Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients—A Tailored Approach Based on SARS-CoV-2 Vaccine Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Neutralizing Antibody Measurements
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
TIX/CGB PrEP | Seropositive | Total | p-Value | |
---|---|---|---|---|
number of patients | 33 | 33 | ||
anti-CD20 | 1.00 | |||
yes | 14 (42%) | 14 (42%) | 28 (42%) | |
no | 19 (58%) | 19 (58%) | 38 (58%) | |
anti-CD38 | 1.00 | |||
yes | 7 (21%) | 7 (21%) | 14 (21%) | |
no | 26 (79%) | 26 (79%) | 52 (79%) | |
autoSCT | 1.00 | |||
yes | 12 (36%) | 12 (36%) | 24 (36%) | |
no | 21 (64%) | 21 (64%) | 42 (64%) | |
alloSCT | 1.00 | |||
yes | 4 (12%) | 4 (12%) | 8 (12%) | |
no | 29 (88%) | 29 (88%) | 58 (88%) | |
age ≥ 65 | 1.00 | |||
yes | 18 (55%) | 18 (55%) | 36 (55%) | |
no | 15 (45%) | 15 (45%) | 30 (45%) |
References
- Langerbeins, P.; Hallek, M. COVID-19 in patients with hematologic malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef]
- Bilich, T.; Roerden, M.; Maringer, Y.; Nelde, A.; Heitmann, J.S.; Dubbelaar, M.L.; Peter, A.; Horber, S.; Bauer, J.; Rieth, J.; et al. Preexisting and Post-COVID-19 Immune Responses to SARS-CoV-2 in Patients with Cancer. Cancer Discov. 2021, 11, 1982–1995. [Google Scholar] [CrossRef]
- Passamonti, F.; Romano, A.; Salvini, M.; Merli, F.; Porta, M.G.D.; Bruna, R.; Coviello, E.; Romano, I.; Cairoli, R.; Lemoli, R.; et al. COVID-19 elicits an impaired antibody response against SARS-CoV-2 in patients with haematological malignancies. Br. J. Haematol. 2021, 195, 371–377. [Google Scholar] [CrossRef]
- Piechotta, V.; Mellinghoff, S.C.; Hirsch, C.; Brinkmann, A.; Iannizzi, C.; Kreuzberger, N.; Adams, A.; Monsef, I.; Stemler, J.; Cornely, O.A.; et al. Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: A systematic review. Blood Cancer J. 2022, 12, 86. [Google Scholar] [CrossRef]
- Blennow, O.; Salmanton-Garcia, J.; Nowak, P.; Itri, F.; Van Doesum, J.; Lopez-Garcia, A.; Farina, F.; Jaksic, O.; Pinczes, L.I.; Bilgin, Y.M.; et al. Outcome of infection with omicron SARS-CoV-2 variant in patients with hematological malignancies: An EPICOVIDEHA survey report. Am. J. Hematol. 2022, 97, E312–E317. [Google Scholar] [CrossRef]
- Dong, J.; Zost, S.J.; Greaney, A.J.; Starr, T.N.; Dingens, A.S.; Chen, E.C.; Chen, R.E.; Case, J.B.; Sutton, R.E.; Gilchuk, P.; et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 2021, 6, 1233–1244. [Google Scholar] [CrossRef]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Malin, J.; Woermann, B.; Kluge, S.; Karagiannidis, C.; Krieger, D.; Specker, C.; Kobbe, R.; Tenenbaum, T.; Lehrnbecher, T.; Boesecke, C.; et al. S1-Leitlinie SARS-CoV-2 Prä-Expositionsprophylaxe, Version 1.0; AWMF: Frankfurt am Main, Germany, 2022. [Google Scholar]
- Impfkommission, S. Beschluss der STIKO zur 21. Aktualisierung der COVID-19-Impfempfehlung. Epid. Bull. 2022, 3–19. [Google Scholar] [CrossRef]
- Kling, K.; Vygen-Bonnet, S.; Burchard, G.; Heininger, U.; Kremer, K.; Wiedermann, U.; Bogdan, C. STIKO-Empfehlung zur COVID-19-Impfung bei Personen mit Immundefizienz und die dazugehoerige wissenschaftliche Begruendung. Epid. Bull. 2021, 39, 11–41. [Google Scholar] [CrossRef]
- Imai, M.; Ito, M.; Kiso, M.; Yamayoshi, S.; Uraki, R.; Fukushi, S.; Watanabe, S.; Suzuki, T.; Maeda, K.; Sakai-Tagawa, Y.; et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB. N. Engl. J. Med. 2023, 388, 89–91. [Google Scholar] [CrossRef]
- Arora, P.; Kempf, A.; Nehlmeier, I.; Schulz, S.R.; Jack, H.M.; Pohlmann, S.; Hoffmann, M. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect. Dis. 2023, 23, 22–23. [Google Scholar] [CrossRef]
- Chan, K.H.; Leung, K.Y.; Zhang, R.R.; Liu, D.; Fan, Y.; Chen, H.; Yuen, K.Y.; Hung, I.F. Performance of a Surrogate SARS-CoV-2-Neutralizing Antibody Assay in Natural Infection and Vaccination Samples. Diagnostics 2021, 11, 1757. [Google Scholar] [CrossRef]
- Schneider, J.; Erber, J.; Renders, L.; Spinner, C.D. Immunocompromised patients and COVID-19: How do we protect those most at risk? Expert Rev. Anti Infect. Ther. 2024, 22, 1–3. [Google Scholar] [CrossRef]
- Benschop, R.J.; Tuttle, J.L.; Zhang, L.; Poorbaugh, J.; Kallewaard, N.L.; Vaillancourt, P.; Crisp, M.; Trinh, T.N.V.; Freitas, J.J.; Beasley, S.; et al. The anti-SARS-CoV-2 monoclonal antibody bamlanivimab minimally affects the endogenous immune response to COVID-19 vaccination. Sci. Transl. Med. 2022, 14, eabn3041. [Google Scholar] [CrossRef]
- Coelho, C.H.; Bloom, N.; Ramirez, S.I.; Parikh, U.M.; Heaps, A.; Sieg, S.F.; Greninger, A.; Ritz, J.; Moser, C.; Eron, J.J.; et al. SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wolfromm, A.; Porcher, R.; Legoff, J.; Peffault de Latour, R.; Xhaard, A.; de Fontbrune, F.S.; Ribaud, P.; Bergeron, A.; Socie, G.; Robin, M. Viral respiratory infections diagnosed by multiplex PCR after allogeneic hematopoietic stem cell transplantation: Long-term incidence and outcome. Biol. Blood Marrow Transplant. 2014, 20, 1238–1241. [Google Scholar] [CrossRef]
- Xhaard, A.; Xhaard, C.; D’Aveni, M.; Salvator, H.; Chabi, M.L.; Berceanu, A.; Coman, T.; Beguin, Y.; Chalandon, Y.; Poire, X.; et al. Risk factors for a severe form of COVID-19 after allogeneic haematopoietic stem cell transplantation: A Societe Francophone de Greffe de Moelle et de Therapie cellulaire (SFGM-TC) multicentre cohort study. Br. J. Haematol. 2021, 192, e121–e124. [Google Scholar] [CrossRef]
- Schiaroli, E.; Gidari, A.; Brachelente, G.; Bicchieraro, G.; Spaccapelo, R.; Bastianelli, S.; Pierucci, S.; Busti, C.; Pallotto, C.; Malincarne, L.; et al. Impaired neutralizing antibody efficacy of tixagevimab-cilgavimab 150+150 mg as pre-exposure prophylaxis against Omicron BA.5. A real-world experience in booster vaccinated immunocompromised patients. J. Clin. Virol. 2023, 168, 105584. [Google Scholar] [CrossRef]
- Hill, J.A.; Martens, M.J.; Young, J.H.; Bhavsar, K.; Kou, J.; Chen, M.; Lee, L.W.; Baluch, A.; Dhodapkar, M.V.; Nakamura, R.; et al. SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: A prospective, multicentre, observational study. eClinicalMedicine 2023, 59, 101983. [Google Scholar] [CrossRef]
- Angotzi, F.; Petrella, M.; Berno, T.; Binotto, G.; Bonetto, G.; Branca, A.; Carraro, M.; Cavaretta, C.A.; Cellini, A.; D’Amore, F.; et al. Tixagevimab/Cilgavimab as pre-exposure prophylaxis against SARS-CoV-2 in patients with hematological malignancies. Front. Oncol. 2023, 13, 1212752. [Google Scholar] [CrossRef]
- Demel, I.; Skopal, D.; Safrankova, E.; Rozsivalova, P.; Jindra, P.; Sramek, J.; Turkova, A.; Vydra, J.; Labska, K.; Vedrova, J.; et al. Effectiveness of tixagevimab/cilgavimab in patients with hematological malignancies as a pre-exposure prophylaxis to prevent severe COVID-19: A Czech retrospective multicenter study. Ann. Hematol. 2024, 103, 981–992. [Google Scholar] [CrossRef]
- Ocon, A.J.; Ocon, K.E.; Battaglia, J.; Low, S.K.; Neupane, N.; Saeed, H.; Jamshed, S.; Mustafa, S.S. Real-World Effectiveness of Tixagevimab and Cilgavimab (Evusheld) in Patients with Hematological Malignancies. J. Hematol. 2022, 11, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.M.; McTamney, P.M.; Arends, R.H.; Abram, M.E.; Aksyuk, A.A.; Diallo, S.; Flores, D.J.; Kelly, E.J.; Ren, K.; Roque, R.; et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci. Transl. Med. 2022, 14, eabl8124. [Google Scholar] [CrossRef] [PubMed]
- La, J.; Wu, J.T.; Branch-Elliman, W.; Huhmann, L.; Han, S.S.; Brophy, M.; Do, N.V.; Lin, A.Y.; Fillmore, N.R.; Munshi, N.C. Increased COVID-19 breakthrough infection risk in patients with plasma cell disorders. Blood 2022, 140, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Briasoulis, A.; Gumeni, S.; Malandrakis, P.; Fotiou, D.; Papanagnou, E.D.; Migkou, M.; Theodorakakou, F.; et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. Blood Cancer J. 2021, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- ACTIV-3–Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Hites, M.; Lapique, E.L.; Massonnaud, C.R.; Belhadi, D.; Jamard, S.; Goehringer, F.; Danion, F.; Reignier, J.; de Castro, N.; Garot, D.; et al. Tixagevimab-cilgavimab (AZD7442) for the treatment of patients hospitalized with COVID-19 (DisCoVeRy): A phase 3, randomized, double-blind, placebo-controlled trial. J. Infect. 2024, 88, 106120. [Google Scholar] [CrossRef]
- Hobbs, F.D.R.; Montgomery, H.; Padilla, F.; Simon-Campos, J.A.; Kim, K.; Arbetter, D.; Padilla, K.W.; Reddy, V.P.; Seegobin, S.; Streicher, K.; et al. Outpatient Treatment with AZD7442 (Tixagevimab/Cilgavimab) Prevented COVID-19 Hospitalizations over 6 Months and Reduced Symptom Progression in the TACKLE Randomized Trial. Infect. Dis. Ther. 2023, 12, 2269–2287. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.; Laracy, J.C.; Usiak, S.; Babady, N.E.; Yan, J.; Seo, S.K. Outcomes of hematologic malignancy patients with SARS-CoV-2 breakthrough infections after tixagevimab-cilgavimab during community transmission of monoclonal antibody resistant variants. J. Infect. 2023, 87, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Otiniano, A.; van de Wyngaert, Z.; Brissot, E.; Dulery, R.; Gozlan, J.; Daguenel, A.; Abi Aad, Y.; Ricard, L.; Stocker, N.; Banet, A.; et al. Tixagevimab/cilgavimab for Omicron SARS-CoV-2 infection in patients with haematologic diseases. Bone Marrow Transplant. 2023, 58, 340–342. [Google Scholar] [CrossRef]
- Levin, M.J.; Ustianowski, A.; Thomas, S.; Templeton, A.; Yuan, Y.; Seegobin, S.; Houlihan, C.F.; Menendez-Perez, I.; Pollett, S.; Arends, R.H.; et al. AZD7442 (Tixagevimab/Cilgavimab) for Post-Exposure Prophylaxis of Symptomatic Coronavirus Disease 2019. Clin. Infect. Dis. 2023, 76, 1247–1256. [Google Scholar] [CrossRef]
- Mahoney, K.; Gupta, D.; Li, Y.; Betancourt, N.; Das, A.; Campanaro, E.; Schmidt, P. 1363. Preliminary Safety Results from a Phase 1 First in Human Study of VYD222: An Extended Half-Life Monoclonal Antibody (mAb) in Development for COVID-19 Prevention. Open Forum Infect. Dis. 2023, 10, ofad500.1200. [Google Scholar] [CrossRef]
TIX/CGB PrEP | Seropositive | p-Value | |
---|---|---|---|
number of patients | 54 | 125 | |
age, years | |||
median (range) | 70 (26–88) | 59 (23–94) | <0.01 |
≥65 years | 35 (65%) | 39 (31%) | |
sex | |||
male | 35 (65%) | 87 (70%) | 0.53 |
female | 19 (35%) | 38 (30%) | |
disease | |||
plasma cell dyscrasia | 13 (24%) | 45 (36%) | 0.12 |
B-NHL | 33 (61%) | 18 (14%) | <0.01 |
T-NHL | 2 (4%) | 2 (2%) | |
ALL | 0 (0%) | 3 (2%) | |
AML, MDS | 3 (6%) | 43 (34%) | <0.01 |
MPN | 2 (4%) | 8 (6%) | |
other | 1 (2%) | 6 (5%) | |
Previous therapy | |||
cancer therapy | 51 (94%) | 117 (96%) | |
active treatment during nAB measurement | 33 (61%) | 92 (74%) | 0.10 |
anti-CD20 | 32 (59%) | 22 (18%) | <0.01 |
anti-CD38 | 8 (15%) | 17 (14%) | 0.83 |
autoSCT | 19 (35%) | 41 (33%) | 0.76 |
alloSCT | 6 (11%) | 49 (39%) | <0.01 |
CAR-T | 3 (5%) | 3 (2%) | |
COVID-19 history | |||
Immunologic events; median (range) | 3 (2-5) | 3 (0–6) | 0.16 |
Previous infection, n | 5 (9%) | 42 (34%) | <0.01 |
Previous vaccinations, mean (range) | 3.45 (0–5) | 2.96 (0–5) | <0.01 |
Serum nAB levels; median (range) | 0 (0–40) | 722 (52–800) | <0.01 |
TIX/CGB PrEP | Seropositive | p-Value | |
---|---|---|---|
number of patients | 54 | 125 | |
Timeline dates | |||
Vaccination to nAB measurement, d (median, range) | 108 (28–358) | 131 (9–316) | 0.14 |
nAB measurement to tixagevimab/cilgavimab, d (median, range) | 7 (0-143) | ||
nAB measurement to infection, d (median, range) | 148 (38–332) | 171 (25–363) | 0.94 |
Breakthrough Infections | |||
Month 3 * | 3 (6%) | 11 (9%) | 0.62 |
Month 6 * | 8 (17%) | 23 (19%) | 0.62 |
Month 12 * | 16 (32%) | 39 (36%) | 0.62 |
Hospitalization ** | 6 (37%) | 9 (25%) | 0.19 |
Oxygen support ** | 1 (6%) | 4 (11%) | 0.56 |
Risk factors | |||
Hypertension | 24 (44%) | 34 (27%) | |
Diabetes | 9 (17%) | 13 (10%) | |
Congestive heart failure | 4 (7%) | 5 (4%) | |
Arrhythmia | 11 (20%) | 11 (9%) | |
Coronary artery disease | 6 (11%) | 6 (5%) | |
Chronic kidney disease | 4 (7%) | 8 (6%) | |
Asthma/COPD | 0 (0%) | 8 (6%) | |
Death during follow-up | 7 (13%) | 18 (14%) | 0.80 |
COVID-19 related | 2 (29%) | 2 (11%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braitsch, K.; Jeske, S.D.; Stroh, J.; Hefter, M.; Platen, L.; Bachmann, Q.; Renders, L.; Protzer, U.; Götze, K.S.; Herhaus, P.; et al. Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients—A Tailored Approach Based on SARS-CoV-2 Vaccine Response. Vaccines 2024, 12, 871. https://doi.org/10.3390/vaccines12080871
Braitsch K, Jeske SD, Stroh J, Hefter M, Platen L, Bachmann Q, Renders L, Protzer U, Götze KS, Herhaus P, et al. Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients—A Tailored Approach Based on SARS-CoV-2 Vaccine Response. Vaccines. 2024; 12(8):871. https://doi.org/10.3390/vaccines12080871
Chicago/Turabian StyleBraitsch, Krischan, Samuel D. Jeske, Jacob Stroh, Maike Hefter, Louise Platen, Quirin Bachmann, Lutz Renders, Ulrike Protzer, Katharina S. Götze, Peter Herhaus, and et al. 2024. "Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients—A Tailored Approach Based on SARS-CoV-2 Vaccine Response" Vaccines 12, no. 8: 871. https://doi.org/10.3390/vaccines12080871
APA StyleBraitsch, K., Jeske, S. D., Stroh, J., Hefter, M., Platen, L., Bachmann, Q., Renders, L., Protzer, U., Götze, K. S., Herhaus, P., Verbeek, M., Spinner, C. D., Bassermann, F., Högner, M., Haller, B., Schneider, J., & Heider, M. (2024). Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients—A Tailored Approach Based on SARS-CoV-2 Vaccine Response. Vaccines, 12(8), 871. https://doi.org/10.3390/vaccines12080871