Immunogenicity and Predictive Factors Associated with Poor Response after Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Lung Transplant Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anti-SARS-CoV-2 Antibody Assay
2.2. Neutralization Assay
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banjongjit, A.; Lertussavavivat, T.; Paitoonpong, L.; Putcharoen, O.; Vanichanan, J.; Wattanatorn, S.; Tungsanga, K.; Eiam-Ong, S.; Avihingsanon, Y.; Tungsanga, S.; et al. The predictors for severe SARS-CoV-2 omicron (B.1.1.529) and pre-omicron variants infection among kidney transplant recipients. Transplantation 2022, 106, e520–e521. [Google Scholar] [CrossRef]
- Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, J.N.; Scheepers, C.; et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: A data linkage study. Lancet 2022, 399, 437–446. [Google Scholar] [CrossRef]
- Chen, X.; Luo, D.; Mei, B.; Du, J.; Liu, X.; Xie, H.; Liu, L.; Su, S.; Mai, G. Immunogenicity of COVID-19 vaccines in solid organ transplant recipients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 441–456. [Google Scholar] [CrossRef]
- Heldman, M.R.; Kates, O.S.; Safa, K.; Kotton, C.N.; Georgia, S.J.; Steinbrink, J.M.; Alexander, B.D.; Hemmersbach-Miller, M.; Blumberg, E.A.; Crespo, M.M.; et al. COVID-19 in hospitalized lung and non-lung solid organ transplant recipients: A comparative analysis from a multicenter study. Am. J. Transplant. 2021, 21, 2774–2784. [Google Scholar] [CrossRef]
- Magnusson, J.; Westin, J.; Andersson, L.M.; Lindh, M.; Brittain-Long, R.; Nordén, R.; Riise, G.C. Viral respiratory tract infection during the first postoperative year is a risk factor for chronic rejection after lung transplantation. Transplant. Direct 2018, 4, e370. [Google Scholar] [CrossRef]
- Kute, V.; Meshram, H.S.; Sharma, A.; Chaudhury, A.R.; Sudhindran, S.; Gokhale, A.K.; Hote, M.; Guleria, R.; Rana, D.S.; Prakash, J.; et al. Update on coronavirus 2019 vaccine guidelines for transplant recipients. Transplant. Proc. 2022, 54, 1399–1404. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID-19 Vaccines for People Who Are Moderately or Severely Immunocompromised. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html (accessed on 5 July 2024).
- Agarwal, N.; Ollington, K.; Kaneshiro, M.; Frenck, R.; Melmed, G.Y. Are immunosuppressive medications associated with decreased responses to routine immunizations? A systematic review. Vaccine 2012, 30, 1413–1424. [Google Scholar] [CrossRef]
- Li, J.; Ayada, I.; Wang, Y.; den Hoed, C.M.; Kamar, N.; Peppelenbosch, M.P.; de Vries, A.C.; Li, P.; Pan, Q. Factors associated with COVID-19 vaccine response in transplant recipients: A systematic review and meta-analysis. Transplantation 2022, 106, 2068–2075. [Google Scholar] [CrossRef]
- Bordry, N.; Mamez, A.C.; Fedeli, C.; Cantero, C.; Jaksic, C.; Alonso, P.U.; Rayroux, C.; Berra, G.; Portillo, V.; Puntel, M.; et al. SARS-CoV-2 m-RNA vaccine response in immunocompromised patients: A monocentric study comparing cancer, people living with HIV, hematopoietic stem cell transplant patients and lung transplant recipients. Vaccines 2023, 11, 1284. [Google Scholar] [CrossRef]
- Martin, C.A.; Nazareth, J.; Jarkhi, A.; Pan, D.; Das, M.; Logan, N.; Scott, S.; Bryant, L.; Abeywickrama, N.; Adeoye, O.; et al. Ethnic differences in cellular and humoral immune responses to SARS-CoV-2 vaccination in UK healthcare workers: A cross-sectional analysis. eClinicalmedicine 2023, 58, 101926. [Google Scholar] [CrossRef]
- Jethwa, H.; Wong, R.; Abraham, S. Covid-19 vaccine trials: Ethnic diversity and immunogenicity. Vaccine 2021, 39, 3541–3543. [Google Scholar] [CrossRef]
- Marinaki, S.; Adamopoulos, S.; Degiannis, D.; Roussos, S.; Pavlopoulou, I.D.; Hatzakis, A.; Boletis, I.N. Immunogenicity of SARS-CoV-2 BNT162b2 vaccine in solid organ transplant recipients. Am. J. Transplant. 2021, 21, 2913–2915. [Google Scholar] [CrossRef]
- Sasaki, H.; Hasegawa, K.; Harada, H.; Takamoto, D.; Takada, Y.; Hirano, T.; Tanabe, T.; Tanaka, H.; Miura, M. Comparison of humoral response in kidney transplant recipients and donors and healthy volunteers following second dose of SARS-CoV-2 mRNA vaccine. Transplant. Proc. 2023, 55, 514–520. [Google Scholar] [CrossRef]
- Caillard, S.; Thaunat, O.; Benotmane, I.; Masset, C.; Blancho, G. Antibody response to a fourth messenger RNA COVID-19 vaccine dose in kidney transplant recipients: A case series. Ann. Intern. Med. 2022, 175, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Naylor, K.L.; Knoll, G.A.; Smith, G.; McArthur, E.; Kwong, J.C.; Dixon, S.N.; Treleaven, D.; Kim, S.J. Effectiveness of a fourth COVID-19 mRNA vaccine dose against the omicron variant in solid organ transplant recipients. Transplantation 2024, 108, 294–302. [Google Scholar] [CrossRef]
- Karaba, A.H.; Johnston, T.S.; Aytenfisu, T.Y.; Akinde, O.; Eby, Y.; Ruff, J.E.; Abedon, A.T.; Alejo, J.L.; Blankson, J.N.; Cox, A.L.; et al. A fourth dose of COVID-19 vaccine does not induce neutralization of the omicron variant among solid organ transplant recipients with suboptimal vaccine response. Transplantation 2022, 106, 1440–1444. [Google Scholar] [CrossRef]
- Osmanodja, B.; Ronicke, S.; Budde, K.; Jens, A.; Hammett, C.; Koch, N.; Seelow, E.; Waiser, J.; Zukunft, B.; Bachmann, F.; et al. Serological response to three, four and five doses of SARS-CoV-2 vaccine in kidney transplant recipients. J. Clin. Med. 2022, 11, 2565. [Google Scholar] [CrossRef]
- Abedon, A.T.; Teles, M.S.; Alejo, J.L.; Kim, J.D.; Mitchell, J.; Chiang, T.P.Y.; Avery, R.K.; Tobian, A.A.R.; Levan, M.L.; Warren, D.S.; et al. Improved antibody response after a fifth dose of a SARS-CoV-2 vaccine in solid organ transplant recipients: A case series. Transplantation 2022, 106, e262–e263. [Google Scholar] [CrossRef]
- Danziger-Isakov, L.; Kumar, D.; AST ID Community of Practice. Vaccination of solid organ transplant candidates and recipients: Guidelines from the American Society of Transplantation infectious diseases community of practice. Clin. Transplant. 2019, 33, e13563. [Google Scholar] [CrossRef]
- Safa, K.; Kotton, C.N. COVID-19 vaccines and solid organ transplantation: More doses, more protection. Transplantation 2023, 107, 21–22. [Google Scholar] [CrossRef]
- Hamaya, T.; Hatakeyama, S.; Yoneyama, T.; Tobisawa, Y.; Kodama, H.; Fujita, T.; Murakami, R.; Mori, K.; Okamoto, T.; Yamamoto, H.; et al. Humoral response to SARS-CoV-2 mRNA vaccine on in ABO blood type incompatible kidney transplant recipients treated with low-dose rituximab. Sci. Rep. 2023, 13, 15098. [Google Scholar] [CrossRef]
- Gleeson, S.; Martin, P.; Thomson, T.; Spensley, K.J.; Goodall, D.; Bedi, R.; Thind, A.K.; Seneschall, C.; Gan, J.; McAdoo, S.; et al. Lack of seroresponse to SARS-CoV-2 booster vaccines given early post-transplant in patients primed pre-transplantation. Front. Immunol. 2022, 13, 1083167. [Google Scholar] [CrossRef]
- Bugge, T.B.; Perch, M.; Rezahosseini, O.; Crone, C.G.; Jensen, K.; Schultz, H.H.; Bredahl, P.; Hornum, M.; Nielsen, S.D.; Lund, T.K. Post-transplantation anemia and risk of death following lung transplantation. Transplant. Proc. 2022, 54, 2329–2336. [Google Scholar] [CrossRef]
- Modrykamien, A. Anemia post-lung transplantation: Mechanisms and approach to diagnosis. Chron. Respir. Dis. 2010, 7, 29–34. [Google Scholar] [CrossRef]
- Tene, L.; Karasik, A.; Chodick, G.; Pereira, D.I.A.; Schou, H.; Waechter, S.; Göhring, U.M.; Drakesmith, H. Iron deficiency and the effectiveness of the BNT162b2 vaccine for SARS-CoV-2 infection: A retrospective, longitudinal analysis of real-world data. PLoS ONE 2023, 18, e0285606. [Google Scholar] [CrossRef]
- Faizo, A.A.; Bawazir, A.A.; Almashjary, M.N.; Hassan, A.M.; Qashqari, F.S.; Barefah, A.S.; El-Kafrawy, S.A.; Alandijany, T.A.; Azhar, E.I. Lack of evidence on association between iron deficiency and COVID-19 vaccine-induced neutralizing humoral immunity. Vaccines 2023, 11, 327. [Google Scholar] [CrossRef]
- Chang, Y.T.; Guo, C.Y.; Tsai, M.S.; Cheng, Y.Y.; Lin, M.T.; Chen, C.H.; Shen, D.; Wang, J.R.; Sung, J.M. Poor immune response to a standard single dose non-adjuvanted vaccination against 2009 pandemic H1N1 influenza virus A in the adult and elder hemodialysis patients. Vaccine 2012, 30, 5009–5018. [Google Scholar] [CrossRef]
- Moon, S.J.; Lee, S.H.; Byun, Y.H.; Yun, G.Y.; Kim, S.K.; Seong, B.L.; Kim, A.R.; Sun Park, E.; Kim, H.J.; Lee, J.E.; et al. Risk factors affecting seroconversion after influenza A/H1N1 vaccination in hemodialysis patients. BMC Nephrol. 2012, 13, 165. [Google Scholar] [CrossRef]
- Ghafari, A.; Noori-Majelan, N. Anemia among long-term renal transplant recipients. Transplant. Proc. 2008, 40, 186–188. [Google Scholar] [CrossRef]
Responders (n = 11) | Non-Responders (n = 30) | p-Value | |
---|---|---|---|
Age, y | 56.0 (42.5–66.0) | 60.0 (48.0–64.0) | 0.768 |
Male Sex | 7 (63.6%) | 18 (60.0%) | >0.99 |
BMI, kg/m2 | 22.1 (21.3–22.7) | 22.1 (20.0–23.6) | 0.837 |
Number of vaccinations | 0.195 | ||
2nd dose | 0 | 7 (23.3%) | |
3rd dose | 9 (81.8%) | 20 (66.7%) | |
4th dose | 2 (18.2%) | 3 (10.0%) | |
Vaccination type | 0.711 | ||
Viral vector vaccine only | 0 | 1 (3.3%) | |
AZD1222 | 0 | 1 (3.3%) | |
mRNA vaccine only | 5 (45.5%) | 16 (53.3%) | |
BNT162b2 | 4 (36.4%) | 14 (46.7%) | |
mRNA-1273 | 1 (9.1%) | 2 (6.7%) | |
Heterogenous vaccination | 6 (54.5%) | 13 (43.3%) | |
AZD1222–BNT162b2 | 5 (45.5%) | 9 (30.0%) | |
AZD1222–mRNA-1273 | 1 (9.1%) | 4 (13.3%) | |
Post-transplant days | 1647.0 (884.0–1928.0) | 1259.5 (907.0–2229.0) | 0.942 |
Transplantation–last vaccination interval, days | 1549.0 (771.0–1888.0) | 1159.5 (819.0–2175.0) | 0.965 |
Transplantation–first vaccination interval, days | 1348.0 (638.5–1662.5) | 1034.5 (632.0–1918.0) | 0.965 |
Last vaccination–sampling interval, days | 119.0 (81.0–148.0) | 99.5 (48.0–130.0) | 0.331 |
Comorbidity | |||
Hypertension | 3 (27.3%) | 16 (53.3%) | 0.259 |
Diabetes mellitus | 6 (54.5%) | 13 (43.3%) | 0.776 |
Coronary artery disease | 1 (9.1%) | 8 (26.7%) | 0.436 |
Heart failure | 0 | 1 (3.3%) | >0.99 |
Chronic kidney disease | 4 (36.4%) | 14 (46.7%) | 0.815 |
Chronic liver disease | 2 (18.2%) | 4 (13.3%) | >0.99 |
Connective tissue disease | 3 (27.3%) | 9 (30.0%) | >0.99 |
Solid cancer history | 1 (9.1%) | 2 (6.7%) | >0.99 |
Hematologic malignancy history | 0 | 6 (20.0%) | 0.268 |
Immunosuppressant | 0.444 | ||
Steroid, Mycophenolate mofetil, Cyclosporine | 0 | 2 (6.7%) | |
Steroid, Mycophenolate mofetil, Tacrolimus | 11 (100.0%) | 26 (86.7%) | |
Steroid, Tacrolimus | 0 | 2 (6.7%) | |
Steroid dose (Prednisolone equivalent), mg | 6.0 (5.0–7.5) | 7.5 (5.0–10.0) | 0.322 |
Basiliximab use during induction therapy | 3 (27.3%) | 13 (43.3%) | 0.567 |
ATG use during induction therapy | 0 | 1 (3.3%) | >0.99 |
Laboratory data | |||
White blood cell count, 103/μL | 5.9 (5.0–6.9) | 6.3 (5.0–7.9) | 0.612 |
Lymphocyte count, 103/μL | 1.4 (1.1–1.8) | 1.3 (1.0–1.8) | 0.988 |
Hemoglobin, g/dL | 13.5 (12.8–15.0) | 11.8 (10.5–13.4) | 0.010 |
Platelet, 103/μL | 249.0 (212.0–273.0) | 208.0 (188.0–260.0) | 0.410 |
Blood urea nitrogen, mg/dL | 22.5 (14.9–25.0) | 26.5 (20.5–36.6) | 0.070 |
Creatinine, mg/dL | 1.1 (0.9–1.3) | 1.0 (0.9–1.5) | 0.724 |
eGFR (CKD-EPI) | 68.0 (61.0–86.5) | 65.0 (44.0–89.0) | 0.324 |
C-reactive protein, mg/dL | 4.0 (2.5–6.0) | 9.0 (6.0–21.0) | 0.015 |
Quantitative Plasma Cytomegalovirus PCR *, IU/mL * | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.804 |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
OR | 2.5% | 97.5% | p-Value | OR | 2.5% | 97.5% | p-Value | |
Hemoglobin per 1 g/dL | 0.58 | 0.34 | 0.88 | 0.009 | 0.59 | 0.35 | 0.92 | 0.017 |
Vaccination with more than two doses | 0.14 | 0.00 | 1.29 | 0.091 | 0.17 | 0.00 | 1.92 | 0.175 |
Blood urea nitrogen | 1.05 | 0.99 | 1.15 | 0.117 | ||||
C-reactive protein | 1.00 | 0.99 | 8.11 | 0.542 | ||||
Age | 1.01 | 0.96 | 1.06 | 0.666 | ||||
Male sex | 0.89 | 0.21 | 3.45 | 0.865 | ||||
Vaccine type (ref: adenovirus vector vaccine) | ||||||||
mRNA vaccine | 1.00 | 0.01 | 21.87 | >0.99 | ||||
Heterogenous vaccine | 0.69 | 0.00 | 14.97 | 0.825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.J.; Woo, A.; Lee, J.A.; Lee, Y.; Kim, H.E.; Lee, J.G.; Kim, S.Y.; Park, M.S.; Jeong, S.J. Immunogenicity and Predictive Factors Associated with Poor Response after Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Lung Transplant Patients. Vaccines 2024, 12, 822. https://doi.org/10.3390/vaccines12070822
Lee SJ, Woo A, Lee JA, Lee Y, Kim HE, Lee JG, Kim SY, Park MS, Jeong SJ. Immunogenicity and Predictive Factors Associated with Poor Response after Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Lung Transplant Patients. Vaccines. 2024; 12(7):822. https://doi.org/10.3390/vaccines12070822
Chicago/Turabian StyleLee, Se Ju, Ala Woo, Jung Ah Lee, Yongseop Lee, Ha Eun Kim, Jin Gu Lee, Song Yee Kim, Moo Suk Park, and Su Jin Jeong. 2024. "Immunogenicity and Predictive Factors Associated with Poor Response after Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Lung Transplant Patients" Vaccines 12, no. 7: 822. https://doi.org/10.3390/vaccines12070822