Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistic Canada. Leading Causes of Death, Total Population, by Age Group. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310039401 (accessed on 29 July 2024).
- Dayam, R.M.; Law, J.C.; Goetgebuer, R.L.; Chao, G.Y.; Abe, K.T.; Sutton, M.; Finkelstein, N.; Stempak, J.M.; Pereira, D.; Croitoru, D.; et al. Accelerated waning of immunity to SARS-CoV-2 mRNA vaccines in patients with immune mediated inflammatory diseases. JCI Insight 2022, 7, e159721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Stacey, H.D.; D’Agostino, M.R.; Tugg, Y.; Marzok, A.; Miller, M.S. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat. Rev. Immunol. 2023, 23, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Colmegna, I.; Valerio, V.; Amiable, N.; Useche, M.; Rampakakis, E.; Flamand, L.; Rollet-Labelle, E.; Bessette, L.; Fitzcharles, M.A.; Hazel, E.; et al. COVID-19 Vaccine in Immunosuppressed Adults with Autoimmune rheumatic Diseases (COVIAAD): Safety, immunogenicity and antibody persistence at 12 months following Moderna Spikevax primary series. RMD Open 2023, 9, e003400. [Google Scholar] [CrossRef] [PubMed]
- Sievers, B.L.; Gelbart, T.; Tan, G.S. A high-throughput SARS-CoV-2 pseudovirus multiplex neutralization assay. STAR Protoc. 2022, 3, 01835. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, C.A.; Mesa, C.; Bernstein, C.N.; Marrie, R.A.; Card, C.; O’Brien, S.F.; Kim, J. Immunogenicity and safety of mixed COVID-19 vaccine regimens in patients with immune-mediated inflammatory diseases: A single-centre prospective cohort study. BMJ Open 2023, 13, e071397. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Q.; Li, H.J.; Chen, L.; Lin, S.P. Immunogenicity of inactivated COVID-19 vaccine in patients with autoimmune inflammatory rheumatic diseases. Sci. Rep. 2022, 12, 17955. [Google Scholar] [CrossRef] [PubMed]
- Morales-Núñez, J.J.; Muñoz-Valle, J.F.; Torres-Hernández, P.C.; Hernández-Bello, J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines 2021, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ali, S.; Ibrahim, A.A.; Amjad, A.; Tanveer, A.; Khalil, S.; Ali, M.; Abuelazm, M. Effect of methotrexate hold on COVID-19 vaccine response in the patients with autoimmune inflammatory disorders: A systematic review and meta-analysis. Clin. Rheumatol. 2024, 43, 2203–2214. [Google Scholar] [CrossRef] [PubMed]
- Edelman-Klapper, H.; Zittan, E.; Shitrit, A.B.G.; Rabinowitz, K.M.; Goren, I.; Avni-Biron, I.; Ollech, J.E.; Lichtenstein, L.; Banai-Eran, H.; Yanai, H.; et al. Lower serologic response to COVID-19 mRNA vaccine in patients with inflammatory bowel diseases treated with Anti-TNFα. Gastroenterology 2022, 162, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Saad, C.G.; Silva, M.S.; Sampaio-Barros, P.D.; Moraes, J.C.; Schainberg, C.G.; Gonçalves, C.R.; Shimabuco, A.Y.; Aikawa, N.E.; Yuki, E.F.; Pasoto, S.G.; et al. Interaction of TNFi and conventional synthetic DMARD in SARS-CoV-2 vaccine response in axial spondyloarthritis and psoriatic arthritis. Jt. Bone Spine 2023, 90, 105464. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Kennedy, N.A.; Saifuddin, A.; Sandoval, D.M.; Reynolds, C.J.; Seoane, R.C.; Kottoor, S.H.; Pieper, F.P.; Lin, K.M.; Butler, D.K.; et al. Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab. Nat. Commun. 2022, 13, 1379. [Google Scholar] [CrossRef] [PubMed]
- Garner-Spitzer, E.; Wagner, A.; Gudipati, V.; Schoetta, A.M.; Orola-Taus, M.; Kundi, M.; Kunert, R.; Mayrhofer, P.; Huppa, J.B.; Stockinger, H.; et al. Lower magnitude and faster waning of antibody responses to SARS-CoV-2 vaccination in anti-TNF-α-treated IBD patients are linked to lack of activation and expansion of cTfh1 cells and impaired B memory cell formation. EBioMedicine 2023, 96, 104788. [Google Scholar] [CrossRef] [PubMed]
- Link-Gelles, R.; Levy, M.E.; Gaglani, M.; Irving, S.A.; Stockwell, M.; Dascomb, K.; DeSilva, M.B.; Reese, S.E.; Liao, I.C.; Ong, T.C.; et al. Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated—VISION Network, 10 States, December 2021–June 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Cenat, J.M.; Noorishad, P.G.; Moshirian Farahi, S.M.M.; Darius, W.P.; Mesbahi El Aouame, A.; Onesi, O.; Broussard, C.; Furyk, S.E.; Yaya, S.; Caulley, L.; et al. Prevalence and factors related to COVID-19 vaccine hesitancy and unwillingness in Canada: A systematic review and meta-analysis. J. Med. Virol. 2023, 95, e28156. [Google Scholar] [CrossRef] [PubMed]
- Felten, R.; Dubois, M.; Ugarte-Gil, M.F.; Chaudier, A.; Kawka, L.; Bergier, H.; Costecalde, C.; Pijnenburg, L.; Fort, J.; Chatelus, E.; et al. Cluster analysis reveals three main patterns of beliefs and intention with respect to SARS-CoV-2 vaccination in patients with autoimmune and inflammatory diseases. Rheumatology 2021, 60, SI68–SI76. [Google Scholar] [CrossRef] [PubMed]
Location N | Variants | Result | Units Reported | Description | |||
---|---|---|---|---|---|---|---|
Negative | Low Positive | Medium Positive | High Positive | ||||
Calgary 246 | Ancestral | <20 | 20–200 | 200–1620 | >1620 | 50% neutralization titer (NT50). | Surrogate-vesicular stomatitis virus plaque reduction neutralization test (PRNT) |
Gingras Lab, Toronto 116 | Ancestral, Omicron, BA.1, BA.5 | <1.5 (<32) | 1.5–2 (32–100) | 2–3 (100–1000) | >3 (>1000) | Log10 ID50 (ID50 is the dilution at which 50% neutralization occurs) | Spike-pseudotyped lentivirus neutralization |
Bowdish Lab, Hamilton 50 | Ancestral, Omicron BA.1 | <=5 | 10–160 | 329–640 | 1280 | Highest dilution achieving geometric microneutralization of 50% (MNT50) | Cell culture assays with live SARS-CoV-2 |
Card Lab, Winnipeg 35 | Ancestral, Omicron BA.1, BA.5 | <40 %inhibition | 40–69.9% | 70–89.9% | >90% inhibition | % inhibition | Surrogate nAb analysis using the MSD platform. Kit: V-PLEX SARS-CoV-2 Key Variant |
Flamand Lab, Quebec City 30 | Wuhan, Omicron BA.1, BA.5 | <20 | 20–200 | 200–1620 | >1620 | Highest serum dilution preventing infection (100% neutralization) | Live-virus SARS-CoV-2 neutralization |
Variables | N = 479 | |
---|---|---|
Province, N (%) | ||
Alberta (Calgary) | 257 (53.7) | |
Manitoba | 90 (18.8) | |
Ontario | 73 (15.2) | |
Quebec | 59 (12.3) | |
Mean days between samples (standard deviation, SD) | 97.2 (50.8) | |
Mean IMID duration at first/second sample (SD), years | 18.9 (14.4) | |
Baseline prednisone, N (%) | 92 (19.2) | |
Baseline prednisone dose, N (%) | ||
1–10 mg | 58 (12.1) | |
11–20 mg | 9 (1.9) | |
20+ mg | 24 (5.0) | |
Missing dose | 1 (0.2) | |
Baseline biologic, N (%) | ||
Tumor necrosis factor inhibitor | 186 (38.8) | |
Ustekinumab | 80 (16.7) | |
Vedolizumab | 47 (9.8) | |
Abatacept | 15 (3.1) | |
Rituximab | 8 (1.7) | |
Other biologics a | 8 (1.7) | |
Baseline non-biologic drugs, N (%) | ||
Methotrexate | 122 (25.5) | |
Azathioprine | 24 (5.0) | |
Sulfasalazine | 29 (6.1) | |
Leflunomide | 20 (4.2) | |
JAK inhibitor | 18 (3.8) | |
6-Mercaptopurine | 1 (0.2) | |
a Other biologics included tocilizumab and secukinumab | ||
Variables | First sample | Second sample |
Vaccine doses before the sample N (%) | ||
Two | 288 (60.1) | 147 (30.8) |
Three | 110 (23.0) | 216 (45.0) |
Four | 40 (8.4) | 67 (14.0) |
Five or more | 41 (8.6) | 49 (10.2) |
Vaccine type | ||
BNT-162b2 monovalent only | 313 (65.3) | 302 (63.0) |
Mixed bivalent | 65 (13.6) | 72 (15.1) |
Mixed monovalent | 61 (12.7) | 69 (14.4) |
mRNA1273 monovalent | 33 (6.9) | 30 (6.3) |
Other | 7 (1.5) | 6 (1.3) |
Mean days between last vaccine and sample (SD) | 38.5 (33.7) | 87.6 (57.3) |
Calendar year ≥ 2022, N (%) | 109 (22.8) | 161 (33.6) |
Calendar period N (%) | ||
April to Sept | 305 (63.6) | 171 (35.7) |
Oct to March | 174 (36.3) | 308 (64.1) |
SARS-Cov2 Strain | Number of Subjects | Methotrexate | TNFi | ||
---|---|---|---|---|---|
aOR | 95% CI | aOR | 95% CI | ||
Ancestral | N = 116 Gingras | 0.25 | (0.11, 0.56) | 0.74 | (0.31, 1.79) |
N = 30 Flamand | 0.51 | (0.01, 38.7) | 0.79 | (0.19, 3.11) | |
N = 35 Card | 0.04 | (0.01, 0.22) | 0.29 | (0.07, 1.15) | |
N = 50 Bowdish | 2.55 | (0.77, 8.99) | 1.53 | (0.40, 6.05) | |
N = 248 Calgary | 0.64 | (0.36, 1.14) | 0.48 | (0.30, 0.75) | |
Meta-analysis b | 0.41 | (0.10, 1.61) | 0.56 | (0.39, 0.81) | |
Omicron BA1 | N = 116 Gingras | 0.29 | (0.14, 0.59) | 1.11 | (0.54, 2.27) |
N = 30 Flamand | 0.41 | (0.05, 3.14) | 0.04 | (0.01, 0.27) | |
N = 35 Card | 0.11 | (0.01, 1.44) | 0.59 | (0.03, 6.79) | |
N = 50 Bowdish | 0.80 | (0.26, 2.44) | 0.29 | (0.07, 1.08) | |
Meta-analysis b | 0.39 | (0.19, 0.76) | 0.35 | (0.09, 1.39) | |
Omicron BA5 | N = 116 Gingras | 0.33 | (0.16, 0.67) | 0.73 | (0.35, 1.51) |
N = 30 Flamand | 2.02 | (0.27, 17.1) | 0.06 | (0.01, 0.29) | |
N = 35 Card | 0.50 | (0.09, 2.67) | 0.08 | (0.01, 0.39) | |
Meta-analysis b | 0.48 | (0.20, 1.13) | 0.18 | (0.03, 0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hitchon, C.A.; Bowdish, D.M.E.; Boire, G.; Fortin, P.R.; Flamand, L.; Chandran, V.; Dayam, R.M.; Gingras, A.-C.; Card, C.M.; Colmegna, I.; et al. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines 2024, 12, 1061. https://doi.org/10.3390/vaccines12091061
Hitchon CA, Bowdish DME, Boire G, Fortin PR, Flamand L, Chandran V, Dayam RM, Gingras A-C, Card CM, Colmegna I, et al. Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines. 2024; 12(9):1061. https://doi.org/10.3390/vaccines12091061
Chicago/Turabian StyleHitchon, Carol A, Dawn M. E. Bowdish, Gilles Boire, Paul R. Fortin, Louis Flamand, Vinod Chandran, Roya M. Dayam, Anne-Claude Gingras, Catherine M. Card, Inés Colmegna, and et al. 2024. "Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study" Vaccines 12, no. 9: 1061. https://doi.org/10.3390/vaccines12091061
APA StyleHitchon, C. A., Bowdish, D. M. E., Boire, G., Fortin, P. R., Flamand, L., Chandran, V., Dayam, R. M., Gingras, A.-C., Card, C. M., Colmegna, I., Larché, M. J., Kaplan, G. G., Lukusa, L., Lee, J. L. F., Bernatsky, S., & on behalf of the SUCCEED Investigative Team. (2024). Methotrexate and Tumor Necrosis Factor Inhibitors Independently Decrease Neutralizing Antibodies after SARS-CoV-2 Vaccination: Updated Results from the SUCCEED Study. Vaccines, 12(9), 1061. https://doi.org/10.3390/vaccines12091061