Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics at Hospital Admission
3.2. Vaccination Coverage over Time in the Study Population and in the Lazio Region
3.3. Main Clinical and Virological Outcomes
3.4. Predictors of 28-Day in-Hospital Death and Clinical Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 10 July 2024).
- COVID-19 National Vaccination Strategic Plan. Available online: https://www.epicentro.iss.it/vaccini/covid-19-piano-vaccinazione (accessed on 10 July 2024).
- Italian Ministry of Health. Circolare Ministeriale del. 14 September 2021. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2021&codLeg=82776&parte=1%20&serie=null (accessed on 10 July 2024).
- Italian Ministry of Health. Circolare Ministeriale del. 20 February 2022. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2022&codLeg=85813&parte=1%20&serie=null (accessed on 10 July 2024).
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111, Corrected in Lancet 2021, 397, 98. [Google Scholar] [CrossRef] [PubMed]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829, Corrected in Lancet 2021, 398, 212. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef]
- Amanatidou, E.; Gkiouliava, A.; Pella, E.; Serafidi, M.; Tsilingiris, D.; Vallianou, N.G.; Karampela, Ι.; Dalamaga, M. Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. Metabol. Open. 2022, 14, 100180. [Google Scholar] [CrossRef]
- Solante, R.; Alvarez-Moreno, C.; Burhan, E.; Chariyalertsak, S.; Chiu, N.C.; Chuenkitmongkol, S.; Dung, D.V.; Hwang, K.P.; Ortiz Ibarra, J.; Kiertiburanakul, S.; et al. Expert review of global real-world data on COVID-19 vaccine booster effectiveness and safety during the omicron-dominant phase of the pandemic. Expert. Rev. Vaccines. 2023, 22, 1–16. [Google Scholar] [CrossRef]
- Agrawal, U.; Bedston, S.; McCowan, C.; Oke, J.; Patterson, L.; Robertson, C.; Akbari, A.; Azcoaga-Lorenzo, A.; Bradley, D.T.; Fagbamigbe, A.F.; et al. Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: Pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wale. Lancet 2022, 400, 1305–1320, Corrected in Lancet 2024, 403, 1140. [Google Scholar] [CrossRef]
- Hansen, C.H.; Moustsen-Helms, I.R.; Rasmussen, M.; Søborg, B.; Ullum, H.; Valentiner-Branth, P. Short-term effectiveness of the XBB.1.5 updated COVID-19 vaccine against hospitalisation in Denmark: A national cohort study. Lancet Infect. Dis. 2024, 24, e73–e74. [Google Scholar] [CrossRef]
- van Werkhoven, C.H.; Valk, A.W.; Smagge, B.; de Melker, H.E.; Knol, M.J.; Hahné, S.J.; van den Hof, S.; de Gier, B. Early COVID-19 vaccine effectiveness of XBB.1.5 vaccine against hospitalisation and admission to intensive care, The Netherlands, 9 October to 5 December 2023. Eurosurveillance 2024, 29, 2300703. [Google Scholar] [CrossRef] [PubMed]
- DeCuir, J.; Payne, A.B.; Self, W.H.; Rowley, E.A.K.; Dascomb, K.; DeSilva, M.B.; Irving, S.A.; Grannis, S.J.; Ong, T.C.; Klein, N.P.; et al. Interim Effectiveness of Updated 2023–2024 (Monovalent XBB.1.5) COVID-19 Vaccines Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalization Among Immunocompetent Adults Aged ≥18 Years—VISION and IVY Networks, September 2023-January 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 180–188. [Google Scholar]
- Luxembourg, M. Interim Analysis of COVID-19 Vaccine Effectiveness Against Hospitalisation Due to COVID-19 and Death Using Electronic Health Records in Eight European Countries: First Update; ECDC: Stockholm, UK, 2024. [Google Scholar]
- Yeh, Y.P.; Lin, T.Y.; Yao, Y.C.; Hsu, C.Y.; Yen, A.M.F.; Chen, S.L.S.; Chen, T.H.H. New insights into three trajectories of omicron-related all-cause death reduced by COVID-19 booster vaccination. J. Infect. Public Health 2024, 17, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Servellita, V.; Syed, A.M.; Morris, M.K.; Brazer, N.; Saldhi, P.; Garcia-Knight, M.; Sreekumar, B.; Khalid, M.M.; Ciling, A.; Chen, P.Y.; et al. Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell 2022, 185, 1539–1548.e5. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA 2021, 326, 2043–2054. [Google Scholar] [CrossRef] [PubMed]
- d’Arminio Monforte, A.; Tavelli, A.; De Benedittis, S.; Bai, F.; Tincati, C.; Gazzola, L.; Viganò, O.; Allegrini, M.; Mondatore, D.; Tesoro, D.; et al. Real World Estimate of Vaccination Protection in Individuals Hospitalized for COVID-19. Vaccines 2022, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.; Kristofferson, A.B.; Salamanca, B.V.; Seppälä, E.; Golestani, K.; Kvåle, R.; Watle, S.V.; Buanes, E.A. Length of hospital stay and risk of intensive care admission and in-hospital death among COVID-19 patients in Norway: A register-based cohort study comparing patients fully vaccinated with an mRNA vaccine to unvaccinated patients. Clin. Microbiol. Infect. 2022, 28, 871–878. [Google Scholar] [CrossRef]
- Mielke, N.; Johnson, S.; Bahl, A. Boosters reduce in-hospital mortality in patients with COVID-19: An observational cohort analysis. Lancet Reg. Health Am. 2022, 8, 100227. [Google Scholar] [CrossRef]
- Ruiz-Giardin, J.M.; Rivilla, M.; Mesa, N.; Morales, A.; Rivas, L.; Izquierdo, A.; Escribá, A.; San Martín, J.V.; Bernal-Bello, D.; Madroñal, E.; et al. Comparative Study of Vaccinated and Unvaccinated Hospitalised Patients: A Retrospective Population Study of 500 Hospitalised Patients with SARS-CoV-2 Infection in a Spanish Population of 220,000 Inhabitants. Viruses 2022, 14, 2284. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Huang, C.; Yang, H.; Jiang, C.; Yu, X.; Zhao, R.; Hong, J.; Zhang, Y.; Wang, Y.; et al. Booster vaccines dose reduced mortality in hospitalized COVID-19 patients requiring oxygen supplementation: Evidence from the Beijing Omicron outbreak. Hum. Vaccin. Immunother. 2024, 20, 2361500. [Google Scholar] [CrossRef]
- Gholinataj Jelodar, M.; Mirzaei, S.; Saghafi, F.; Rafieian, S.; Rezaei, S.; Saatchi, A.; Dehghani Avare, Z.; Dehghan Niri, M. Impact of vaccination status on clinical outcomes of hospitalized COVID-19 patients. BMC Infect. Dis. 2024, 24, 254. [Google Scholar] [CrossRef]
- Italian National Institute of Health (Istituto Superiore di Sanità, ISS). Monitoraggio Delle Varianti del Virus SARS-CoV-2 di Interesse in Sanità Pubblica in Italia. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti-rapporti-periodici (accessed on 10 July 2024).
- Mondi, A.; Mastrorosa, I.; Piselli, P.; Cimaglia, C.; Matusali, G.; Carletti, F.; Giannico, G.; Milozzi, E.; Biliotti, E.; Di Bari, S.; et al. Evolution of SARS-CoV-2 variants of concern over a period of Delta and Omicron cocirculation, among patients hospitalized for COVID-19 in an Italian reference hospital: Impact on clinical outcomes. J. Med. Virol. 2023, 95, e28831. [Google Scholar] [CrossRef]
- Vittinghoff, E.; Glidden, D.V.; Shiboski, S.C.; McCulloch, C.E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models; Springer Publishing Co.: New York, NY, USA, 2005. [Google Scholar]
- Chatterjee, S.; Simonoff, J.S. Handbook of Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Struttura Commissariale per l’Emergenza COVID-19. Open Data on COVID-19 Vaccination in Italy. Available online: https://github.com/italia/covid19-opendata-vaccini (accessed on 10 July 2024).
- Goel, R.R.; Painter, M.M.; Lundgreen, K.A.; Apostolidis, S.A.; Baxter, A.E.; Giles, J.R.; Mathew, D.; Pattekar, A.; Reynaldi, A.; Khoury, D.S.; et al. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 2022, 185, 1875–1887.e8. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jia, Z.; Bao, L.; Wang, L.; Cao, L.; Chi, H.; Hu, Y.; Li, Q.; Zhou, Y.; Jiang, Y.; et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature 2022, 603, 919–925. [Google Scholar] [CrossRef]
- Muecksch, F.; Wang, Z.; Cho, A.; Gaebler, C.; Ben Tanfous, T.; DaSilva, J.; Bednarski, E.; Ramos, V.; Zong, S.; Johnson, B.; et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 2022, 607, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Patel, K.; Patton, M.E.; Reingold, A.; Kawasaki, B.; Meek, J.; Openo, K.; Ryan, P.A.; Falkowski, A.; Bye, E.; et al. COVID-19-Associated Hospitalizations Among U.S. Adults Aged ≥ 65 Years—COVID-NET, 13 States, January-August 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1089–1094. [Google Scholar] [CrossRef]
- Taheri, S. Efficacy and safety of booster vaccination against SARS-CoV-2 in dialysis and renal transplant patients: Systematic review and meta-analysis. Int. Urol. Nephrol. 2023, 55, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.A.; Dube, S.; Lu, Y.; Yates, M.; Arnetorp, S.; Barnes, E.; Bell, S.; Carty, L.; Evans, K.; Graham, S.; et al. Impact of COVID-19 on immunocompromised populations during the Omicron era: Insights from the observational population-based INFORM study. Lancet Reg. Health Eur. 2023, 35, 100747. [Google Scholar] [CrossRef]
- Hedberg, P.; Parczewski, M.; Serwin, K.; Marchetti, G.; Bai, F.; Jensen, B.E.O.; Pereira, J.P.; Drobniewski, F.; Reschreiter, H.; Naumovas, D.; et al. In-hospital mortality during the wild-type, alpha, delta, and omicron SARS-CoV-2 waves: A multinational cohort study in the EuCARE project. Lancet Reg. Health Eur. 2024, 38, 100855. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, Q.; Pan, H.; Li, M.; Yang, J.; Wang, L.; Wu, Z.; Jiang, D.; Deng, X.; Chu, K.; et al. Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: Interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect. Dis. 2022, 22, 483–495. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Ayyalasomayajula, S.; Dhawan, A.; Karattuthodi, M.S.; Thorakkattil, S.A.; Abdulsalim, S.; Elnaem, M.H.; Sridhar, S.; Unnikrishnan, M.K. A Systematic Review on Sociodemographic, Financial and Psychological Factors Associated with COVID-19 Vaccine Booster Hesitancy among Adult Population. Vaccines 2023, 11, 623. [Google Scholar] [CrossRef]
Characteristics | Vaccination Status | Total (n = 4488) | p-Value | |||
---|---|---|---|---|---|---|
Not Vaccinated n = 2224 (49.6%) | Fully Vaccinated (FV) n = 674 (15.0%) | FV & One Booster Dose n = 1207 (26.9%) | FV & Two Booster Doses n = 383 (8.5%) | |||
Females, n (%) | 851 (38.3) | 268 (40.9) | 528 (43.2) | 177 (45.6) | 1824 (40.6) | 0.005 |
Age (years), median (IQR) | 59 (48–72) | 68 (55–79) | 76 (64–84) | 82 (74–87) | 68 (54–80) | <0.001 |
Age class (years), n (%) | <0.001 | |||||
18–39 | 280 (12.6) | 44 (6.5) | 45 (3.7) | 5 (1.3) | 373 (8.3) | |
40–59 | 870 (39.1) | 176 (26.1) | 192 (15.9) | 18 (4.7) | 1256 (28.0) | |
60–79 | 776 (34.9) | 294 (43.6) | 503 (41.7) | 139 (36.3) | 1712 (38.2) | |
≥80 | 298 (13.4) | 160 (23.7) | 468 (38.8) | 221 (57.7) | 1147 (25.6) | |
Non-Italian born, n (%) | 364 (16.4) | 72 (10.7) | 77 (6.4) | 6 (1.6) | 519 (11.6) | <0.001 |
Days from symptoms onset to hospital admission, median (IQR) (n = 3497) | 6 (3–9) | 4 (2–7) | 2 (1–5) | 2 (1–4) | 4 (2–8) | <0.001 |
Comorbidities, n (%) | ||||||
Diabetes | 281 (12.6) | 135 (20.0) | 200 (16.6) | 95 (24.8) | 711 (15.8) | <0.001 |
Cardiovascular disease | 974 (43.8) | 361 (53.6) | 690 (57.2) | 266 (69.5) | 2291 (51.1) | <0.001 |
Chronic respiratory disease | 345 (15.5) | 146 (21.7) | 321 (26.6) | 122 (31.9) | 934 (20.8) | <0.001 |
Metabolic disease | 250 (11.2) | 63 (9.4) | 84 (7.0) | 32 (8.4) | 429 (9.6) | 0.001 |
Renal disease | 97 (4.4) | 61 (9.1) | 125 (10.4) | 55 (14.4) | 338 (7.5) | <0.001 |
Neoplasms/hematologic diseases | 66 (3.0) | 49 (7.3) | 151 (12.5) | 45 (11.8) | 311 (6.9) | <0.001 |
Liver disease | 66 (3.0) | 30 (4.5) | 49 (4.1) | 16 (4.2) | 161 (3.6) | 0.166 |
Immunodeficiency diseases | 47 (2.1) | 28 (4.2) | 65 (5.4) | 22 (5.7) | 162 (3.6) | <0.001 |
Number of comorbidities, n (%) | <0.001 | |||||
0 | 859 (38.6) | 164 (24.3) | 230 (19.1) | 46 (12.0) | 1299 (28.9) | |
1 | 806 (36.2) | 240 (35.6) | 470 (38.9) | 131 (34.2) | 1647 (36.7) | |
2 | 395 (17.8) | 190 (28.2) | 342 (28.3) | 121 (31.6) | 1048 (23.4) | |
≥3 | 164 (7.4) | 80 (11.9) | 165 (13.7) | 85 (22.3) | 494 (11.0) | |
Previous infection *, n (%) | 84 (2.8) | 54 (8.0) | 86 (7.1) | 25 (6.5) | 249 (5.6) | <0.001 |
Vaccine type (first dose), n (%) | <0.001 | |||||
BNT162b2 | Not applicable | 447 (66.3) | 945 (78.3) | 313 (81.7) | 1705 (75.3) | |
mRNA-1273 | Not applicable | 70 (10.4) | 147 (12.2) | 52 (13.6) | 269 (11.9) | |
ChAdOx1 | Not applicable | 100 (14.8) | 94 (7.9) | 17 (4.4) | 111 (9.3) | |
Ad26.COV2.S | Not applicable | 57 (8.5) | 21 (1.7) | 1 (0.3) | 79 (3.5) | |
Time elapsed from the last dose, n (%) | <0.001 | |||||
≤120 days | Not applicable | 113 (16.8) | 220 (18.2) | 108 (28.2) | 441 (19.5) | |
>120 days | Not applicable | 561 (83.2) | 987 (81.8) | 275 (71.8) | 1823 (80.5) | |
Pandemic wave, n (%) | <0.001 | |||||
Alpha (≤8 July 2021) | 1055 (47.4) | 17 (2.5) | 0 (0) | 0 (0) | 1072 (23.9) | |
Delta (19 July 2021–5 December 2021) | 548 (24.6) | 328 (48.7) | 11 (0.9) | 0 (0) | 887 (19.8) | |
Omicron (≥6 December 2021) | 621 (27.9) | 329 (48.8) | 1196 (99.1) | 383 (100 | 2529 (56.4) | |
Laboratory markers of hyperinflammation, n (%) | ||||||
(n = 4421) Lymphocytes < 1, ×103/μL | 1242 (57.0) | 347 (52.0) | 577 (48.3) | 193 (50.7) | 2359 (53.4) | <0.001 |
(n = 4270) C-reactive protein > 3, mg/dL | 1284 (61.2) | 392 (61.7) | 755 (64.9) | 252 (67.2) | 2683 (62.8) | 0.049 |
(n = 3721) Ferritin > 500, ng/mL | 896 (47.1) | 182 (34.3) | 254 (26.0) | 62 (19.9) | 1394 (37.5) | <0.001 |
Pneumonia, n (%) | 2118 (95.2) | 600 (89.0) | 977 (80.9) | 339 (88.5) | 4034 (89.9) | <0.001 |
Characteristics | Vaccination Status | Total Population | p-Value | |||
---|---|---|---|---|---|---|
Not Vaccinated | Fully Vaccinated (FV) | FV & One Booster Dose | FV & Two Booster Doses | |||
n = 2224 | n = 674 | n = 1207 | n = 383 | n = 4488 | ||
Clinical outcomes | ||||||
Length of hospitalization (days), median (IQR) | 14 (9–22) | 14 (9–23) | 14 (9–23) | 14 (8–23) | 14 (9–22) | 0.437 |
Admission to ICU within 28 days from hospital admission, n (%) | 364 (16.4) | 79 (11.7) | 122 (10.1) | 39 (10.2) | 604 (13.5) | <0.001 |
Length of ICU stay (days), median (IQR) | 14 (8–27) | 11 (6–36) | 14 (5–27) | 14 (5–25) | 14 (7–27) | 0.622 |
In-hospital death within 28 days from hospitalization, n (%) | 184 (8.3) | 62 (9.2) | 115 (9.5) | 35 (9.1) | 396 (8.8) | 0.627 |
Clinical progression within 28 days from hospitalization, n (%) | 405 (18.2) | 105 (15.6) | 172 (14.3) | 55 (14.4) | 737 (16.4) | 0.012 |
Virological outcomes | ||||||
(n = 4041) Viral shedding within 28 days from hospitalization, n (%) | 1692 (83.2) | 495 (82.4) | 959 (89.2) | 307 (92.2) | 3453 (85.5) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondi, A.; Mastrorosa, I.; Navarra, A.; Cimaglia, C.; Pinnetti, C.; Mazzotta, V.; Agresta, A.; Corpolongo, A.; Zolezzi, A.; Al Moghazi, S.; et al. Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital. Vaccines 2024, 12, 1018. https://doi.org/10.3390/vaccines12091018
Mondi A, Mastrorosa I, Navarra A, Cimaglia C, Pinnetti C, Mazzotta V, Agresta A, Corpolongo A, Zolezzi A, Al Moghazi S, et al. Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital. Vaccines. 2024; 12(9):1018. https://doi.org/10.3390/vaccines12091018
Chicago/Turabian StyleMondi, Annalisa, Ilaria Mastrorosa, Assunta Navarra, Claudia Cimaglia, Carmela Pinnetti, Valentina Mazzotta, Alessandro Agresta, Angela Corpolongo, Alberto Zolezzi, Samir Al Moghazi, and et al. 2024. "Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital" Vaccines 12, no. 9: 1018. https://doi.org/10.3390/vaccines12091018
APA StyleMondi, A., Mastrorosa, I., Navarra, A., Cimaglia, C., Pinnetti, C., Mazzotta, V., Agresta, A., Corpolongo, A., Zolezzi, A., Al Moghazi, S., Loiacono, L., Bocci, M. G., Matusali, G., D’Annunzio, A., Gallì, P., Maggi, F., Vairo, F., Girardi, E., & Antinori, A. (2024). Impact of Anti-SARS-CoV-2 Vaccination on Disease Severity and Clinical Outcomes of Individuals Hospitalized for COVID-19 Throughout Successive Pandemic Waves: Data from an Italian Reference Hospital. Vaccines, 12(9), 1018. https://doi.org/10.3390/vaccines12091018