Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistic Canada. Leading Causes of Death, Total Population, by Age Group. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310039401 (accessed on 29 July 2024).
- Dayam, R.M.; Law, J.C.; Goetgebuer, R.L.; Chao, G.Y.; Abe, K.T.; Sutton, M.; Finkelstein, N.; Stempak, J.M.; Pereira, D.; Croitoru, D.; et al. Accelerated waning of immunity to SARS-CoV-2 mRNA vaccines in patients with immune mediated inflammatory diseases. JCI Insight 2022, 7, e159721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Stacey, H.D.; D’Agostino, M.R.; Tugg, Y.; Marzok, A.; Miller, M.S. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat. Rev. Immunol. 2023, 23, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Colmegna, I.; Valerio, V.; Amiable, N.; Useche, M.; Rampakakis, E.; Flamand, L.; Rollet-Labelle, E.; Bessette, L.; Fitzcharles, M.A.; Hazel, E.; et al. COVID-19 Vaccine in Immunosuppressed Adults with Autoimmune rheumatic Diseases (COVIAAD): Safety, immunogenicity and antibody persistence at 12 months following Moderna Spikevax primary series. RMD Open 2023, 9, e003400. [Google Scholar] [CrossRef] [PubMed]
- Sievers, B.L.; Gelbart, T.; Tan, G.S. A high-throughput SARS-CoV-2 pseudovirus multiplex neutralization assay. STAR Protoc. 2022, 3, 01835. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; Mesa, C.; Bernstein, C.N.; Marrie, R.A.; Card, C.; O’Brien, S.F.; Kim, J. Immunogenicity and safety of mixed COVID-19 vaccine regimens in patients with immune-mediated inflammatory diseases: A single-centre prospective cohort study. BMJ Open 2023, 13, e071397. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Q.; Li, H.J.; Chen, L.; Lin, S.P. Immunogenicity of inactivated COVID-19 vaccine in patients with autoimmune inflammatory rheumatic diseases. Sci. Rep. 2022, 12, 17955. [Google Scholar] [CrossRef] [PubMed]
- Morales-Núñez, J.J.; Muñoz-Valle, J.F.; Torres-Hernández, P.C.; Hernández-Bello, J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines 2021, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ali, S.; Ibrahim, A.A.; Amjad, A.; Tanveer, A.; Khalil, S.; Ali, M.; Abuelazm, M. Effect of methotrexate hold on COVID-19 vaccine response in the patients with autoimmune inflammatory disorders: A systematic review and meta-analysis. Clin. Rheumatol. 2024, 43, 2203–2214. [Google Scholar] [CrossRef] [PubMed]
- Edelman-Klapper, H.; Zittan, E.; Shitrit, A.B.G.; Rabinowitz, K.M.; Goren, I.; Avni-Biron, I.; Ollech, J.E.; Lichtenstein, L.; Banai-Eran, H.; Yanai, H.; et al. Lower serologic response to COVID-19 mRNA vaccine in patients with inflammatory bowel diseases treated with Anti-TNFα. Gastroenterology 2022, 162, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Saad, C.G.; Silva, M.S.; Sampaio-Barros, P.D.; Moraes, J.C.; Schainberg, C.G.; Gonçalves, C.R.; Shimabuco, A.Y.; Aikawa, N.E.; Yuki, E.F.; Pasoto, S.G.; et al. Interaction of TNFi and conventional synthetic DMARD in SARS-CoV-2 vaccine response in axial spondyloarthritis and psoriatic arthritis. Jt. Bone Spine 2023, 90, 105464. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Kennedy, N.A.; Saifuddin, A.; Sandoval, D.M.; Reynolds, C.J.; Seoane, R.C.; Kottoor, S.H.; Pieper, F.P.; Lin, K.M.; Butler, D.K.; et al. Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab. Nat. Commun. 2022, 13, 1379. [Google Scholar] [CrossRef] [PubMed]
- Garner-Spitzer, E.; Wagner, A.; Gudipati, V.; Schoetta, A.M.; Orola-Taus, M.; Kundi, M.; Kunert, R.; Mayrhofer, P.; Huppa, J.B.; Stockinger, H.; et al. Lower magnitude and faster waning of antibody responses to SARS-CoV-2 vaccination in anti-TNF-α-treated IBD patients are linked to lack of activation and expansion of cTfh1 cells and impaired B memory cell formation. EBioMedicine 2023, 96, 104788. [Google Scholar] [CrossRef] [PubMed]
- Link-Gelles, R.; Levy, M.E.; Gaglani, M.; Irving, S.A.; Stockwell, M.; Dascomb, K.; DeSilva, M.B.; Reese, S.E.; Liao, I.C.; Ong, T.C.; et al. Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated—VISION Network, 10 States, December 2021–June 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Cenat, J.M.; Noorishad, P.G.; Moshirian Farahi, S.M.M.; Darius, W.P.; Mesbahi El Aouame, A.; Onesi, O.; Broussard, C.; Furyk, S.E.; Yaya, S.; Caulley, L.; et al. Prevalence and factors related to COVID-19 vaccine hesitancy and unwillingness in Canada: A systematic review and meta-analysis. J. Med. Virol. 2023, 95, e28156. [Google Scholar] [CrossRef] [PubMed]
- Felten, R.; Dubois, M.; Ugarte-Gil, M.F.; Chaudier, A.; Kawka, L.; Bergier, H.; Costecalde, C.; Pijnenburg, L.; Fort, J.; Chatelus, E.; et al. Cluster analysis reveals three main patterns of beliefs and intention with respect to SARS-CoV-2 vaccination in patients with autoimmune and inflammatory diseases. Rheumatology 2021, 60, SI68–SI76. [Google Scholar] [CrossRef] [PubMed]
Location N | Variants | Result | Units Reported | Description | |||
---|---|---|---|---|---|---|---|
Negative | Low Positive | Medium Positive | High Positive | ||||
Calgary 246 | Ancestral | <20 | 20–200 | 200–1620 | >1620 | 50% neutralization titer (NT50). | Surrogate-vesicular stomatitis virus plaque reduction neutralization test (PRNT) |
Gingras Lab, Toronto 116 | Ancestral, Omicron, BA.1, BA.5 | <1.5 (<32) | 1.5–2 (32–100) | 2–3 (100–1000) | >3 (>1000) | Log10 ID50 (ID50 is the dilution at which 50% neutralization occurs) | Spike-pseudotyped lentivirus neutralization |
Bowdish Lab, Hamilton 50 | Ancestral, Omicron BA.1 | <=5 | 10–160 | 329–640 | 1280 | Highest dilution achieving geometric microneutralization of 50% (MNT50) | Cell culture assays with live SARS-CoV-2 |
Card Lab, Winnipeg 35 | Ancestral, Omicron BA.1, BA.5 | <40 %inhibition | 40–69.9% | 70–89.9% | >90% inhibition | % inhibition | Surrogate nAb analysis using the MSD platform. Kit: V-PLEX SARS-CoV-2 Key Variant |
Flamand Lab, Quebec City 30 | Wuhan, Omicron BA.1, BA.5 | <20 | 20–200 | 200–1620 | >1620 | Highest serum dilution preventing infection (100% neutralization) | Live-virus SARS-CoV-2 neutralization |
Variables | N = 479 | |
---|---|---|
Province, N (%) | ||
Alberta (Calgary) | 257 (53.7) | |
Manitoba | 90 (18.8) | |
Ontario | 73 (15.2) | |
Quebec | 59 (12.3) | |
Mean days between samples (standard deviation, SD) | 97.2 (50.8) | |
Mean IMID duration at first/second sample (SD), years | 18.9 (14.4) | |
Baseline prednisone, N (%) | 92 (19.2) | |
Baseline prednisone dose, N (%) | ||
1–10 mg | 58 (12.1) | |
11–20 mg | 9 (1.9) | |
20+ mg | 24 (5.0) | |
Missing dose | 1 (0.2) | |
Baseline biologic, N (%) | ||
Tumor necrosis factor inhibitor | 186 (38.8) | |
Ustekinumab | 80 (16.7) | |
Vedolizumab | 47 (9.8) | |
Abatacept | 15 (3.1) | |
Rituximab | 8 (1.7) | |
Other biologics a | 8 (1.7) | |
Baseline non-biologic drugs, N (%) | ||
Methotrexate | 122 (25.5) | |
Azathioprine | 24 (5.0) | |
Sulfasalazine | 29 (6.1) | |
Leflunomide | 20 (4.2) | |
JAK inhibitor | 18 (3.8) | |
6-Mercaptopurine | 1 (0.2) | |
a Other biologics included tocilizumab and secukinumab | ||
Variables | First sample | Second sample |
Vaccine doses before the sample N (%) | ||
Two | 288 (60.1) | 147 (30.8) |
Three | 110 (23.0) | 216 (45.0) |
Four | 40 (8.4) | 67 (14.0) |
Five or more | 41 (8.6) | 49 (10.2) |
Vaccine type | ||
BNT-162b2 monovalent only | 313 (65.3) | 302 (63.0) |
Mixed bivalent | 65 (13.6) | 72 (15.1) |
Mixed monovalent | 61 (12.7) | 69 (14.4) |
mRNA1273 monovalent | 33 (6.9) | 30 (6.3) |
Other | 7 (1.5) | 6 (1.3) |
Mean days between last vaccine and sample (SD) | 38.5 (33.7) | 87.6 (57.3) |
Calendar year ≥ 2022, N (%) | 109 (22.8) | 161 (33.6) |
Calendar period N (%) | ||
April to Sept | 305 (63.6) | 171 (35.7) |
Oct to March | 174 (36.3) | 308 (64.1) |
SARS-Cov2 Strain | Number of Subjects | Methotrexate | TNFi | ||
---|---|---|---|---|---|
aOR | 95% CI | aOR | 95% CI | ||
Ancestral | N = 116 Gingras | 0.25 | (0.11, 0.56) | 0.74 | (0.31, 1.79) |
N = 30 Flamand | 0.51 | (0.01, 38.7) | 0.79 | (0.19, 3.11) | |
N = 35 Card | 0.04 | (0.01, 0.22) | 0.29 | (0.07, 1.15) | |
N = 50 Bowdish | 2.55 | (0.77, 8.99) | 1.53 | (0.40, 6.05) | |
N = 248 Calgary | 0.64 | (0.36, 1.14) | 0.48 | (0.30, 0.75) | |
Meta-analysis b | 0.41 | (0.10, 1.61) | 0.56 | (0.39, 0.81) | |
Omicron BA1 | N = 116 Gingras | 0.29 | (0.14, 0.59) | 1.11 | (0.54, 2.27) |
N = 30 Flamand | 0.41 | (0.05, 3.14) | 0.04 | (0.01, 0.27) | |
N = 35 Card | 0.11 | (0.01, 1.44) | 0.59 | (0.03, 6.79) | |
N = 50 Bowdish | 0.80 | (0.26, 2.44) | 0.29 | (0.07, 1.08) | |
Meta-analysis b | 0.39 | (0.19, 0.76) | 0.35 | (0.09, 1.39) | |
Omicron BA5 | N = 116 Gingras | 0.33 | (0.16, 0.67) | 0.73 | (0.35, 1.51) |
N = 30 Flamand | 2.02 | (0.27, 17.1) | 0.06 | (0.01, 0.29) | |
N = 35 Card | 0.50 | (0.09, 2.67) | 0.08 | (0.01, 0.39) | |
Meta-analysis b | 0.48 | (0.20, 1.13) | 0.18 | (0.03, 0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hitchon, C.A.; Bowdish, D.M.E.; Boire, G.; Fortin, P.R.; Flamand, L.; Chandran, V.; Dayam, R.M.; Gingras, A.-C.; Card, C.M.; Colmegna, I.; et al. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines 2024, 12, 1061. https://doi.org/10.3390/vaccines12091061
Hitchon CA, Bowdish DME, Boire G, Fortin PR, Flamand L, Chandran V, Dayam RM, Gingras A-C, Card CM, Colmegna I, et al. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines. 2024; 12(9):1061. https://doi.org/10.3390/vaccines12091061
Chicago/Turabian StyleHitchon, Carol A, Dawn M. E. Bowdish, Gilles Boire, Paul R. Fortin, Louis Flamand, Vinod Chandran, Roya M. Dayam, Anne-Claude Gingras, Catherine M. Card, Inés Colmegna, and et al. 2024. "Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study" Vaccines 12, no. 9: 1061. https://doi.org/10.3390/vaccines12091061
APA StyleHitchon, C. A., Bowdish, D. M. E., Boire, G., Fortin, P. R., Flamand, L., Chandran, V., Dayam, R. M., Gingras, A.-C., Card, C. M., Colmegna, I., Larché, M. J., Kaplan, G. G., Lukusa, L., Lee, J. L. F., Bernatsky, S., & on behalf of the SUCCEED Investigative Team. (2024). Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines, 12(9), 1061. https://doi.org/10.3390/vaccines12091061