The Application of mRNA Technology for Vaccine Production—Current State of Knowledge
Abstract
:1. Introduction
Current State of Research on mRNA Delivery Systems
2. mRNA-Based Vaccines
SARS-CoV-2 mRNA Vaccines
3. Mechanism of Action of mRNA and Vector-Based COVID-19 Vaccines
4. Safety Advantages of mRNA and Vector-Based Vaccines
- Non-Integrative Nature: mRNA vaccines function by delivering a transient blueprint for antigen production without integrating into the host genome, thereby eliminating risks associated with insertional mutagenesis.
- Rapid Degradation: The inherent instability of mRNA ensures its swift degradation within the body, reducing concerns about long-term persistence and associated adverse effects.
- No Risk of Infection: Unlike traditional vaccines that may use attenuated pathogens, mRNA vaccines are non-infectious, thereby eliminating the possibility of vaccine-induced disease.
- Controlled Manufacturing: The cell-free synthesis of mRNA vaccines minimizes contamination risks and allows for precise control over production processes, enhancing overall safety [19].
- High Immunogenicity: Viral vectors, such as adenoviruses, are adept at inducing robust immune responses without the need for adjuvants, enhancing vaccine efficacy.
- Non-Replication in Humans: Many viral vectors are engineered to be replication-deficient in human cells, ensuring they cannot cause disease
- Established Safety Profiles: Vectors like vaccinia virus have a long history of safe use in vaccines, providing a foundation of trust and understanding in their application [20].
5. Role of 1-Methylpseudouridine in Vaccine mRNA
6. Efficient and Rapid mRNA Vaccine Production
7. Influenza Vaccines
Avian Influenza Vaccines
8. HIV Vaccines
Respiratory Syncytial Virus mRNA Vaccine
9. Cancer Vaccines
10. Conclusions
- •
- mRNA technology has experienced rapid development in recent years.
- •
- The use of mRNA technology in the production of vaccines against SARS-CoV-2 has significantly contributed to combating the ongoing COVID-19 pandemic.
- •
- The first mRNA-based vaccine approved for use by the FDA and EMA was the Pfizer/BioNTech vaccine, Comirnaty.
- •
- mRNA-based vaccines are strong candidates to replace traditional flu vaccines.
- •
- mRNA technology may offer benefits for developing a vaccine against HIV.
- •
- mRNA-based vaccine has demonstrated efficacy against melanoma.
Author Contributions
Funding
Conflicts of Interest
References
- Minnaert, A.K.; Vanluchene, H.; Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Raemdonck, K. Strategies for controlling theinnate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv. Drug Deliv. Rev. 2021, 176, 113900. [Google Scholar]
- Brito, L.A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Berlanda, S.F.; Otten, G.R.; Yu, D.; Mandl, C.W.; Mason, P.W. Chapter Seven—Self-Amplifying mRNA Vaccines. In Advances in Genetics, 3rd ed.; Huang, L., Liu, D., Wagner, E., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 179–233. [Google Scholar]
- Wu, Z.; Li, T. Nanoparticle-Mediated Cytoplasmic Delivery of Messenger RNA Vaccines: Challenges and Future Perspectives. Pharm. Res. 2021, 38, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct Gene Transfer into Mouse Muscle in Vivo. Science 1990, 247, 1465–1468. Available online: https://www.science.org/doi/abs/10.1126/science.1690918 (accessed on 22 February 2025).
- Han, J.; Lim, J.; Wang, C.-P.J.; Han, J.-H.; Shin, H.E.; Kim, S.-N.; Jeong, D.; Lee, S.H.; Chun, B.-H.; Park, C.G.; et al. Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy. Nano Converg. 2023, 10, 36. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Tian, Y.; Yang, Z.; Shi, J.; Kwak, K.J.; Tong, Y.; Estania, A.P.; Cao, J.; Hsu, W.-H.; Liu, Y.; et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 2023, 7, 887–900. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [PubMed]
- Chung, J.Y.; Thone, M.N.; Kwon, Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv. Drug Deliv. Rev. 2021, 170, 1–25. [Google Scholar]
- Uttarilli, A.; Amalakanti, S.; Kommoju, P.-R.; Sharma, S.; Goyal, P.; Manjunath, G.K.; Upadhayay, V.; Parveen, A.; Tandon, R.; Prasad, K.S.; et al. Super-rapid race for saving lives by developing COVID-19 vaccines. J. Integr. Bioinform. 2021, 18, 27–43. [Google Scholar]
- Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine (accessed on 27 February 2025).
- You, H.; Jones, M.; Gordon, C.A.; Arganda, A.E.; Cai, P.; Al-Wassiti, H.; Pouton, C.W.; McManus, D.P. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin. Microbiol. Rev. 2023, 36, e00241-21. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; de Gregorio, C.; Velissaris, D.; Petalas, K.; Brinia, A.; Assimakopoulos, S.F.; Gogos, C.; Kouni, S.N.; Kounis, G.N.; et al. Allergic Reactions to Current Available COVID-19 Vaccinations: Pathophysiology, Causality, and Therapeutic Considerations. Vaccines 2021, 9, 221. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar]
- Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol. 2013, 969, 29–42. [Google Scholar] [PubMed]
- Zhao, B.S.; He, C. Pseudouridine in a new era of RNA modifications. Cell Res. 2015, 25, 153–154. [Google Scholar] [CrossRef]
- Hajissa, K.; Mussa, A. Positive aspects of the mRNA platform for SARS-CoV-2 vaccines. Hum. Vaccin. Immunother. 2021, 17, 2445–2447. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Okuda, K.; Shimada, M. Developments in Viral Vector-Based Vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef]
- Paczkowska, A.; Hoffmann, K.; Michalak, M.; Hans-Wytrychowska, A.; Bryl, W.; Kopciuch, D.; Zaprutko, T.; Ratajczak, P.; Nowakowska, E.; Kus, K. Safety Profile of COVID-19 Vaccines among Healthcare Workers in Poland. Vaccines 2022, 10, 434. [Google Scholar] [CrossRef]
- Gee, J.; Marquez, P.; Su, J.; Calvert, G.M.; Liu, R.; Myers, T.; Nair, N.; Martin, S.; Clark, T.; Markowitz, L.; et al. First Month of COVID-19 Vaccine Safety Monitoring—United States, December 14, 2020-January 13, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 283–288. [Google Scholar] [PubMed]
- McNeil, M.M.; DeStefano, F. Vaccine-associated hypersensitivity. J. Allergy Clin. Immunol. 2018, 141, 463–472. [Google Scholar]
- Shimabukuro, T.T.; Cole, M.; Su, J.R. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US-December 14, 2020-January 18, 2021. JAMA 2021, 325, 1101–1102. [Google Scholar]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2210. [Google Scholar]
- Sadoff, J.; Davis, K.; Douoguih, M. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination—Response from the manufacturer. N. Engl. J. Med. 2021, 384, 1965–1966. [Google Scholar]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [PubMed]
- See, I.; Su, J.R.; Lale, A.; Woo, E.J.; Guh, A.Y.; Shimabukuro, T.T.; Streiff, M.B.; Rao, A.K.; Wheeler, A.P.; Beavers, S.F.; et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26. COV2.S vaccination, March 2 to April 21, 2021. JAMA 2021, 325, 2448–2456. [Google Scholar]
- Yasuhara, J.; Masuda, K.; Aikawa, T.; Shirasu, T.; Takagi, H.; Lee, S.; Kuno, T. Myopericarditis After COVID-19 mRNA Vaccination Among Adolescents and Young Adults: A Systematic Review and Meta-analysis. JAMA Pediatr. 2023, 177, 42–52. [Google Scholar] [CrossRef]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar]
- Lee, S.; Ryu, J.H. Influenza Viruses: Innate Immunity and mRNA Vaccines. Front. Immunol. 2021, 12, 710647. [Google Scholar]
- Arevalo, C.P.; Bolton, M.J.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.G.; Pardi, N.; Drapeau, E.M.; Parkhouse, K.; et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Willis, E.; Pardi, N.; Parkhouse, K.; Mui, B.L.; Tam, Y.K.; Weissman, D.; Hensley, S.E. Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Sci. Transl. Med. 2020, 12, eaav5701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Katz, J.M.; Hancock, K.; Xu, X. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev. Anti-Infect. Ther. 2011, 9, 669–683. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA vaccine against SARS-CoV-2—Preliminary report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar]
- Available online: https://investors.modernatx.com/news/news-details/2024/Moderna-Announces-Positive-Phase-3-Data-for-Combination-Vaccine-Against-Influenza-and-COVID-19-/default.aspx (accessed on 22 February 2025).
- Available online: https://www.termedia.pl/poz/Przyspieszenie-prac-nad-szczepionka-mRNA-przeciwko-ptasiej-grypie-H5N1-,57334.html (accessed on 24 February 2025).
- Available online: https://mgr.farm/aktualnosci/moderna-pracuje-nad-szczepionka-mrna-na-ptasia-grype/ (accessed on 27 February 2025).
- Khalid, K.; Padda, J.; Khedr, A.; Ismail, D.; Zubair, U.; Al-Ewaidat, O.A.; Padda, S.; Cooper, A.C.; Jean-Charles, G. HIV and Messenger RNA (mRNA) Vaccine. Cureus 2021, 13, e16197. [Google Scholar]
- De Cock, K.M.; Jaffe, H.W.; Curran, J.W. Reflections on 40 Years of AIDS. Emerg. Infect. Dis. 2021, 27, 1553–1560. [Google Scholar]
- Fortner, A.; Bucur, O. mRNA-based vaccine technology for HIV. Discoveries 2022, 10, e150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, Z.; Haynes, B.F.; Cain, D.W. HIV mRNA Vaccines—Progress and Future Paths. Vaccines 2021, 9, 134. [Google Scholar] [CrossRef]
- Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers 2015, 1, 15035. [Google Scholar] [CrossRef] [PubMed]
- Kwong, P.D.; Mascola, J.R.; Nabel, G.J. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: The end of the beginning. Nat. Rev. Immunol. 2013, 13, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Narayanan, E.; Liu, Q.; Tsybovsky, Y.; Boswell, K.; Ding, S.; Hu, Z.; Follmann, D.; Lin, Y.; Miao, H.; et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 2021, 27, 2234–2245. [Google Scholar] [CrossRef] [PubMed]
- IAVI and Moderna Launch Trial of HIV Vaccine Antigens with mRNA Technology 2022. Available online: https://investors.modernatx.com/news/news-details/2022/IAVI-and-Moderna-Launch-Trial-of-HIV-Vaccine-Antigens-Delivered-Through-mRNA-Technology/default.aspx (accessed on 23 March 2025).
- Vergori, A.; Tavelli, A.; Matusali, G.; Azzini, A.M.; Augello, M.; Mazzotta, V.; Pellicanò, G.F.; Costantini, A.; Cascio, A.; De Vito, A.; et al. SARS-CoV-2 mRNA Vaccine Response in People Living with HIV According to CD4 Count and CD4/CD8 Ratio. Vaccines 2023, 11, 1664. [Google Scholar] [CrossRef] [PubMed]
- MD CLG. IGHID 1309-A Phase I Study to Evaluate the Kinetics of the Immunologic Response and Virologic Impact of AGS-004 in HIV-Infected Individuals Suppressed on Antiretroviral Therapy Initiated During Acute and Chronic HIV Infection clinicaltrials.gov; 2017 Report No.: NCT02042248. Available online: https://clinicaltrials.gov/ct2/show/NCT02042248 (accessed on 22 February 2025).
- Available online: https://www.termedia.pl/poz/EMA-zatwierdza-pierwsza-szczepionke-mRNA-przeciwko-wirusowi-RSV,56915.html (accessed on 22 February 2025).
- Wilson, E.; Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez-Marc, G.; Zaman, K.; Monroy, J.; Duncan, C.J.; Ujiie, M.; Rämet, M.; et al. for the ConquerRSV Study Group. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. N. Engl. J. Med. 2023, 389, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Donninger, H.; Li, C.; Eaton, J.W.; Yaddanapudi, K. Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines 2021, 9, 668. [Google Scholar] [CrossRef]
- Chang, M.H.; Chen, C.J.; Lai, M.S.; Hsu, H.M.; Wu, T.C.; Kong, M.S.; Liang, D.-C.; Shau, W.-Y.; Chen, D.-S. Universal Hepatitis B Vaccination in Taiwan and the Incidence of Hepatocellular Carcinoma in Children. N. Engl. J. Med. 1997, 336, 1855–1859. [Google Scholar] [PubMed]
- Maver, P.J.; Poljak, M. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review. Vaccine 2018, 36, 5416–5423. [Google Scholar]
- Kreiter, S.; Vormehr, M.; van de Roemer, N.; Diken, M.; Lower, M.; Diekmann, J.; Boegel, S.; Schrors, B.; Vascotto, F.; Castle, J.C.; et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015, 520, 692–696. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilgenhof, S.; Van Nuffel, A.M.T.; Benteyn, D.; Corthals, J.; Aerts, C.; Heirman, C.; Van Riet, I.; Bonehill, A.; Thielemans, K.; Neyns, B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2686–2693. [Google Scholar]
- Van Driessche, A.; Van de Velde, A.L.R.; Nijs, G.; Braeckman, T.; Stein, B.; De Vries, J.M.; Berneman, Z.N.; Van Tendeloo, V.F.I. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy 2009, 11, 653–668. [Google Scholar] [CrossRef]
- Lesterhuis, W.J.; De Vries, I.J.M.; Schreibelt, G.; Schuurhuis, D.H.; Aarntzen, E.H.; De Boer, A.; Scharenborg, N.M.; Van De Rakt, M.; Hesselink, E.J.; Figdor, C.; et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 2010, 30, 5091–5097. [Google Scholar] [PubMed]
- Nair, S.K.; Boczkowski, D.; Morse, M.; Cumming, R.I.; Lyerly, H.K.; Gilboa, E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol. 1998, 16, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Strimpakos, A.S.; Cunningham, D.; Mikropoulos, C.; Petkar, I.; Barbachano, Y.; Chau, I. The impact of carcinoembryonic antigen flare in patients with advanced colorectal cancer receiving first-line chemotherapy. Ann. Oncol. 2010, 21, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Gao, H.; Tan, D.; Zhang, H.; Wang, J. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm. Sin. B 2022, 12, 2969–2989. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942458/ (accessed on 22 February 2025). [CrossRef]
- BioNTech Receives FDA Fast Track Designation for its FixVac Candidate BNT111 in Advanced Melanoma|BioNTech. 2022. Available online: https://investors.biontech.de/news-releases/news-release-details/biontech-receives-fda-fast-track-designation-its-fixvac/ (accessed on 22 February 2025).
- Sethna, Z.; Guasp, P.; Reiche, C.; Milighetti, M.; Ceglia, N.; Patterson, E.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 2025, 639, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. RNA vaccine induces long-lived anti-tumour T cells in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 225. Available online: https://doi.org/10.1038/s41575-025-01055-x (accessed on 23 March 2025). [CrossRef]
- GUS. Umieralność i Zgony Według Przyczyn w 2020 Roku. 2022. Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/statystyka-przyczyn-zgonow/umieralnosc-i-zgony-wedlug-przyczyn-w-2020-roku,10,1.html (accessed on 22 February 2025).
- Available online: https://clinicaltrials.gov (accessed on 22 February 2025).
- Al Fayez, N.; Nassar, M.S.; Alshehri, A.A.; Alnefaie, M.K.; Almughem, F.A.; Alshehri, B.Y.; Alawad, A.O.; Tawfik, E.A. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023, 15, 1972. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, B.; Pei, J.; Xu, S.; Liu, J.; Yu, J. Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front. Immunol. 2023, 14, 1246682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Delivery Technology | mRNA Type | In Vitro Test | In Vivo Test | Characteristics |
---|---|---|---|---|
Electroporation | saRNA, no nucleoside modifications | Dendritic cells (DCs) | Mouse | Specific antibodies and T-cell response higher than naked saRNA |
Cationic micelles | Non-replicating RNA, no nucleoside modifications | Bone marrow-derived dendritic cells | Mouse | Induces maturation of bone marrow-derived dendritic cells, as well as T-cell response and specific IgG antibody production. |
Cationic nanoemulsion | saRNA, no nucleoside modifications | Not conducted | Rabbit, Macaque | Induces IgG and neutralizing antibody titers even from small immunization doses |
Polylactic acid (PLA) nanoparticles with cell-penetrating peptide (CPP) | Non-replicating RNA, no nucleoside modifications | Monocyte-derived dendritic cells | Not conducted | Induces maturation of monocyte-derived dendritic cells and secretion of pro-inflammatory cytokines |
Lipid nanoparticles (LNP) | Non-replicating RNA, with nucleoside modifications | Not conducted | Rabbit, Macaque | Specific CD4+ and CD8+ T-cell response |
Ex vivo delivery to dendritic cells (DCs) | Various | Monocyte-derived dendritic cells | Mouse | Induces maturation of monocyte-derived dendritic cells and cytotoxic T cells |
Study ID Numbers | Target Disease | Status | Manufacturer | Route of Administration |
---|---|---|---|---|
Infectious Diseases | ||||
Comirnaty (BNT162b2) | SARS-CoV-2 | Approved | Pfizer/BioNTech | I.M. |
Spikevax (mRNA-1273) | SARS-CoV-2 | Approved | Moderna | I.M. |
mRNA-1010 | Seasonal Influenza | Phase III Clinical Trial | Moderna | I.M. |
mRNA-1345 | Respiratory syncytial virus | Approved | Moderna | I.M. |
mRNA-1893-P201 | Zika virus | Phase II Clinical Trial Completed | Moderna | I.M. |
mRNA-1647-P202 | Cytomegalovirus infection | Phase II Clinical Trial Completed | Moderna | I.M. |
CV-NCOV-004 | SARS-CoV-2 | Phase IIB/III Clinical Trial Completed | CureVac | I.M. |
BNT162-01 | SARS-CoV-2 | Phase I, II Clinical Trial Completed | BioNTech–Pfizer | I.M. |
mRNA-1273 | SARS-CoV-2 B.1.351 variant | Phase II Clinical Trial Completed | Moderna | I.M. |
mRNA-1083 | Combine: influenza virus and SARS-CoV-2 | Phase III Clinical TrialCompleted | Moderna | I.M. |
IAVI G002(mRNA-1644; mRNA-1644v2-Core) | HIV-1 | Phase I Clinical TrialActive, not recruiting | Moderna | I.M. |
Cancer | ||||
GO40558 | Melanoma | Phase II Clinical Trial Completed | BioNTech– Genentech | I.V. |
mRNA-4157-P201 | Melanoma | Phase II Clinical Trial Recruiting | Moderna–Merck | I.M. |
BNT111-01 | Melanoma | Phase II Clinical Trial Active, not recruiting | BioNTech | I.V. |
LUD2014-012-VAC | Non-small cell lung cancer | Phase II Clinical Trial Active, not recruiting | CureVac, Ludwig Institute | I.D. |
GCT1046-01 | Cancer | Phase I, II Clinical Trial Active, not recruiting | Genmab–BioNTech | I.V. |
GCT1042-01 | Solid tumors | Phase I, II Clinical Trial Active, not recruiting | Genmab–BioNTech | I.V. |
BNT211-01 | CLDN6+ tumors | Phase I Clinical Trial Active recruiting | BioNTech | I.V. |
NCT06496373 | Pancreatic Cancer Recurrent | Phase I Clinical Trial Active recruiting | Ruijin Hospital | I.V. |
mRNA-4157 | Unresectable solid tumors | Phase I Clinical Trial Active recruiting | Moderna | I.M. |
RO7198457 | Pancreatic Cancer | Phase I Clinical Trial Active not recruiting | BioNTech | I.V. |
BNT112 | Prostate Cancer | Phase I, II Clinical Trial, Terminated | BioNTech | I.V. |
BNT113 | Head and neck squamous cell carcinoma | Phase II, III Clinical Trial Active recruiting | BioNTech | I.V. |
BNT152+153 | Solid Tumor | Phase I Clinical Trial Active not recruiting | BioNTech | I.V. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska, A.; Hoffmann, K.; Andrzejczak, A.; Pucek, W.F.; Kopciuch, D.; Bryl, W.; Nowakowska, E.; Kus, K. The Application of mRNA Technology for Vaccine Production—Current State of Knowledge. Vaccines 2025, 13, 389. https://doi.org/10.3390/vaccines13040389
Paczkowska A, Hoffmann K, Andrzejczak A, Pucek WF, Kopciuch D, Bryl W, Nowakowska E, Kus K. The Application of mRNA Technology for Vaccine Production—Current State of Knowledge. Vaccines. 2025; 13(4):389. https://doi.org/10.3390/vaccines13040389
Chicago/Turabian StylePaczkowska, Anna, Karolina Hoffmann, Agata Andrzejczak, Weronika Faustyna Pucek, Dorota Kopciuch, Wiesław Bryl, Elżbieta Nowakowska, and Krzysztof Kus. 2025. "The Application of mRNA Technology for Vaccine Production—Current State of Knowledge" Vaccines 13, no. 4: 389. https://doi.org/10.3390/vaccines13040389
APA StylePaczkowska, A., Hoffmann, K., Andrzejczak, A., Pucek, W. F., Kopciuch, D., Bryl, W., Nowakowska, E., & Kus, K. (2025). The Application of mRNA Technology for Vaccine Production—Current State of Knowledge. Vaccines, 13(4), 389. https://doi.org/10.3390/vaccines13040389