/vaccines12010098
Chicago/Turabian StyleFuchs, Teresa, Dorothea Appelt, and Helmut Ellemunter. 2024. "Long-Term Assessment of Antibody Response to COVID-19 Vaccination in People with Cystic Fibrosis and Solid Organ Transplantation" Vaccines 12, no. 1: 98. https://doi.org/10.3390/vaccines12010098
APA StyleFuchs, T., Appelt, D., & Ellemunter, H. (2024). Long-Term Assessment of Antibody Response to COVID-19 Vaccination in People with Cystic Fibrosis and Solid Organ Transplantation. Vaccines, 12(1), 98. https://doi.org/10.3390/vaccines12010098