Research Progress of Universal Influenza Vaccine
Abstract
1. Introduction
2. Influenza Viruses and Criteria for a Universal Influenza Vaccine
2.1. Influenza Viruses and Mutations
2.2. Standards for Universal Influenza Vaccine
3. Antigenic Targets and Design Strategies for Universal Influenza Vaccine
3.1. Antigenic Targets of Universal Influenza Vaccines
3.2. Antigen Design Strategies for Universal Influenza Vaccines
3.2.1. Immunofocusing Strategy
3.2.2. Multi-Target Combination Strategy
3.2.3. T-Cell Strategy
3.2.4. COBRA Strategy
3.2.5. Artificial Intelligence Strategy
4. Universal Influenza Vaccines Under Different Technological Routes
4.1. Universal Influenza Vaccine Based on Influenza Virus
4.2. Universal Influenza Vaccine Based on Viral Vector
4.3. Universal Influenza Vaccine Based on VLP
4.4. Universal Influenza Vaccine Based on Nanoparticles
4.5. Universal Influenza Vaccine Based on Recombinant Proteins
4.6. Universal Influenza Vaccine Based on Nucleic Acids
5. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Monto, A.S.; Fukuda, K. Lessons From Influenza Pandemics of the Last 100 Years. Clin. Infect. Dis. 2020, 70, 951–957. [Google Scholar] [CrossRef]
- Johnson, N.P.; Mueller, J. Updating the accounts: Global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 2002, 76, 105–115. [Google Scholar] [CrossRef]
- Hay, A.J.; McCauley, J.W. The WHO global influenza surveillance and response system (GISRS)-A future perspective. Influenza Other Respir. Viruses 2018, 12, 551–557. [Google Scholar] [CrossRef]
- Belongia, E.A.; Simpson, M.D.; King, J.P.; Sundaram, M.E.; Kelley, N.S.; Osterholm, M.T.; McLean, H.Q. Variable influenza vaccine effectiveness by subtype: A systematic review and meta-analysis of test-negative design studies. Lancet Infect. Dis. 2016, 16, 942–951. [Google Scholar] [CrossRef]
- Skowronski, D.M.; Janjua, N.Z.; De Serres, G.; Sabaiduc, S.; Eshaghi, A.; Dickinson, J.A.; Fonseca, K.; Winter, A.L.; Gubbay, J.B.; Krajden, M.; et al. Low 2012–13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS ONE 2014, 9, e92153. [Google Scholar] [CrossRef]
- Zost, S.J.; Parkhouse, K.; Gumina, M.E.; Kim, K.; Diaz Perez, S.; Wilson, P.C.; Treanor, J.J.; Sant, A.J.; Cobey, S.; Hensley, S.E. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl. Acad. Sci. USA 2017, 114, 12578–12583. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26 (Suppl. S4), D49–D53. [Google Scholar] [CrossRef] [PubMed]
- Young, J.F.; Palese, P. Evolution of human influenza A viruses in nature: Recombination contributes to genetic variation of H1N1 strains. Proc. Natl. Acad. Sci. USA 1979, 76, 6547–6551. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, Y.; Tefsen, B.; Shi, Y.; Gao, G.F. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol. 2014, 22, 183–191. [Google Scholar] [CrossRef]
- Wei, C.J.; Boyington, J.C.; Dai, K.; Houser, K.V.; Pearce, M.B.; Kong, W.P.; Yang, Z.Y.; Tumpey, T.M.; Nabel, G.J. Cross-neutralization of 1918 and 2009 influenza viruses: Role of glycans in viral evolution and vaccine design. Sci. Transl. Med. 2010, 2, 24ra21. [Google Scholar] [CrossRef]
- Medina, R.A.; Stertz, S.; Manicassamy, B.; Zimmermann, P.; Sun, X.; Albrecht, R.A.; Uusi-Kerttula, H.; Zagordi, O.; Belshe, R.B.; Frey, S.E.; et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci. Transl. Med. 2013, 5, 187ra170. [Google Scholar] [CrossRef]
- Lowen, A.C. It’s in the mix: Reassortment of segmented viral genomes. PLoS Pathog. 2018, 14, e1007200. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Marston, H.D.; Eisinger, R.W.; Baltimore, D.; Fauci, A.S. The Pathway to a Universal Influenza Vaccine. Immunity 2017, 47, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef]
- Guthmiller, J.J.; Han, J.; Utset, H.A.; Li, L.; Lan, L.Y.; Henry, C.; Stamper, C.T.; McMahon, M.; O’Dell, G.; Fernández-Quintero, M.L.; et al. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature 2022, 602, 314–320. [Google Scholar] [CrossRef]
- Kumar, A.; Meldgaard, T.S.; Bertholet, S. Novel Platforms for the Development of a Universal Influenza Vaccine. Front. Immunol. 2018, 9, 600. [Google Scholar] [CrossRef]
- Corti, D.; Voss, J.; Gamblin, S.J.; Codoni, G.; Macagno, A.; Jarrossay, D.; Vachieri, S.G.; Pinna, D.; Minola, A.; Vanzetta, F.; et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011, 333, 850–856. [Google Scholar] [CrossRef]
- Kirchenbaum, G.A.; Carter, D.M.; Ross, T.M. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies. J. Virol. 2016, 90, 1116–1128. [Google Scholar] [CrossRef]
- Sylte, M.J.; Suarez, D.L. Influenza neuraminidase as a vaccine antigen. Curr. Top. Microbiol. Immunol. 2009, 333, 227–241. [Google Scholar] [CrossRef]
- Wohlbold, T.J.; Nachbagauer, R.; Xu, H.; Tan, G.S.; Hirsh, A.; Brokstad, K.A.; Cox, R.J.; Palese, P.; Krammer, F. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. mBio 2015, 6, e02556. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.M.; Tebianian, M. Influenza A viruses: Why focusing on M2e-based universal vaccines. Virus Genes 2011, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008, 451, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Ciampor, F.; Thompson, C.A.; Grambas, S.; Hay, A.J. Regulation of pH by the M2 protein of influenza A viruses. Virus Res. 1992, 22, 247–258. [Google Scholar] [CrossRef]
- Kolpe, A.; Schepens, B.; Fiers, W.; Saelens, X. M2-based influenza vaccines: Recent advances and clinical potential. Expert Rev. Vaccines 2017, 16, 123–136. [Google Scholar] [CrossRef]
- El Bakkouri, K.; Descamps, F.; De Filette, M.; Smet, A.; Festjens, E.; Birkett, A.; Van Rooijen, N.; Verbeek, S.; Fiers, W.; Saelens, X. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 2011, 186, 1022–1031. [Google Scholar] [CrossRef]
- Tao, W.; Hurst, B.L.; Shakya, A.K.; Uddin, M.J.; Ingrole, R.S.; Hernandez-Sanabria, M.; Arya, R.P.; Bimler, L.; Paust, S.; Tarbet, E.B.; et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res. 2017, 141, 62–72. [Google Scholar] [CrossRef]
- Eisfeld, A.J.; Neumann, G.; Kawaoka, Y. At the centre: Influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015, 13, 28–41. [Google Scholar] [CrossRef]
- Jameson, J.; Cruz, J.; Ennis, F.A. Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J. Virol. 1998, 72, 8682–8689. [Google Scholar] [CrossRef]
- Hillaire, M.L.B.; Vogelzang-van Trierum, S.E.; Kreijtz, J.; de Mutsert, G.; Fouchier, R.A.M.; Osterhaus, A.; Rimmelzwaan, G.F. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. J. Gen. Virol. 2013, 94, 583–592. [Google Scholar] [CrossRef]
- Nüssing, S.; Sant, S.; Koutsakos, M.; Subbarao, K.; Nguyen, T.H.O.; Kedzierska, K. Innate and adaptive T cells in influenza disease. Front. Med. 2018, 12, 34–47. [Google Scholar] [CrossRef]
- Krammer, F.; Pica, N.; Hai, R.; Margine, I.; Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 2013, 87, 6542–6550. [Google Scholar] [CrossRef]
- Ellebedy, A.H.; Krammer, F.; Li, G.M.; Miller, M.S.; Chiu, C.; Wrammert, J.; Chang, C.Y.; Davis, C.W.; McCausland, M.; Elbein, R.; et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 13133–13138. [Google Scholar] [CrossRef] [PubMed]
- Impagliazzo, A.; Milder, F.; Kuipers, H.; Wagner, M.V.; Zhu, X.; Hoffman, R.M.; van Meersbergen, R.; Huizingh, J.; Wanningen, P.; Verspuij, J.; et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Carter, J.J.; Li, C.; Utz, A.; Weidenbacher, P.A.B.; Tang, S.; Sanyal, M.; Pulendran, B.; Barnes, C.O.; Kim, P.S. Vaccine design via antigen reorientation. Nat. Chem. Biol. 2024, 20, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Miranda, H.A.; Burke, K.N.; Spurrier, M.A.; Berry, M.; Stover, E.L.; Spreng, R.L.; Waitt, G.; Soderblom, E.J.; Macintyre, A.N.; et al. Vaccination with antigenically complex hemagglutinin mixtures confers broad protection from influenza disease. Sci. Transl. Med. 2024, 16, eadj4685. [Google Scholar] [CrossRef]
- Mallajosyula, V.; Chakraborty, S.; Sola, E.; Fong, R.F.; Shankar, V.; Gao, F.; Burrell, A.R.; Gupta, N.; Wagar, L.E.; Mischel, P.S.; et al. Coupling antigens from multiple subtypes of influenza can broaden antibody and T cell responses. Science 2024, 386, 1389–1395. [Google Scholar] [CrossRef]
- Leonard, R.A.; Burke, K.N.; Spreng, R.L.; Macintyre, A.N.; Tam, Y.; Alameh, M.G.; Weissman, D.; Heaton, N.S. Improved influenza vaccine responses after expression of multiple viral glycoproteins from a single mRNA. Nat. Commun. 2024, 15, 8712. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Q.; Qi, M.; Chen, J.; Wu, X.; Zhang, X.; Li, W.; Zhang, X.E.; Cui, Z. An Intranasal Multivalent Epitope-Based Nanoparticle Vaccine Confers Broad Protection against Divergent Influenza Viruses. ACS Nano 2023, 17, 13474–13487. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, C.; Shang, B.; Zheng, M.; Wang, Q.; Ding, Y.; Luo, J.; Li, X. An mRNA-based broad-spectrum vaccine candidate confers cross-protection against heterosubtypic influenza A viruses. Emerg. Microbes Infect. 2023, 12, 2256422. [Google Scholar] [CrossRef]
- Broecker, F.; Liu, S.T.H.; Suntronwong, N.; Sun, W.; Bailey, M.J.; Nachbagauer, R.; Krammer, F.; Palese, P. A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains. npj Vaccines 2019, 4, 31. [Google Scholar] [CrossRef]
- Park, H.; Kingstad-Bakke, B.; Cleven, T.; Jung, M.; Kawaoka, Y.; Suresh, M. Diversifying T-cell responses: Safeguarding against pandemic influenza with mosaic nucleoprotein. J. Virol. 2025, 99, e0086724. [Google Scholar] [CrossRef]
- Bazhan, S.I.; Antonets, D.V.; Starostina, E.V.; Ilyicheva, T.N.; Kaplina, O.N.; Marchenko, V.Y.; Volkova, O.Y.; Bakulina, A.Y.; Karpenko, L.I. In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J. Biomol. Struct. Dyn. 2022, 40, 3196–3212. [Google Scholar] [CrossRef] [PubMed]
- van de Ven, K.; Lanfermeijer, J.; van Dijken, H.; Muramatsu, H.; Vilas Boas de Melo, C.; Lenz, S.; Peters, F.; Beattie, M.B.; Lin, P.J.C.; Ferreira, J.A.; et al. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. Sci. Adv. 2022, 8, eadc9937. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.M.; Darby, C.A.; Lefoley, B.C.; Crevar, C.J.; Alefantis, T.; Oomen, R.; Anderson, S.F.; Strugnell, T.; Cortés-Garcia, G.; Vogel, T.U.; et al. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses. J. Virol. 2016, 90, 4720–4734. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Ross, T.M. Next generation methodology for updating HA vaccines against emerging human seasonal influenza A(H3N2) viruses. Sci. Rep. 2021, 11, 4554. [Google Scholar] [CrossRef]
- Zhang, X.; Skarlupka, A.L.; Shi, H.; Ross, T.M. COBRA N2 NA vaccines induce protective immune responses against influenza viral infection. Hum. Vaccin. Immunother. 2024, 20, 2403175. [Google Scholar] [CrossRef]
- Olawade, D.B.; Teke, J.; Fapohunda, O.; Weerasinghe, K.; Usman, S.O.; Ige, A.O.; Clement David-Olawade, A. Leveraging artificial intelligence in vaccine development: A narrative review. J. Microbiol. Methods 2024, 224, 106998. [Google Scholar] [CrossRef]
- Zhuang, L.; Ali, A.; Yang, L.; Ye, Z.; Li, L.; Ni, R.; An, Y.; Ali, S.L.; Gong, W. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. Infect. Med. 2024, 3, 100148. [Google Scholar] [CrossRef]
- Lee, E.K.; Tian, H.; Nakaya, H.I. Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks. Hum. Vaccin. Immunother. 2020, 16, 2690–2708. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.W.; Palomar, D.P.; Barr, I.; Poon, L.L.M.; Quadeer, A.A.; McKay, M.R. Seasonal antigenic prediction of influenza A H3N2 using machine learning. Nat. Commun. 2024, 15, 3833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Luo, Z.; Leonard, R.A.; Hamele, C.E.; Spreng, R.L.; Heaton, N.S. Administration of antigenically distinct influenza viral particle combinations as an influenza vaccine strategy. PLoS Pathog. 2025, 21, e1012878. [Google Scholar] [CrossRef]
- Verhoeven, D.; Sponseller, B.A.; Crowe, J.E., Jr.; Bangaru, S.; Webby, R.J.; Lee, B.M. Use of equine H3N8 hemagglutinin as a broadly protective influenza vaccine immunogen. npj Vaccines 2024, 9, 247. [Google Scholar] [CrossRef]
- Si, L.; Shen, Q.; Li, J.; Chen, L.; Shen, J.; Xiao, X.; Bai, H.; Feng, T.; Ye, A.Y.; Li, L.; et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol. 2022, 40, 1370–1377. [Google Scholar] [CrossRef]
- Maassab, H.F.; Francis, T., Jr.; Davenport, F.M.; Hennessy, A.V.; Minuse, E.; Anderson, G. Laboratory and clinical characteristics of attenuated strains of influenza virus. Bull. World Health Organ. 1969, 41, 589–594. [Google Scholar]
- Du, Y.; Xin, L.; Shi, Y.; Zhang, T.H.; Wu, N.C.; Dai, L.; Gong, D.; Brar, G.; Shu, S.; Luo, J.; et al. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 2018, 359, 290–296. [Google Scholar] [CrossRef]
- Wacheck, V.; Egorov, A.; Groiss, F.; Pfeiffer, A.; Fuereder, T.; Hoeflmayer, D.; Kundi, M.; Popow-Kraupp, T.; Redlberger-Fritz, M.; Mueller, C.A.; et al. A novel type of influenza vaccine: Safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J. Infect. Dis. 2010, 201, 354–362. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Ross, T.M. A single dose of inactivated influenza virus vaccine expressing COBRA hemagglutinin elicits broadly-reactive and long-lasting protection. PLoS ONE 2025, 20, e0308680. [Google Scholar] [CrossRef]
- Sadler, H.L.; Rijal, P.; Tan, T.K.; Townsend, A.R.M. A locally administered single-cycle influenza vaccine expressing a non-fusogenic stabilized hemagglutinin stimulates strong T-cell and neutralizing antibody immunity. J. Virol. 2025, 99, e0033124. [Google Scholar] [CrossRef]
- González-Domínguez, I.; Puente-Massaguer, E.; Abdeljawad, A.; Lai, T.Y.; Liu, Y.; Loganathan, M.; Francis, B.; Lemus, N.; Dolange, V.; Boza, M.; et al. Preclinical evaluation of a universal inactivated influenza B vaccine based on the mosaic hemagglutinin-approach. npj Vaccines 2024, 9, 222. [Google Scholar] [CrossRef]
- Rathnasinghe, R.; Chang, L.A.; Pearl, R.; Jangra, S.; Aspelund, A.; Hoag, A.; Yildiz, S.; Mena, I.; Sun, W.; Loganathan, M.; et al. Sequential immunization with chimeric hemagglutinin ΔNS1 attenuated influenza vaccines induces broad humoral and cellular immunity. npj Vaccines 2024, 9, 169. [Google Scholar] [CrossRef]
- Prokopenko, P.; Matyushenko, V.; Rak, A.; Stepanova, E.; Chistyakova, A.; Goshina, A.; Kudryavtsev, I.; Rudenko, L.; Isakova-Sivak, I. Truncation of NS1 Protein Enhances T Cell-Mediated Cross-Protection of a Live Attenuated Influenza Vaccine Virus Expressing Wild-Type Nucleoprotein. Vaccines 2023, 11, 501. [Google Scholar] [CrossRef]
- Oh, J.; Subbiah, J.; Kim, K.H.; Park, B.R.; Bhatnagar, N.; Garcia, K.R.; Liu, R.; Jung, Y.J.; Shin, C.H.; Seong, B.L.; et al. Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses. Virology 2022, 574, 37–46. [Google Scholar] [CrossRef]
- Stauft, C.B.; Yang, C.; Coleman, J.R.; Boltz, D.; Chin, C.; Kushnir, A.; Mueller, S. Live-attenuated H1N1 influenza vaccine candidate displays potent efficacy in mice and ferrets. PLoS ONE 2019, 14, e0223784. [Google Scholar] [CrossRef]
- Broadbent, A.J.; Santos, C.P.; Anafu, A.; Wimmer, E.; Mueller, S.; Subbarao, K. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine 2016, 34, 563–570. [Google Scholar] [CrossRef]
- Yang, C.; Skiena, S.; Futcher, B.; Mueller, S.; Wimmer, E. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 9481–9486. [Google Scholar] [CrossRef] [PubMed]
- Tudor Giurgea, L.; Han, A.; Czajkowski, L.; Ann Baus, H.; Mak, G.; Adao, K.; Bellayr, I.; Cervantes-Medina, A.; Gouzoulis, M.; Sherry, J.; et al. 593. Randomized, Double-Blinded, Placebo-Controlled, Phase 1 Study of the Safety of BPL-1357, A BPL-Inactivated, Whole-Virus, Universal Influenza Vaccine. Open Forum Infect. Dis. 2025, 12. [Google Scholar] [CrossRef]
- Boyoglu-Barnum, S.; Ellis, D.; Gillespie, R.A.; Hutchinson, G.B.; Park, Y.J.; Moin, S.M.; Acton, O.J.; Ravichandran, R.; Murphy, M.; Pettie, D.; et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021, 592, 623–628. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Joyce, M.G.; Gillespie, R.A.; Gallagher, J.R.; Andrews, S.F.; Yassine, H.M.; Wheatley, A.K.; Fisher, B.E.; Ambrozak, D.R.; Creanga, A.; et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 2019, 20, 362–372. [Google Scholar] [CrossRef]
- Georgiev, I.S.; Joyce, M.G.; Chen, R.E.; Leung, K.; McKee, K.; Druz, A.; Van Galen, J.G.; Kanekiyo, M.; Tsybovsky, Y.; Yang, E.S.; et al. Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infect. Dis. 2018, 4, 788–796. [Google Scholar] [CrossRef]
- Del Campo, J.; Bouley, J.; Chevandier, M.; Rousset, C.; Haller, M.; Indalecio, A.; Guyon-Gellin, D.; Le Vert, A.; Hill, F.; Djebali, S.; et al. OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza. Front. Immunol. 2021, 12, 678483. [Google Scholar] [CrossRef]
- Del Campo, J.; Pizzorno, A.; Djebali, S.; Bouley, J.; Haller, M.; Pérez-Vargas, J.; Lina, B.; Boivin, G.; Hamelin, M.E.; Nicolas, F.; et al. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. npj Vaccines 2019, 4, 4. [Google Scholar] [CrossRef]
- Portnoff, A.D.; Patel, N.; Massare, M.J.; Zhou, H.; Tian, J.H.; Zhou, B.; Shinde, V.; Glenn, G.M.; Smith, G. Influenza Hemagglutinin Nanoparticle Vaccine Elicits Broadly Neutralizing Antibodies against Structurally Distinct Domains of H3N2 HA. Vaccines 2020, 8, 99. [Google Scholar] [CrossRef]
- Smith, G.; Liu, Y.; Flyer, D.; Massare, M.J.; Zhou, B.; Patel, N.; Ellingsworth, L.; Lewis, M.; Cummings, J.F.; Glenn, G. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. Vaccine 2017, 35, 5366–5372. [Google Scholar] [CrossRef]
- Swart, M.; Kuipers, H.; Milder, F.; Jongeneelen, M.; Ritschel, T.; Tolboom, J.; Muchene, L.; van der Lubbe, J.; Izquierdo Gil, A.; Veldman, D.; et al. Enhancing breadth and durability of humoral immune responses in non-human primates with an adjuvanted group 1 influenza hemagglutinin stem antigen. npj Vaccines 2023, 8, 176. [Google Scholar] [CrossRef]
- Kil, L.P.; Vaneman, J.; van der Lubbe, J.E.M.; Czapska-Casey, D.; Tolboom, J.; Roozendaal, R.; Zahn, R.C.; Kuipers, H.; Solforosi, L. Restrained expansion of the recall germinal center response as biomarker of protection for influenza vaccination in mice. PLoS ONE 2019, 14, e0225063. [Google Scholar] [CrossRef] [PubMed]
- van der Lubbe, J.E.M.; Huizingh, J.; Verspuij, J.W.A.; Tettero, L.; Schmit-Tillemans, S.P.R.; Mooij, P.; Mortier, D.; Koopman, G.; Bogers, W.; Dekking, L.; et al. Mini-hemagglutinin vaccination induces cross-reactive antibodies in pre-exposed NHP that protect mice against lethal influenza challenge. npj Vaccines 2018, 3, 25. [Google Scholar] [CrossRef]
- van der Lubbe, J.E.M.; Verspuij, J.W.A.; Huizingh, J.; Schmit-Tillemans, S.P.R.; Tolboom, J.; Dekking, L.; Kwaks, T.; Brandenburg, B.; Meijberg, W.; Zahn, R.C.; et al. Mini-HA Is Superior to Full Length Hemagglutinin Immunization in Inducing Stem-Specific Antibodies and Protection Against Group 1 Influenza Virus Challenges in Mice. Front. Immunol. 2018, 9, 2350. [Google Scholar] [CrossRef]
- Chivukula, S.; Plitnik, T.; Tibbitts, T.; Karve, S.; Dias, A.; Zhang, D.; Goldman, R.; Gopani, H.; Khanmohammed, A.; Sarode, A.; et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. npj Vaccines 2021, 6, 153. [Google Scholar] [CrossRef]
- Moderna. Moderna Announces Positive Phase 3 Results for Seasonal Influenza Vaccine. Available online: https://investors.modernatx.com/news/news-details/2025/Moderna-Announces-Positive-Phase-3-Results-for-Seasonal-Influenza-Vaccine/default.aspx (accessed on 30 June 2025).
- Rudman Spergel, A.K.; Wu, I.; Deng, W.; Cardona, J.; Johnson, K.; Espinosa-Fernandez, I.; Sinkiewicz, M.; Urdaneta, V.; Carmona, L.; Schaefers, K.; et al. Immunogenicity and Safety of Influenza and COVID-19 Multicomponent Vaccine in Adults ≥50 Years: A Randomized Clinical Trial. JAMA 2025, 333, 1977–1987. [Google Scholar] [CrossRef]
- GSK. GSK Announces Positive Headline Data from Phase II Seasonal Influenza mRNA Vaccine Programme. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-announces-positive-headline-data-from-phase-ii-seasonal-influenza-mrna-vaccine-programme/ (accessed on 12 September 2024).
- Hsu, D.; Jayaraman, A.; Pucci, A.; Joshi, R.; Mancini, K.; Chen, H.; Koslovsky, K.; Mao, X.; Choi, A.; Henry, C.; et al. Next-Generation mRNA-Based Seasonal Influenza Vaccines Including Additional A/H3N2 Strains: Phase 1/2 Trial Findings in Adults Aged 50–75 Years. Available online: https://s29.q4cdn.com/435878511/files/doc_presentations/2024/Apr/27/mrna-1011-1012_p101_ia_poster-70-copy.pdf (accessed on 27 April 2024).
- Chang, C.; Patel, H.; Ferrari, A.; Scalzo, T.; Petkov, D.; Xu, H.; Rossignol, E.; Palladino, G.; Wen, Y. sa-mRNA influenza vaccine raises a higher and more durable immune response than mRNA vaccine in preclinical models. Vaccine 2025, 51, 126883. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.; Chang, C.; Rathnasinghe, R.; Rossignol, E.; Zhang, Y.; Ferrari, A.; Patel, H.; Huang, Y.; Sanchez Guillen, M.; Scalzo, T.; et al. Self-amplifying mRNA seasonal influenza vaccines elicit mouse neutralizing antibody and cell-mediated immunity and protect ferrets. npj Vaccines 2023, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Music, N.; Cheung, M.; Rossignol, E.; Bedi, S.; Patel, H.; Safari, M.; Lee, C.; Otten, G.R.; Settembre, E.C.; et al. Self-amplifying mRNA bicistronic influenza vaccines raise cross-reactive immune responses in mice and prevent infection in ferrets. Mol. Ther. Methods Clin. Dev. 2022, 27, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Anderer, S. Combo COVID-19 and Flu mRNA Vaccine Falls Short of Total Flu Protection. JAMA 2024. [Google Scholar] [CrossRef]
- Rudman Spergel, A.K.; Lee, I.T.; Koslovsky, K.; Schaefers, K.; Avanesov, A.; Logan, D.K.; Hemmersmeier, J.; Ensz, D.; Stadlbauer, D.; Hu, B.; et al. Immunogenicity and safety of mRNA-based seasonal influenza vaccines encoding hemagglutinin and neuraminidase. Nat. Commun. 2025, 16, 5933. [Google Scholar] [CrossRef]
- Pfizer. A Study to Evaluate a Modified RNA Vaccine Against Influenza in Adults 18 Years of Age or Older. Available online: https://clinicaltrials.gov/study/NCT05540522?tab=results (accessed on 8 May 2025).
- Bliss, C.M.; Freyn, A.W.; Caniels, T.G.; Leyva-Grado, V.H.; Nachbagauer, R.; Sun, W.; Tan, G.S.; Gillespie, V.L.; McMahon, M.; Krammer, F.; et al. A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol. Ther. 2022, 30, 2024–2047. [Google Scholar] [CrossRef]
- Zhou, P.; Qiu, T.; Wang, X.; Yang, X.; Shi, H.; Zhu, C.; Dai, W.; Xing, M.; Zhang, X.; Xu, J.; et al. One HA stalk topping multiple heads as a novel influenza vaccine. Emerg. Microbes Infect. 2024, 13, 2290838. [Google Scholar] [CrossRef]
- Wiggins, K.B.; Winston, S.M.; Reeves, I.L.; Gaevert, J.; Spence, Y.; Brimble, M.A.; Livingston, B.; Morton, C.L.; Thomas, P.G.; Sant, A.J.; et al. rAAV expressing a COBRA-designed influenza hemagglutinin generates a protective and durable adaptive immune response with a single dose. J. Virol. 2024, 98, e0078124. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Guo, X.; Jiang, Y.; Jin, L.; Chu, Q.; Shan, X.; Zhang, L.; Han, R.; Zhai, C.; et al. Broad Mucosal and Systemic Immunity in Mice Induced by Intranasal Booster With a Novel Recombinant Adenoviral Based Vaccine Protects Against Divergent Influenza A Virus. J. Med. Virol. 2025, 97, e70326. [Google Scholar] [CrossRef]
- Niu, Y.; Yan, Y.; Hu, Y.; Yang, X.; Shi, H.; Zhou, P.; Zhu, C.; Xing, M.; Zhou, D.; Wang, X. A novel tetravalent influenza vaccine based on one chimpanzee adenoviral vector. Vaccine 2025, 53, 126959. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Sayedahmed, E.E.; Alhashimi, M.; Elkashif, A.; Gairola, V.; Murala, M.S.T.; Sambhara, S.; Mittal, S.K. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines 2025, 13, 95. [Google Scholar] [CrossRef]
- Pekarek, M.J.; Madapong, A.; Wiggins, J.; Weaver, E.A. Adenoviral-Vectored Multivalent Vaccine Provides Durable Protection Against Influenza B Viruses from Victoria-like and Yamagata-like Lineages. Int. J. Mol. Sci. 2025, 26, 1538. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chang, J. Cross-protective efficacy and safety of an adenovirus-based universal influenza vaccine expressing nucleoprotein, hemagglutinin, and the ectodomain of matrix protein 2. Vaccine 2024, 42, 3505–3513. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.B.; Hu, M.J.; Guo, T.K.; Yang, Y.L.; Zhang, R.R.; Huang, J.S.; Yu, L.J.; Shi, C.W.; Yang, G.L.; Huang, H.B.; et al. The protective effect of intranasal immunization with influenza virus recombinant adenovirus vaccine on mucosal and systemic immune response. Int. Immunopharmacol. 2024, 130, 111710. [Google Scholar] [CrossRef]
- Malouli, D.; Tiwary, M.; Gilbride, R.M.; Morrow, D.W.; Hughes, C.M.; Selseth, A.; Penney, T.; Castanha, P.; Wallace, M.; Yeung, Y.; et al. Cytomegalovirus vaccine vector-induced effector memory CD4 + T cells protect cynomolgus macaques from lethal aerosolized heterologous avian influenza challenge. Nat. Commun. 2024, 15, 6007. [Google Scholar] [CrossRef]
- Vatzia, E.; Paudyal, B.; Dema, B.; Carr, B.V.; Sedaghat-Rostami, E.; Gubbins, S.; Sharma, B.; Moorhouse, E.; Morris, S.; Ulaszewska, M.; et al. Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig. npj Vaccines 2024, 9, 188. [Google Scholar] [CrossRef]
- Olukitibi, T.A.; Ao, Z.; Azizi, H.; Ouyang, M.J.; Omole, T.; McKinnon, L.; Kobasa, D.; Coombs, K.; Kobinger, G.; Yao, X. UV-Inactivated rVSV-M2e-Based Influenza Vaccine Protected against the H1N1 Influenza Challenge. Front. Biosci. 2024, 29, 195. [Google Scholar] [CrossRef]
- Misplon, J.A.; Lo, C.Y.; Crabbs, T.A.; Price, G.E.; Epstein, S.L. Adenoviral-vectored universal influenza vaccines administered intranasally reduce lung inflammatory responses upon viral challenge 15 months post-vaccination. J. Virol. 2023, 97, e0067423. [Google Scholar] [CrossRef]
- Langenmayer, M.C.; Luelf-Averhoff, A.T.; Marr, L.; Jany, S.; Freudenstein, A.; Adam-Neumair, S.; Tscherne, A.; Fux, R.; Rojas, J.J.; Blutke, A.; et al. Newly Designed Poxviral Promoters to Improve Immunogenicity and Efficacy of MVA-NP Candidate Vaccines against Lethal Influenza Virus Infection in Mice. Pathogens 2023, 12, 867. [Google Scholar] [CrossRef]
- Bull, M.B.; Ma, F.N.; Perera, L.P.; Poon, L.L.; Valkenburg, S.A. Early vaccine-mediated strain-specific cytokine imbalance induces mild immunopathology during influenza infection. Immunol. Cell Biol. 2023, 101, 514–524. [Google Scholar] [CrossRef]
- Mintaev, R.R.; Glazkova, D.V.; Orlova, O.V.; Bogoslovskaya, E.V.; Shipulin, G.A. Development of a Universal Epitope-Based Influenza Vaccine and Evaluation of Its Effectiveness in Mice. Vaccines 2022, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, T.; Wang, L.; Yang, Z.; Luo, C.; Li, M.; Luo, H.; Sun, C.; Yan, H.; Shu, Y. A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses. npj Vaccines 2023, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.J.; Carreño, J.M.; Bielak, D.; Arsiwala, A.; Altomare, C.G.; Varner, C.; Rosen-Cheriyan, T.; Bajic, G.; Krammer, F.; Kane, R.S. Nanovaccines Displaying the Influenza Virus Hemagglutinin in an Inverted Orientation Elicit an Enhanced Stalk-Directed Antibody Response. Adv. Healthc. Mater. 2023, 12, e2202729. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Kang, H.J.; Eom, G.D.; Yoon, K.W.; Chu, K.B.; Quan, F.S. Vaccine efficacy induced by 2020-2021 seasonal influenza-derived H3N1 virus-like particles co-expressing M2e5x or N2. Vaccine 2025, 43, 126530. [Google Scholar] [CrossRef]
- Raha, J.R.; Kim, K.H.; Tien Le, C.T.; Bhatnagar, N.; Liu, R.; Grovenstein, P.; Pal, S.S.; Yeasmin, M.; Shin, C.H.; Wang, B.Z.; et al. A strategy of enhancing the protective efficacy of seasonal influenza vaccines by providing additional immunity to neuraminidase and M2e. Virology 2025, 606, 110510. [Google Scholar] [CrossRef]
- Kang, H.; Martinez, M.R.; Aves, K.L.; Okholm, A.K.; Wan, H.; Chabot, S.; Malik, T.; Sander, A.F.; Daniels, R. Capsid virus-like particle display improves recombinant influenza neuraminidase antigen stability and immunogenicity in mice. iScience 2024, 27, 110038. [Google Scholar] [CrossRef]
- Thrane, S.; Aves, K.L.; Uddbäck, I.E.M.; Janitzek, C.M.; Han, J.; Yang, Y.R.; Ward, A.B.; Theander, T.G.; Nielsen, M.A.; Salanti, A.; et al. A Vaccine Displaying a Trimeric Influenza-A HA Stem Protein on Capsid-Like Particles Elicits Potent and Long-Lasting Protection in Mice. Vaccines 2020, 8, 389. [Google Scholar] [CrossRef]
- Guzman Ruiz, L.; Zollner, A.M.; Hoxie, I.; Küchler, J.; Hausjell, C.; Mesurado, T.; Krammer, F.; Jungbauer, A.; Pereira Aguilar, P.; Klausberger, M.; et al. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024, 42, 126270. [Google Scholar] [CrossRef]
- Chiba, S.; Maemura, T.; Loeffler, K.; Frey, S.J.; Gu, C.; Biswas, A.; Hatta, M.; Kawaoka, Y.; Kane, R.S. Single immunization with an influenza hemagglutinin nanoparticle-based vaccine elicits durable protective immunity. Bioeng. Transl. Med. 2024, 9, e10689. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, Z.; Lin, X.; Wang, L.; Zhu, H.; Su, Z.; Zhang, S. In situ bio-mineralized Mn nanoadjuvant enhances anti-influenza immunity of recombinant virus-like particle vaccines. J. Control. Release 2024, 368, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Liu, H.; Zhu, X.; Chen, Y.; Zhou, J.; Chai, S.; Wang, A.; Zhang, G. Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses. Carbohydr. Polym. 2024, 328, 121689. [Google Scholar] [CrossRef] [PubMed]
- Badruzzaman, A.T.M.; Cheng, Y.C.; Sung, W.C.; Lee, M.S. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines 2024, 12, 667. [Google Scholar] [CrossRef] [PubMed]
- Park, B.R.; Bommireddy, R.; Chung, D.H.; Kim, K.H.; Subbiah, J.; Jung, Y.J.; Bhatnagar, N.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J.C.; et al. Hemagglutinin virus-like particles incorporated with membrane-bound cytokine adjuvants provide protection against homologous and heterologous influenza virus challenge in aged mice. Immun. Ageing 2023, 20, 20. [Google Scholar] [CrossRef]
- Shi, L.; Long, Y.; Zhu, Y.; Dong, J.; Chen, Y.; Feng, H.; Sun, X. VLPs containing stalk domain and ectodomain of matrix protein 2 of influenza induce protection in mice. Virol. J. 2023, 20, 38. [Google Scholar] [CrossRef]
- Braz Gomes, K.; Vijayanand, S.; Bagwe, P.; Menon, I.; Kale, A.; Patil, S.; Kang, S.M.; Uddin, M.N.; D’Souza, M.J. Vaccine-Induced Immunity Elicited by Microneedle Delivery of Influenza Ectodomain Matrix Protein 2 Virus-like Particle (M2e VLP)-Loaded PLGA Nanoparticles. Int. J. Mol. Sci. 2023, 24, 10612. [Google Scholar] [CrossRef]
- Pliasas, V.C.; Menne, Z.; Aida, V.; Yin, J.H.; Naskou, M.C.; Neasham, P.J.; North, J.F.; Wilson, D.; Horzmann, K.A.; Jacob, J.; et al. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front. Immunol. 2022, 13, 915364. [Google Scholar] [CrossRef]
- Bommireddy, R.; Stone, S.; Bhatnagar, N.; Kumari, P.; Munoz, L.E.; Oh, J.; Kim, K.H.; Berry, J.T.L.; Jacobsen, K.M.; Jaafar, L.; et al. Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines 2022, 10, 944. [Google Scholar] [CrossRef]
- Khanefard, N.; Sapavee, S.; Akeprathumchai, S.; Mekvichitsaeng, P.; Poomputsa, K. Production of Neuraminidase Virus Like Particles by Stably Transformed Insect Cells: A Simple Process for NA-Based Influenza Vaccine Development. Mol. Biotechnol. 2022, 64, 1409–1418. [Google Scholar] [CrossRef]
- Nerome, K.; Imagawa, T.; Sugita, S.; Arasaki, Y.; Maegawa, K.; Kawasaki, K.; Tanaka, T.; Watanabe, S.; Nishimura, H.; Suzuki, T.; et al. The potential of a universal influenza virus-like particle vaccine expressing a chimeric cytokine. Life Sci. Alliance 2023, 6. [Google Scholar] [CrossRef]
- Heinimäki, S.; Lampinen, V.; Tamminen, K.; Hankaniemi, M.M.; Malm, M.; Hytönen, V.P.; Blazevic, V. Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology 2022, 566, 89–97. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, C.; Wei, L.; Kim, J.K.; Wang, B.Z. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol. Ther. 2025, 33, 485–498. [Google Scholar] [CrossRef]
- Heng, W.T.; Lim, H.X.; Tan, K.O.; Poh, C.L. Validation of Multi-epitope Peptides Encapsulated in PLGA Nanoparticles Against Influenza A Virus. Pharm. Res. 2023, 40, 1999–2025. [Google Scholar] [CrossRef]
- Gao, Y.; Han, S.; Lu, F.; Liu, Q.; Yang, J.; Wang, W.; Wang, Y.; Zhang, J.; Ju, R.; Shen, X.; et al. Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nanoadjuvant Enhances the Immunity and Cross-Protection of an NM2e-Based Universal Influenza Vaccine. ACS Nano 2024, 18, 12905–12916. [Google Scholar] [CrossRef] [PubMed]
- Saouaf, O.M.; Ou, B.S.; Song, Y.E.; Carter, J.J.; Yan, J.; Jons, C.K.; Barnes, C.O.; Appel, E.A. Sustained Vaccine Exposure Elicits More Rapid, Consistent, and Broad Humoral Immune Responses to Multivalent Influenza Vaccines. Adv. Sci. 2025, e2404498. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Pho, T.; Bhatnagar, N.; Mai, L.D.; Rodriguez-Otero, M.R.; Pal, S.S.; Le, C.T.T.; Jenison, S.E.; Li, C.; May, G.A.; et al. Multilayer Adjuvanted Influenza Protein Nanoparticles Improve Intranasal Delivery and Antigen-Specific Immunity. ACS Nano 2025, 19, 7005–7025. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Nie, J.; Liu, Z.; Chang, Y.; Wei, Y.; Yao, X.; Sun, L.; Liu, X.; Liu, Q.; Liang, X.; et al. Induction of enhanced stem-directed neutralizing antibodies by HA2-16 ferritin nanoparticles with H3 influenza virus boost. Nanoscale Adv. 2025, 7, 2011–2020. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Peng, C.; Guo, S.; Wang, B.; Chen, L.; Wang, Y.; Tang, H.; Liu, L.; Pan, Q.; et al. Cross-protection against homo and heterologous influenza viruses via intranasal administration of an HA chimeric multiepitope nanoparticle vaccine. J. Nanobiotechnol. 2025, 23, 77. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Z.; Zhang, M.; Shang, B.; Li, Z.; Zhao, M.; Tang, Q.; Tang, Q.; Luo, J. Immunogenicity and protection of recombinant self-assembling ferritin-hemagglutinin nanoparticle influenza vaccine in mice. Clin. Exp. Vaccine Res. 2025, 14, 23–34. [Google Scholar] [CrossRef]
- Lopez, C.E.; Zacharias, Z.R.; Ross, K.A.; Narasimhan, B.; Waldschmidt, T.J.; Legge, K.L. Polyanhydride nanovaccine against H3N2 influenza A virus generates mucosal resident and systemic immunity promoting protection. npj Vaccines 2024, 9, 96. [Google Scholar] [CrossRef]
- Liu, Z.; Kabir, M.T.; Chen, S.; Zhang, H.; Wakim, L.M.; Rehm, B.H.A. Intranasal Epitope-Polymer Vaccine Lodges Resident Memory T Cells Protecting Against Influenza Virus. Adv. Healthc. Mater. 2024, 13, e2304188. [Google Scholar] [CrossRef]
- Madapong, A.; Petro-Turnquist, E.M.; Webby, R.J.; McCormick, A.A.; Weaver, E.A. Immunity and Protective Efficacy of a Plant-Based Tobacco Mosaic Virus-like Nanoparticle Vaccine against Influenza a Virus in Mice. Vaccines 2024, 12, 1100. [Google Scholar] [CrossRef]
- St-Louis, P.; Martin, C.; Khatri, V.; Bourgault, S.; Archambault, D. Intranasal delivery of a self-adjuvanted nanovaccine composed of the curli filaments and the highly conserved M2e epitope confers protection against influenza a virus in mice. Vaccine 2024, 42, 2144–2149. [Google Scholar] [CrossRef]
- Pascha, M.N.; Ballegeer, M.; Roelofs, M.C.; Meuris, L.; Albulescu, I.C.; van Kuppeveld, F.J.M.; Hurdiss, D.L.; Bosch, B.J.; Zeev-Ben-Mordehai, T.; Saelens, X.; et al. Nanoparticle display of neuraminidase elicits enhanced antibody responses and protection against influenza A virus challenge. npj Vaccines 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Na, W.; Lim, J.W.; Park, C.; Lee, S.; Yeom, M.; Ga, E.; Hwang, J.; Moon, S.; Jeong, D.G.; et al. Self-Assembled Nanostructures Presenting Repetitive Arrays of Subunit Antigens for Enhanced Immune Response. ACS Nano 2024, 18, 4847–4861. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Zhu, W.; Dong, C.; Wei, L.; Ma, Y.; Denning, T.; Kang, S.M.; Wang, B.Z. Double-layered protein nanoparticles conjugated with truncated flagellin induce improved mucosal and systemic immune responses in mice. Nanoscale Horiz. 2024, 9, 2016–2030. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ma, Y.; Zhu, W.; Wang, Y.; Kim, J.; Wei, L.; Gill, H.S.; Kang, S.M.; Wang, B.Z. Influenza immune imprinting synergizes PEI-HA/CpG nanoparticle vaccine protection against heterosubtypic infection in mice. Vaccine 2024, 42, 111–119. [Google Scholar] [CrossRef]
- Nie, J.; Zhou, Y.; Ding, F.; Liu, X.; Yao, X.; Xu, L.; Chang, Y.; Li, Z.; Wang, Q.; Zhan, L.; et al. Self-adjuvant multiepitope nanovaccine based on ferritin induced long-lasting and effective mucosal immunity against H3N2 and H1N1 viruses in mice. Int. J. Biol. Macromol. 2024, 259, 129259. [Google Scholar] [CrossRef]
- Braz Gomes, K.; Zhang, Y.N.; Lee, Y.Z.; Eldad, M.; Lim, A.; Ward, G.; Auclair, S.; He, L.; Zhu, J. Single-Component Multilayered Self-Assembling Protein Nanoparticles Displaying Extracellular Domains of Matrix Protein 2 as a Pan-influenza A Vaccine. ACS Nano 2023, 17, 23545–23567. [Google Scholar] [CrossRef]
- Sia, Z.R.; Roy, J.; Huang, W.C.; Song, Y.; Zhou, S.; Luo, Y.; Li, Q.; Arpin, D.; Kutscher, H.L.; Ortega, J.; et al. Adjuvanted nanoliposomes displaying six hemagglutinins and neuraminidases as an influenza virus vaccine. Cell Rep. Med. 2024, 5, 101433. [Google Scholar] [CrossRef]
- Wilks, L.R.; Joshi, G.; Rychener, N.; Gill, H.S. Generation of Broad Protection against Influenza with Di-Tyrosine-Cross-Linked M2e Nanoclusters. ACS Infect. Dis. 2024, 10, 1552–1560. [Google Scholar] [CrossRef]
- Park, J.; Champion, J.A. Development of Self-Assembled Protein Nanocage Spatially Functionalized with HA Stalk as a Broadly Cross-Reactive Influenza Vaccine Platform. ACS Nano 2023, 17, 25045–25060. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Park, J.; Pho, T.; Wei, L.; Dong, C.; Kim, J.; Ma, Y.; Champion, J.A.; Wang, B.Z. ISCOMs/MPLA-Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross-Protection in Mice. Small 2023, 19, e2301801. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, C.; Wang, X.; Guo, P.; Feng, H.; Zhang, X.; Zhang, W.; Gu, C.; Zhu, J.; Wen, G.; et al. T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. Antiviral Res. 2023, 217, 105688. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.H.; Huang, P.H.; Lin, L.C.; Yao, B.Y.; Liao, W.T.; Pai, C.H.; Liu, Y.H.; Chen, H.W.; Hu, C.J. Lymph Node Follicle-Targeting STING Agonist Nanoshells Enable Single-Shot M2e Vaccination for Broad and Durable Influenza Protection. Adv Sci. 2023, 10, e2206521. [Google Scholar] [CrossRef]
- McCraw, D.M.; Myers, M.L.; Gulati, N.M.; Prabhakaran, M.; Brand, J.; Andrews, S.; Gallagher, J.R.; Maldonado-Puga, S.; Kim, A.J.; Torian, U.; et al. Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes. PLoS Pathog. 2023, 19, e1011514. [Google Scholar] [CrossRef]
- Xu, S.; Lan, H.; Teng, Q.; Li, X.; Jin, Z.; Qu, Y.; Li, J.; Zhang, Q.; Kang, H.; Yin, T.H.; et al. An immune-enhanced multivalent DNA nanovaccine to prevent H7 and H9 avian influenza virus in mice. Int. J. Biol. Macromol. 2023, 251, 126286. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Dabaghian, M. Nasal Administration of M2e/CpG-ODN Encapsulated in N-Trimethyl Chitosan (TMC) Significantly Increases Specific Immune Responses in a Mouse Model. Arch. Razi Inst. 2022, 77, 2259–2268. [Google Scholar]
- Zhu, H.; Li, X.; Ren, X.; Chen, H.; Qian, P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022, 40, 6352–6361. [Google Scholar] [CrossRef]
- Kar, U.; Khaleeq, S.; Garg, P.; Bhat, M.; Reddy, P.; Vignesh, V.S.; Upadhyaya, A.; Das, M.; Chakshusmathi, G.; Pandey, S.; et al. Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens. Front. Immunol. 2022, 13, 890622. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, Y.; Chen, J.; Jin, S.; Shan, Y. A biepitope, adjuvant-free, self-assembled influenza nanovaccine provides cross-protection against H3N2 and H1N1 viruses in mice. Nano Res. 2022, 15, 8304–8314. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, S.; Jin, S.; Pan, Y.; Shi, Y.; Kong, W.; Shan, Y. A self-assembling nanoparticle vaccine targeting the conserved epitope of influenza virus hemagglutinin stem elicits a cross-protective immune response. Nanoscale 2022, 14, 3250–3260. [Google Scholar] [CrossRef]
- Zykova, A.A.; Blokhina, E.A.; Stepanova, L.A.; Shuklina, M.A.; Tsybalova, L.M.; Kuprianov, V.V.; Ravin, N.V. Nanoparticles based on artificial self-assembling peptide and displaying M2e peptide and stalk HA epitopes of influenza A virus induce potent humoral and T-cell responses and protect against the viral infection. Nanomedicine 2022, 39, 102463. [Google Scholar] [CrossRef]
- Omokanye, A.; Ong, L.C.; Lebrero-Fernandez, C.; Bernasconi, V.; Schön, K.; Strömberg, A.; Bemark, M.; Saelens, X.; Czarnewski, P.; Lycke, N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol. 2022, 15, 717–729. [Google Scholar] [CrossRef]
- Allen, J.D.; Zhang, X.; Medina, J.M.; Thomas, M.H.; Lynch, A.; Nelson, R.; Aguirre, J.; Ross, T.M. Computationally Optimized Hemagglutinin Proteins Adjuvanted with Infectimune(®) Generate Broadly Protective Antibody Responses in Mice and Ferrets. Vaccines 2024, 12, 1364. [Google Scholar] [CrossRef] [PubMed]
- Skarlupka, A.L.; Zhang, X.; Blas-Machado, U.; Sumner, S.F.; Ross, T.M. Multi-Influenza HA Subtype Protection of Ferrets Vaccinated with an N1 COBRA-Based Neuraminidase. Viruses 2023, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, H.; Hendy, D.A.; Bachelder, E.M.; Ainslie, K.M.; Ross, T.M. Multi-COBRA hemagglutinin formulated with cGAMP microparticles elicits protective immune responses against influenza viruses. mSphere 2024, 9, e0016024. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Luo, J.; Guo, W.; Li, L.; Pu, S.; Dong, L.; Zhu, W.; Gao, R. The Development of a Novel Broad-Spectrum Influenza Polypeptide Vaccine Based on Multi-Epitope Tandem Sequences. Vaccines 2025, 13, 81. [Google Scholar] [CrossRef]
- Gu, C.; Babujee, L.; Pattinson, D.; Chiba, S.; Jester, P.; Maemura, T.; Neumann, G.; Kawaoka, Y. Development of broadly protective influenza B vaccines. npj Vaccines 2025, 10, 2. [Google Scholar] [CrossRef]
- Kim, K.H.; Bhatnagar, N.; Subbiah, J.; Liu, R.; Pal, S.S.; Raha, J.R.; Grovenstein, P.; Shin, C.H.; Wang, B.Z.; Kang, S.M. Cross-protection against influenza viruses by chimeric M2e-H3 stalk protein or multi-subtype neuraminidase plus M2e virus-like particle vaccine in ferrets. Virology 2024, 595, 110097. [Google Scholar] [CrossRef]
- Shuklina, M.; Stepanova, L.; Ozhereleva, O.; Kovaleva, A.; Vidyaeva, I.; Korotkov, A.; Tsybalova, L. Inserting CTL Epitopes of the Viral Nucleoprotein to Improve Immunogenicity and Protective Efficacy of Recombinant Protein against Influenza A Virus. Biology 2024, 13, 801. [Google Scholar] [CrossRef]
- Cortés, G.; Ustyugova, I.; Farrell, T.; McDaniel, C.; Britain, C.; Romano, C.; N’Diaye, S.; Zheng, L.; Ferdous, M.; Iampietro, J.; et al. Boosting neuraminidase immunity in the presence of hemagglutinin with the next generation of influenza vaccines. npj Vaccines 2024, 9, 228. [Google Scholar] [CrossRef]
- Liu, X.; Luo, C.; Yang, Z.; Zhao, T.; Yuan, L.; Xie, Q.; Liao, Q.; Liao, X.; Wang, L.; Yuan, J.; et al. A Recombinant Mosaic HAs Influenza Vaccine Elicits Broad-Spectrum Immune Response and Protection of Influenza a Viruses. Vaccines 2024, 12, 1008. [Google Scholar] [CrossRef]
- Chiba, S.; Kong, H.; Neumann, G.; Kawaoka, Y. Influenza H3 hemagglutinin vaccine with scrambled immunodominant epitopes elicits antibodies directed toward immunosubdominant head epitopes. mBio 2023, 14, e0062223. [Google Scholar] [CrossRef] [PubMed]
- Rikhi, N.; Sei, C.J.; Rao, M.; Schuman, R.F.; Kroscher, K.A.; Matyas, G.R.; Muema, K.; Lange, C.; Assiaw-Dufu, A.; Hussin, E.; et al. Unconjugated Multi-Epitope Peptides Adjuvanted with ALFQ Induce Durable and Broadly Reactive Antibodies to Human and Avian Influenza Viruses. Vaccines 2023, 11, 1468. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Hosseini, S.M.; Farahmand, B.; Saleh, M.; Shokouhi, H.; Torabi, A.; Fotouhi, F. Induction of Homosubtypic and Heterosubtypic Immunity to Influenza Viruses Using a Conserved Internal and External Proteins. Curr. Microbiol. 2023, 80, 212. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Xin, J.; Yang, K.; Guo, S.; Wang, Q.; Gao, Y.; Chen, H.; Ge, J.; Lu, Z.; Zhang, L.; et al. A Hemagglutinin Stem Vaccine Designed Rationally by AlphaFold2 Confers Broad Protection against Influenza B Infection. Viruses 2022, 14, 1305. [Google Scholar] [CrossRef]
- Guo, T.; Xiao, J.; Li, L.; Xu, W.; Yuan, Y.; Yin, Y.; Zhang, X. rM2e-ΔPly protein immunization induces protection against influenza viruses and its co-infection with Streptococcus pneumoniae in mice. Mol. Immunol. 2022, 152, 86–96. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Zeng, X.; Ren, W.; Liao, P.; Zhu, B. Protective efficacy of a universal influenza mRNA vaccine against the challenge of H1 and H5 influenza A viruses in mice. mLife 2023, 2, 308–316. [Google Scholar] [CrossRef]
- Arevalo, C.P.; Bolton, M.J.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.G.; Pardi, N.; Drapeau, E.M.; Parkhouse, K.; et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef]
- Hinke, D.M.; Anderson, A.M.; Katta, K.; Laursen, M.F.; Tesfaye, D.Y.; Werninghaus, I.C.; Angeletti, D.; Grødeland, G.; Bogen, B.; Braathen, R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat. Commun. 2024, 15, 850. [Google Scholar] [CrossRef]
- Grovenstein, P.; Bhatnagar, N.; Kim, K.H.; Pal, S.S.; Le, C.T.T.; Raha, J.R.; Liu, R.; Shin, C.H.; Park, B.R.; Du, L.; et al. Influenza 5xM2e mRNA lipid nanoparticle vaccine confers broad immunity and significantly enhances the efficacy of inactivated split vaccination when coadministered. J. Immunol. 2025, 214, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Mai, Q.; Zhao, Y.; Liu, X.; Cui, M.; Li, M.; Chen, Y.; Shu, Y.; Gan, J.; Pan, W.; et al. Mosaic neuraminidase-based vaccine induces antigen-specific T cell responses against homologous and heterologous influenza viruses. Antiviral Res. 2024, 230, 105978. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Zhong, C.; Cao, R.; Liu, S.; Qin, Z.; Liu, L.; Zhai, Y.; Luo, W.; Lian, Y.; Zhang, M.; et al. CircRNA based multivalent neuraminidase vaccine induces broad protection against influenza viruses in mice. npj Vaccines 2024, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Ross, T.M. mRNA vaccines encoding computationally optimized hemagglutinin elicit protective antibodies against future antigenically drifted H1N1 and H3N2 influenza viruses isolated between 2018-2020. Front. Immunol. 2024, 15, 1334670. [Google Scholar] [CrossRef]
- Reneer, Z.B.; Bergeron, H.C.; Reynolds, S.; Thornhill-Wadolowski, E.; Feng, L.; Bugno, M.; Truax, A.D.; Tripp, R.A. mRNA vaccines encoding influenza virus hemagglutinin (HA) elicits immunity in mice from influenza A virus challenge. PLoS ONE 2024, 19, e0297833. [Google Scholar] [CrossRef]
- Hendy, D.A.; Ma, Y.; Dixon, T.A.; Murphy, C.T.; Pena, E.S.; Carlock, M.A.; Ross, T.M.; Bachelder, E.M.; Ainslie, K.M.; Fenton, O.S. Polymeric cGAMP microparticles affect the immunogenicity of a broadly active influenza mRNA lipid nanoparticle vaccine. J. Control. Release 2024, 372, 168–175. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, Z.; Chuai, Z.; Li, C.; Chang, L.; Sun, F.; Cao, R.; Yu, H.; Xiao, R.; Lu, S.; et al. A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology 2024, 596, 110125. [Google Scholar] [CrossRef]
- Cunliffe, R.F.; Stirling, D.C.; Razzano, I.; Murugaiah, V.; Montomoli, E.; Kim, S.; Wane, M.; Horton, H.; Caproni, L.J.; Tregoning, J.S. Optimizing a linear ‘Doggybone’ DNA vaccine for influenza virus through the incorporation of DNA targeting sequences and neuraminidase antigen. Discov. Immunol. 2024, 3, kyad030. [Google Scholar] [CrossRef]
- Di, Y.; Zhang, C.; Ren, Z.; Jiang, R.; Tang, J.; Yang, S.; Wang, Z.; Yu, T.; Zhang, T.; Yu, Z.; et al. The self-assembled nanoparticle-based multi-epitope influenza mRNA vaccine elicits protective immunity against H1N1 and B influenza viruses in mice. Front. Immunol. 2024, 15, 1483720. [Google Scholar] [CrossRef]
- Kackos, C.M.; DeBeauchamp, J.; Davitt, C.J.H.; Lonzaric, J.; Sealy, R.E.; Hurwitz, J.L.; Samsa, M.M.; Webby, R.J. Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. npj Vaccines 2023, 8, 157. [Google Scholar] [CrossRef]
- Flynn, J.A.; Weber, T.; Cejas, P.J.; Cox, K.S.; Touch, S.; Austin, L.A.; Ou, Y.; Citron, M.P.; Luo, B.; Gindy, M.E.; et al. Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates. Vaccine 2022, 40, 4412–4423. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, L.; Dong, C.; Wang, Y.; Kim, J.; Ma, Y.; Gonzalez, G.X.; Wang, B.Z. cGAMP-adjuvanted multivalent influenza mRNA vaccines induce broadly protective immunity through cutaneous vaccination in mice. Mol. Ther. Nucleic Acids 2022, 30, 421–437. [Google Scholar] [CrossRef]
Targets | Structure and Functions | Immune Responses |
---|---|---|
HA | Type I transmembrane glycoproteins | HA-conjugated antibodies |
Homotrimeric forms | Anti-HA head antibodies: strain-specific | |
Monomers are divided into head and stem | Anti-HA stem antibodies: cross-protection, ADCC | |
Binds to sialic acid receptors | ||
NA | Type II transmembrane glycoproteins | NA-conjugated antibodies |
Homotetrameric forms | Anti-NA antibody: cross-protection | |
Promoting the release of viruses | ||
M2 | Type III transmembrane proteins | M2e-conjugated antibodies |
Homotetrameric forms | Anti-M2e antibodies: cross-protection, ADCC | |
Guiding viruses into and out of the cell | ||
NP, M1 | Internal proteins of the virus | Cross-protection |
M1: the formation of viral particles | T-cell response | |
NP: viral replication-related |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | hlHA IIV | Duke University (US) | Whole virus proteins based on HA stem | Immunofocusing strategy and multi-target combination strategy | [53] |
2025 | H1, H3 COBRA IIV | University of Georgia (US) and Cleveland Clinic (US) | Whole virus proteins based on HA | COBRA strategy and multi-target combination strategy | [59] |
2025 | CLEARFLU | University of Oxford (UK) and University of Melbourne (Australia) | Whole virus proteins based on HA | Multi-target combination strategy | [60] |
2024 | H3N8 live attenuated virus vaccine | Iowa State University (US) | Whole virus proteins | Multi-target combination strategy | [54] |
2024 | HA-based whole inactivated virus | Icahn School of Medicine at Mount Sinai (US) | Whole virus proteins based on HA | COBRA strategy and multi-target combination strategy | [61] |
2024 | ΔNS1 virus | Icahn School of Medicine at Mount Sinai (US) | Whole virus proteins based on HA | Immunofocusing strategy and multi-target combination strategy | [62] |
2023 | Reassortant LAIV with modified NS-1 and NP | Institute of Experimental Medicine (Russia) | Whole virus proteins based on NP | Multi-target combination strategy and T-cell strategy | [63] |
2022 | PROTAR | Chinese Academy of Sciences (China) | M1 ubiquitinated whole viral proteins | Multi-target combination strategy | [55] |
2022 | NAe-HA and M2e-HA | Georgia State University (US) | Whole virus proteins based on HA, NA, and M2e | Multi-target combination strategy | [64] |
Technological Routes | Start Time | Name | Developer | Clinical Phase, Registry ID | Antigen Targets | Design Strategies | References |
---|---|---|---|---|---|---|---|
Influenza-virus | 2022 | CodaVax | Codagenix (US) | Phase I, NCT05223179 | Whole virus proteins based on HA and NA | Multi-target combination strategy and artificial intelligence strategy | [65,66,67] |
2022 | BPL-1357 | NIAID (US) | Phase I, NCT05027932 | Whole virus proteins (H7N3, H5N1, H3N8, and H1N9) | Multi-target combination strategy | [68] | |
Nanoparticles | 2025 | FluMos self-assembling nanoparticle | NIAID (US) | Phase I, NCT06863142 | HA | T-cell strategy | [69,70,71] |
2024 | OVX836 | Osivax (France) | Phase II, NCT06582277 | Multiple types of NP | Multi-target combination strategy | [72,73] | |
2024 | CIC Vaccine | Novavax (US) | Phase III, NCT06482359 | Multiple types of HA | Multi-target combination strategy | Withdrawn | |
2024 | Nano-Flu (tNIV) | Novavax (US) and Emergent BioSolutions (US) | Phase III, NCT06485752 | Multiple types of HA | Multi-target combination strategy | [74,75] | |
Recombinant protein | 2024 | RIV3 + NVXC19 | Sanofi (France) | Phase II, NCT06695130 | 3 types of HA | Multi-target combination strategy | Results not yet reported |
2024 | TIV-HD + NVXC19 Combination vaccine | Sanofi (France) | Phase II, NCT06695117 | 3 types of HA | Multi-target combination strategy | Results not yet reported | |
2023 | G1 mHA | Janssen Vaccines and Prevention, J&J (Netherlands) | Phase II, NCT05901636 | HA stem | Immunofocusing strategy | [35,76,77,78,79] | |
Nucleic acid | 2025 | mRNA constructs | Sanofi (France) | Phase II, NCT06744205 | 1 or 4 or 6 types NA | Multi-target combination strategy | [80] |
2024 | sa-RNA (ARCT-2138) | Arcturus Therapeutics (US) and CSL Seqirus (Australia) | Phase I, NCT06602531 | 4 types of HA | Multi-target combination strategy | Results not yet reported | |
2024 | mRNA Flu/COVID-19 combination vaccine | GSK (UK) and CureVac (Germany) | Phase II, NCT06680375 | 4 types of HA | Multi-target combination strategy | Results not yet reported | |
2024 | mRNA-1010 | Moderna (US) | Phase III, NCT06602024 | 4 types of HA | Multi-target combination strategy | [81] | |
2024 | mRNA-1083 | Moderna (US) | Phase III, NCT06694389 | 4 types of HA | Multi-target combination strategy | [82] | |
2023 | Multivalent modified mRNA | GSK (UK) and CureVac (Germany) | Phase II, NCT06431607 | 4 types of HA | Multi-target combination strategy | [83] | |
2023 | mRNA-1011 and mRNA-1012 | Moderna (US) | Phase II, NCT05827068 | 5 or 6 types of HA | Multi-target combination strategy | [84] | |
2023 | H1ssF_3928 mRNA-LNP | CIVICs, NIAID (US) | Phase I, NCT05755620 | HA stem | Immunofocusing strategy | Results not yet reported | |
2023 | sa-mRNA (SQ012) | CSL Seqirus (Australia) | Phase I, NCT06028347 | HA and NA | Multi-target combination strategy | [85,86,87] | |
2023 | DCVC H1 HA mRNA-LNP | NIAID (US) | Phase I, NCT05945485 | HA | No | Results not yet reported | |
2023 | modRNA-based combination | Pfizer (US) and BioNTech (Germany) | Phase III, NCT06178991 | 4 types of HA | Multi-target combination strategy | [88] | |
2022 | mRNA-1230 | Moderna (US) | Phase I, NCT05585632 | 4 types of HA | Multi-target combination strategy | Results not yet reported | |
2022 | mRNA-1020 and mRNA-1030 | Moderna (US) | Phase II, NCT05333289 | HA and NA | Multi-target combination strategy | [89] | |
2022 | saRNA | Pfizer (US) | Phase II, NCT05227001 | HA and NA | Multi-target combination strategy | Results not yet reported | |
2022 | Modified mRNA vaccine | Pfizer (US) | Phase III, NCT05540522 | 4 types of HA | Multi-target combination strategy | [90] |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | HAdV5-HNH | China CDC (China) | HA stem and NA | Multi-target combination strategy and immunofocusing strategy | [94] |
2025 | AdC-Flu-Tet | Fudan University (China) | HA, NP, and M2e | Multi-target combination strategy and T-cell strategy | [95] |
2025 | Ad vector-based vaccine with autophagy-inducing peptide | Purdue University (US) | HA stem | Immunofocusing strategy | [96] |
2025 | Epigraph HA | University of Nebraska−Lincoln (US) | Multiple types of HA | Multi-target combination strategy | [97] |
2024 | rAd/NP + rAd/HA-M2e | Ewha Womans University (Korea) | HA, NA, and M2e | Multi-target combination strategy and T-cell strategy | [98] |
2024 | rAd-NP-M2e-GFP | Jilin University (China) | NP and M2e | Multi-target combination strategy and T-cell strategy | [99] |
2024 | CyCMV/Flu | Oregon Health & Science University (US) | NP, M1, and PB1 | Multi-target combination strategy and T-cell strategy | [100] |
2024 | ChAdOx2-NPM1-NA2 and MVA-NPM1NA2 | Pirbright Institute (UK) | NP and M1 | Multi-target combination strategy and T-cell strategy | [101] |
2024 | rAAV-COBRA | St Jude Children’s Research Hospital (US) | HA | COBRA strategy | [93] |
2024 | AdC68-cHAs | Tianjin Medical University (China) and Fudan University (China) | Multiple types of HA | Multi-target combination strategy and immunofocusing strategy | [92] |
2024 | rVSV-EΔM-tM2e | University of Manitoba (Canada) | Multiple types of M2e | Multi-target combination strategy | [102] |
2023 | A/NP + M2-rAd | Food and Drug Administration (US) | NP and M2 | Multi-target combination strategy and T-cell strategy | [103] |
2023 | MVA-NP | German Center of Infection Research (DZIF) (Germany) | NP | T-cell strategy | [104] |
2023 | Wyeth/IL-15/5flu | University of Hong Kong (Hong Kong SAR, China) | HA, NA, NP, M1, and M2 | Multi-target combination strategy and T-cell strategy | [105] |
2022 | rMVA-k1-k2 | Federal Medical-Biological Agency (Russia) | HA, NP, and M1 | Multi-target combination strategy and T-cell strategy | [106] |
2022 | Ad-5-H1 | Icahn School of Medicine at Mount Sinai (US) and University of Maryland (US) | HA | Immunofocusing strategy | [91] |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | H3N1M2e5x VLP | Kyung Hee University (S Korea) | HA, NA, and M2e | Multi-target combination strategy | [109] |
2025 | NA-M2e VLP | Georgia State University (US) | NA and M2e | Multi-target combination strategy | [110] |
2024 | cVLPs | University of Copenhagen (Denmark) and Scripps Research Institute (US) | HA stem and NA | Multi-target combination strategy and immunofocusing strategy | [111,112] |
2024 | COBRA-VLP | University of Georgia (US) and Cleveland Clinic (US) | NA | COBRA strategy | [48] |
2024 | N2-VLPs | University of Natural Resources and Life Sciences Vienna (BOKU) (Austria) | HA and NA | Multi-target combination strategy | [113] |
2024 | PR8HA-VLP | University of Wisconsin (US) and Georgia Institute of Technology (US) | HA | Multi-target combination strategy | [114] |
2024 | HBc VLPs | Chinese Academy of Sciences (China) | NP and M2e | Multi-target combination strategy and T-cell strategy | [115] |
2024 | Cap-Cat VLPs | Henan Academy of Agricultural Sciences (China) and Zhengzhou University (China) | 3 types of M2e | Multi-target combination strategy | [116] |
2024 | Quadrivalent VLPs | National Health Research Institutes (Taiwan) | HA, NA, and M1 | Multi-target combination strategy and T-cell strategy | [117] |
2023 | Inverted HA VLP | Georgia Institute of Technology (US) and Icahn School of Medicine at Mount Sinai (US) | HA | Immunofocusing strategy | [108] |
2023 | HA-VLP-Cyt | Georgia State University (US) | HA and M1 | Multi-target combination strategy and T-cell strategy | [118] |
2023 | cVLPs | Jiaxing University (China) | HA stem and M2e | Multi-target combination strategy and immunofocusing strategy | [119] |
2023 | M2e VLP MP | Mercer University (US) | Multiple types of M2e | Multi-target combination strategy | [120] |
2023 | Mosaic VLPs | Sun Yat-sen University (China) | HA and NA | Multi-target combination strategy and T-cell strategy | [107] |
2022 | NA2 VLP | Auburn University (US) and Emory-UGA CEIRS (US) | NA and M1 | Multi-target combination strategy and T-cell strategy | [121] |
2022 | Hybrid fusion protein combination vaccine | Emory University (US) and Georgia State University (US) | HA and M1 | Multi-target combination strategy and T-cell strategy | [122] |
2022 | NA-VLPs | King Mongkut’s University of Technology Thonburi (Thailand) | NA | Immunofocusing strategy | [123] |
2022 | Chimeric cytokine HA-VLP vaccine | Nerome Institute of Biological Resources (Japan) | NA and M2 | Multi-target combination strategy | [124] |
2022 | SpyTagged noro-VLP | Tampere University (Finland) | HA and M2e | Multi-target combination strategy and immunofocusing strategy | [125] |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | LBL HA-4M2e NPs | Georgia Institute of Technology (US) | HA and M2e | Multi-target combination strategy | [130] |
2025 | Inverted HA-extracellular vesicles (EVs) | Georgia State University (US) | HA | Immunofocusing strategy | [126] |
2025 | HA2-16 ferritin nanoparticles | Jilin University (China) | HA stem | Immunofocusing strategy | [131] |
2025 | CHM-f nanoparticle | Northwest A&F University (China) and Chengdu NanoVAX Biotechnology (China) | HA and M2e | Multi-target combination strategy | [132] |
2025 | Ferritin-HA | Shanghai Institute of Biological Products (China) | HA | Multi-target combination strategy | [133] |
2025 | Adjuvanted PNP-hydrogel system | Stanford University (US) | Multiple types of HA | Multi-target combination strategy | [129] |
2024 | IAV-nanovax | University of Iowa (US) and Iowa State University (US) | HA and NP | Multi-target combination strategy and T-cell strategy | [134] |
2024 | BP-NP366/PA224 | University of Melbourne (Australia) and Griffith University (Australia) | NP and PA | Multi-target combination strategy and T-cell strategy | [135] |
2024 | TMV-HA | University of Nebraska−Lincoln (US) | HA | T-cell strategy | [136] |
2024 | 3M2e-R4R5 | University of Quebec at Montreal (Canada) | Multiple types of M2e | Multi-target combination strategy | [137] |
2024 | NA-Mi3 nanoparticles | Utrecht University (Netherlands) and Ghent University (Belgium) | Multiple types of NA | Multi-target combination strategy | [138] |
2024 | HA-SAV | Yonsei University (South Korea) | HA | Multi-target combination strategy | [139] |
2024 | NM2e@DDAB/PLA nanovaccine | Chinese Academy of Sciences (China) | NP and M2e | Multi-target combination strategy and T-cell strategy | [128] |
2024 | Double-layered protein nanoparticles | Georgia State University (US) | HA stem, NP, and M2e | Multi-target combination strategy, immunofocusing strategy, and T-cell strategy | [140] |
2024 | HA/GP nanoparticles | Georgia State University (US) | HA | Multi-target combination strategy | [141] |
2024 | Self-assembled multiepitope nanoparticles (MHF) | Jilin University (China) | HA stem, NP, and M2e | Multi-target combination strategy, immunofocusing strategy, and T-cell strategy | [142] |
2024 | Self-assembling protein nanoparticles (SApNPs) | Scripps Research Institute (US) | Multiple types of M2e | Multi-target combination strategy | [143] |
2024 | Hexaplex liposomes | State University of New York at Buffalo (US) | HA and NA | Multi-target combination strategy | [144] |
2024 | M2e Nanoclusters | Texas Tech University (US) and Georgia State University (US) | Multiple types of M2e | Multi-target combination strategy | [145] |
2023 | 3M2e-rHF nanoparticle | Chinese Academy of Sciences (China) | HA, NA, and M2e | Multi-target combination strategy | [40] |
2023 | Self-assembled protein nanocages | Georgia Institute of Technology (US) | HA stem and M2e | Multi-target combination strategy and immunofocusing strategy | [146] |
2023 | ISCOMs/MPLA-adjuvanted SDAD protein nanoparticles | Georgia State University (US) | NP, M2e, and NA | Multi-target combination strategy and T-cell strategy | [147] |
2023 | 3M2e-T4 nanoparticle | Huazhong Agricultural University (China) | Multiple types of M2e | Multi-target combination strategy | [148] |
2023 | Combinatorial polymeric nanoshell | National Taiwan University (China) | M2e | Immunofocusing strategy | [149] |
2023 | Helix-A stem nanoparticle | NIAID (US) | HA stem | Immunofocusing strategy | [150] |
2023 | PLGA nanoparticles | Sunway University (Malaysia) | M2 and NP | Multi-target combination strategy and T-cell strategy | [127] |
2023 | Multivalent DNA nanovaccine | Taizhou University (China) | HA and NA | Multi-target combination strategy | [151] |
2022 | M2e/CpG-ODN/TMC | Agricultural Research, Education and Extension Organization (Iran) | M2e | Immunofocusing strategy | [152] |
2022 | Mini-HA-LS Nano-vaccine | Huazhong Agricultural University (China) | HA stem | Immunofocusing strategy | [153] |
2022 | Adjuvanted nanoparticle fusion constructs | Indian Institute of Science (India) | HA stem | Immunofocusing strategy | [154] |
2022 | 3MCD-f nanovaccine | Jilin University (China) | HA stem and M2e | Multi-target combination strategy and immunofocusing strategy | [155] |
2022 | CDh-f nanoparticle | Jilin University (China) | HA stem | Immunofocusing strategy | [156] |
2022 | Self-assembling peptides displaying M2e and HA2 | Russian Academy of Sciences (Russia) | HA stem and M2e | Multi-target combination strategy and immunofocusing strategy | [157] |
2022 | CTA1-3M2e-DD (FPM2e) | University of Gothenburg (Sweden) and Ghent University (Belgium) | Multiple types of M2e | Multi-target combination strategy | [158] |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | P125-H | China CDC (China) | HA, NA, and M2 | Multi-target combination strategy | [162] |
2025 | Mosaic nucleoprotein (MNP) | University of Wisconsin (US) | NP | T-cell strategy | [43] |
2025 | Recombinant HA proteins | University of Wisconsin (US) | 2 types of HA | Multi-target combination strategy | [163] |
2024 | Sbmut HA | Duke University (US) | Multiple types of HA | Multi-target combination strategy and immunofocusing strategy | [37] |
2024 | M2e-H3 stalk | Georgia State University (US) | HA and M2e | Multi-target combination strategy | [164] |
2024 | M2e-based recombinant fusion proteins | Russian Ministry of Health (Russia) | HA, NP, and M2e | Multi-target combination strategy and T-cell strategy | [165] |
2024 | rTET-NA | Sanofi (France) | HA and NA | Multi-target combination strategy | [166] |
2024 | HAm | Sun Yat-sen University (China) | HA | T-cell strategy | [167] |
2024 | COBRA HA proteins | University of Georgia (US) | HA | COBRA strategy | [159] |
2024 | COBRA H1 HA | University of North Carolina (US) and University of Georgia (US) | HA | COBRA strategy | [161] |
2023 | Scrambled HA (scrHA) | University of Wisconsin (US) | HA | Immunofocusing strategy | [168] |
2023 | LHNVD-105/110 | Longhorn Vaccines and Diagnostics (US) | HA, NA, and M2e | Multi-target combination strategy | [169] |
2023 | 3M2e-HA2-NP chimeric subunit | Pasteur Institute of Iran (Iran) | HA, NP, and M2e | Multi-target combination strategy and T-cell strategy | [170] |
2023 | N1-I COBRA NA antigen | University of Georgia (US) | NA and HA | COBRA strategy and multi-target combination strategy | [160] |
2022 | B60-Stem-8071 | Xiamen University (China) | HA stem | Immunofocusing strategy | [171] |
2022 | rM2e-ΔPly | Chongqing Medical University (China) | 3 types of M2e | Multi-target combination strategy | [172] |
Time | Name | Developer | Antigen Targets | Design Strategies | Reference |
---|---|---|---|---|---|
2025 | 5xM2e mRNA lipid nanoparticle | Georgia State University (US) | 5 types of M2e | Multi-target combination strategy | [176] |
2024 | Mosaic NA1 (mNA1) | Sun Yat-sen University (China) | NA | T-cell strategy | [177] |
2024 | NA-targeting circRNA vaccine | Sun Yat-sen University (China) | 3 types of NA | Multi-target combination strategy | [178] |
2024 | COBRA HA-encoding mRNA | University of Georgia (US) | 2 types of HA | Multi-target combination strategy and COBRA strategy | [179] |
2024 | HA-encoding mRNA | University of Georgia (US) | 4 types of HA | Multi-target combination strategy | [180] |
2024 | mRNA LNP vaccine encoding a Y2 COBRA HA immunogen | University of North Carolina (US) and University of Georgia (US) | HA | COBRA strategy | [181] |
2024 | Multiple HA-DNA | University of Oslo (Norway) | 16 types of HA | Multi-target combination strategy | [175] |
2024 | HA, NP, and 3M2e mRNA | Chinese PLA General Hospital (China) | HA, NP, and M2e | Multi-target combination strategy and T-cell strategy | [182] |
2024 | NA-F2A-HA mRNA-LNP | Duke University (US) | HA and NA | Multi-target combination strategy | [39] |
2024 | dbDNA-encoded NA | Imperial College London (UK) | HA and NA | Multi-target combination strategy | [183] |
2024 | Multi-epitope mRNA-based vaccines | Key Laboratory of Jilin Province for Zoonosis Prevention and Control (China) | HA and M2e | Multi-target combination strategy and T-cell strategy | [184] |
2023 | MLN-mRNA | Shanghai Institute of Biological Products (China) | HA stem, M2e, and NP | Immunofocusing strategy and multi-target combination strategy | [41] |
2023 | mHAs | Chinese Academy of Sciences (China) | HA stem | Immunofocusing strategy | [173] |
2023 | Quadrivalent HA mRNA | Greenlight Biosciences (US) Name | 4 types of HA | Multi-target combination strategy | [185] |
2022 | mRNA/LNP vaccine | Merck & Co. (US) | HA stem and NP | Immunofocusing strategy and multi-target combination strategy | [186] |
2022 | mRNA-Flu | National Institute for Public Health and the Environment (Netherlands) | NP, M1, and PB1 | Multi-target combination strategy and T-cell strategy | [45] |
2022 | 20 mRNA-LNP | CIVICs, NIAID (US) and University of Pennsylvania (US) | 20 types of HA | Multi-target combination strategy | [174] |
2022 | cGAMP-adjuvanted multivalent mRNA vaccines | Georgia State University (US) | 2 types of HA, M1, and NP | Multi-target combination strategy and T-cell strategy | [187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xie, Q.; Yu, P.; Zhang, J.; He, C.; Huang, W.; Wang, Y.; Zhao, C. Research Progress of Universal Influenza Vaccine. Vaccines 2025, 13, 863. https://doi.org/10.3390/vaccines13080863
Wang L, Xie Q, Yu P, Zhang J, He C, Huang W, Wang Y, Zhao C. Research Progress of Universal Influenza Vaccine. Vaccines. 2025; 13(8):863. https://doi.org/10.3390/vaccines13080863
Chicago/Turabian StyleWang, Liangliang, Qian Xie, Pengju Yu, Jie Zhang, Chenchen He, Weijin Huang, Youchun Wang, and Chenyan Zhao. 2025. "Research Progress of Universal Influenza Vaccine" Vaccines 13, no. 8: 863. https://doi.org/10.3390/vaccines13080863
APA StyleWang, L., Xie, Q., Yu, P., Zhang, J., He, C., Huang, W., Wang, Y., & Zhao, C. (2025). Research Progress of Universal Influenza Vaccine. Vaccines, 13(8), 863. https://doi.org/10.3390/vaccines13080863