Efficacy of Three Vaccine Regimens Against Infectious Hematopoietic Necrosis Virus Transmission Potential in Rainbow Trout
Abstract
1. Introduction
2. Methods
2.1. Vaccines
2.2. Viruses
2.3. Fish
2.4. Vaccination
2.5. Disease Protection Assays
2.6. Shedding Protection Assays
2.7. Transmission Protection Assays
2.8. Viral Quantification in Water
2.9. Statistical Analysis
2.10. Mortality
2.11. Number of Fish Shedding Virus
2.12. Shedding Intensity of Virus
2.13. Cumulative Virus Load Shed
2.14. Transmission Data
3. Results
3.1. Fish Survival
3.2. Number of Fish Shedding over Time
3.3. Virus Shedding Intensity over Time
3.4. Cumulative Virus Shed
3.5. Transmission Protection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bootland, L.M.; Leong, J.C. Infectious hematopoietic necrosis virus. In Fish Diseases and Disorders, 2nd ed.; Woo, P.T.K., Bruno, D.W., Eds.; CAB International: Wallingford, UK, 2011; pp. 66–110. [Google Scholar]
- Dixon, P.; Paley, R.; Alegria-Moran, R.; Oidtmann, B. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): A review. Vet. Res. 2016, 47, 63. [Google Scholar] [CrossRef] [PubMed]
- Williams, I.V.; Amend, D.F. A natural epizootic of infectious hematopoietic necrosis in fry of sockeye salmon (Oncorhynchus nerka) at Chilko Lake, British Columbia. J. Fish. Res. Board. Can. 1976, 33, 1564–1567. [Google Scholar] [CrossRef]
- Mulcahy, D.M.; Tebbit, G.L.; Groberg, W.J.; McMichael, J.S.; Winton, J.R.; Hedrick, R.P.; Philippon-Fried, M.; Pilcher, K.S.; Fryer, J.L. The Occurrence and Distribution of Salmonid Viruses in Oregon; Technical Paper No. 5504; Oregon Agricultural Experiment Station: Corvallis, OR, USA, 1980. [Google Scholar]
- Traxler, G.S.; Rankin, J.B. An infectious hematopoietic necrosis epizootic in sockeye salmon Oncorhynchus nerka in Weaver Creek spawning channel, Fraser River system, BC, Canda. Dis. Aquat. Org. 1989, 6, 221–226. [Google Scholar] [CrossRef]
- LaPatra, S.E. Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish. J. Aquat. Anim. Health 1998, 10, 121–131. [Google Scholar]
- Traxler, G.S.; Anderson, E.; LaPatra, S.E.; Richard, J.; Shewmaker, B.; Kurath, G. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis. Aquat. Organ. 1999, 38, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.D.; Mourich, D.V.; Fahrenkrug, S.C.; LaPatra, S.; Shepherd, J.; Leong, J.A. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol. Mar. Biol. Biotechnol. 1996, 5, 114–122. [Google Scholar]
- Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Jones, J.; Vincent, B.; Hsu, Y.L.; Kurath, G. Evaluation of the protective immunogenicity of the N, P, M, NV and G proteins of infectious hematopoietic necrosis virus in rainbow trout Oncorhynchus mykiss using DNA vaccines. Dis. Aquat. Org. 1999, 39, 29–36. [Google Scholar] [CrossRef]
- Corbeil, S.; Kurath, G.; Lapatra, S.E. Fish DNA vaccine against infectious hematopoietic necrosis virus: Efficacy of various routes of immunization. Fish. Shellfish. Immunol. 2000, 10, 711–723. [Google Scholar] [CrossRef]
- Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Kurath, G. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine 2000, 18, 2817–2824. [Google Scholar] [CrossRef]
- LaPatra, S.E.; Corbeil, S.; Jones, G.R.; Shewmaker, W.D.; Kurath, G. The dose-dependent effect on protection and humoral response to a DNA vaccine against infectious hematopoietic necrosis (IHN) virus in subyearling rainbow trout. J. Aquat. Anim. Health 2000, 12, 181–188. [Google Scholar]
- LaPatra, S.E.; Corbeil, S.; Jones, G.R.; Shewmaker, W.D.; Lorenzen, N.; Anderson, E.D.; Kurath, G. Protection of rainbow trout against infectious helatopoietic necrosis virus four days after specific or semi-specific DNA vaccination. Vaccine 2001, 19, 4011–4019. [Google Scholar] [CrossRef]
- Anderson, E.; Clouthier, S.; Shewmaker, W.; Weighall, A.; LaPatra, S. Inactivated infectious haematopoietic necrosis virus (IHNV) vaccines. J. Fish. Dis. 2008, 31, 729–745. [Google Scholar] [CrossRef]
- LaPatra, S.; Kao, S.; Erhardt, E.B.; Salinas, I. Evaluation of dual nasal delivery of infectious hematopoietic necrosis virus and enteric red mouth vaccines in rainbow trout (Oncorhynchus mykiss). Vaccine 2015, 33, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; LaPatra, S.; Erhardt, E. Nasal vaccination of young rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis and enteric red mouth disease. Dev. Comp. Immunol. 2015, 53, 105–111. [Google Scholar] [CrossRef]
- Larragoite, E.T.; Tacchi, L.; LaPatra, S.E.; Salinas, I. An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery. Fish. Shellfish. Immunol. 2016, 49, 351–354. [Google Scholar] [CrossRef]
- Yong, C.Y.; Ong, H.K.; Tang, H.C.; Yeap, S.K.; Omar, A.R.; Ho, K.L.; Tan, W.S. Infectious hematopoietic necrosis virus: Advances in diagnosis and vaccine development. PeerJ 2019, 7, e7151. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef]
- Nishimura, T.; Sasaki, H.; Ushiyamsa, M.; Inoue, K.; Suzuki, Y.; Ikeya, F.; Tanaka, M.; Suzuki, H.; Kohara, M.; Arai, M.; et al. A trial of vaccination against rainbow trout fry with formalin killed IHN virus. Fish. Pathol. 1985, 20, 435–443. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, G.; Zhao, J.; Shao, Y.; He, B.; Tang, X.; Sha, O.; Zhao, W.; Liu, Q.; Xu, L. Long-term protection elicited by an inactivated vaccine supplemented with a water-based adjuvant against infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss). Microbiol. Spectr. 2022, 10, e03245-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guan, C.; Zhao, J.; Lin, J.; Shao, Y.; Li, L.; Lu, T.; Chen, P.; Zhang, Y.A.; Xu, L. Production and evaluation of a bivalent adjuvant inactivated vaccine against infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. Aquaculture 2024, 597, 741914. [Google Scholar] [CrossRef]
- Roberti, K.A.; Rohovec, J.S.; Winton, J.R. Vaccination of rainbow trout against infectious hematopoietic necrosis (IHN) by using attenuated mutants selected by neutralizing monoclonal antibodies. J. Aquat. Anim. Health 1998, 10, 328–337. [Google Scholar] [CrossRef]
- Rouxel, R.N.; Tafalla, C.; Mérour, E.; Leal, E.; Biacchesi, S.; Brémont, M. Attenuated infectious hematopoietic necrosis virus with rearranged gene order as potential vaccine. J. Virol. 2016, 90, 10857–10866. [Google Scholar] [CrossRef]
- Fryer, J.L.; Rohovec, J.S.; Tebbit, G.L.; McMichael, J.S.; Pilcher, K.S. Vaccination for control of infectious diseases in Pacific Salmon. Fish. Pathol. 1976, 10, 155–164. [Google Scholar] [CrossRef]
- Dong, F.; Tacchi, L.; Xu, Z.; LaPatra, S.E.; Salinas, I. Vaccination route determines the kinetics and magnitude of nasal innate immune responses in rainbow trout (Oncorhynchus mykiss). Biology 2020, 9, 319. [Google Scholar] [CrossRef]
- Bøgwald, J.; Dalmo, R.A. Review on immersion vaccines for fish: An update 2019. Microorganisms 2019, 7, 627. [Google Scholar] [CrossRef] [PubMed]
- Gorgoglione, B.; Liu, J.-T.; Li, J.; Vakharia, V.N. The efficacy of new oral vaccine feeds against Salmonid novirhabdovirus in rainbow trout. Fish. Shellfish. Immunol. Rep. 2023, 4, 100082. [Google Scholar] [CrossRef]
- Kurath, G.; Garver, K.; Corbeil, S.; Elliot, D.G.; Anderson, E.; LaPatra, S.E. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine 2006, 24, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Salonius, K.; Simrad, N.; Harland, R.; Ulmer, J. The road to licensure of a DNA vaccine. Curr. Opin. Investig. Drugs 2007, 8, 635–641. [Google Scholar] [PubMed]
- Lorenzen, N.; LaPatra, S.E. DNA vaccines for aquacultured fish. Rev. Sci. Tech. (Int. Off. Epizoot.) 2005, 24, 201–213. [Google Scholar] [CrossRef]
- Alonso, M.; Leong, J. Licensed DNA vaccines against infectious hematopoietic necrosis virus (IHNV). Recent. Pat. DNA Gene Seq. 2013, 7, 62–65. [Google Scholar] [CrossRef]
- Long, A.; Richard, J.; Hawley, L.; LaPatra, S.E.; Garver, K.A. Transmission potential of infectious hematopoietic necrosis virus in APEX-IHN®-vaccinated Atlantic salmon. Dis. Aquat. Org. 2017, 122, 213–221. [Google Scholar] [CrossRef]
- Wade, J.; Secretariat, C.S.A. British Columbia Farmed Atlantic Salmon Health Management Practices; Canadian Science Advisory Secretariat (CSAS): Ottawa, Canada, 2017. [Google Scholar]
- Ballesteros, N.A.; Alonso, M.; Saint-Jean, S.R.; Perez-Prieto, S.I. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish. Shellfish. Immunol. 2015, 45, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, J.; Liu, M.; Kurath, G.; Ren, G.; Lapatra, S.E.; Yin, J.; Liu, H.; Feng, J.; Lu, T. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China. Vaccine 2017, 35, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shao, S.; Liu, Q.; Wang, Q.; Zhang, Y.; Liu, X. Protection of a CpG-adjuvanted DNA vaccine against infectious hematopoietic necrosis virus (IHNV) nature infection in rainbow trout (Oncorhynchus mykiss). Aquaculture 2023, 572, 739555. [Google Scholar] [CrossRef]
- Marsella, A.; Pascoli, F.; Pretto, T.; Buratin, A.; Biasini, L.; Abbadi, M.; Cortinovis, L.; Berto, P.; Manfrin, A.; Vanelli, M.; et al. Efficacy of DNA vaccines in protecting rainbow trout against VHS and IHN under intensive farming conditions. Vaccines 2022, 10, 2062. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, K.M.; Kim, K.H. Differences between DNA vaccine and single-cycle viral vaccine in the ability of cross-protection against viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Vaccine 2023, 41, 5580–5586. [Google Scholar] [CrossRef]
- Lorenzen, N.; Lorenzen, E.; Einer-Jensen, K.; LaPatra, S.E. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev. Comp. Immunol. 2002, 26, 173–179. [Google Scholar] [CrossRef]
- Lorenzen, N.; Lorenzen, E.; Einer-Jensen, K.; Lapatra, S.E. DNA vaccines as a tool for analysing the protective immune response against rhabdoviruses in rainbow trout. Fish. Shellfish. Immunol. 2002, 12, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chien, M.S.; Landolt, M.; Batts, W.; Winton, J. Mapping the neutralizing epitopes on the glycoprotein of infectious haematopoietic necrosis virus, a fish rhabdovirus. J. Gen. Virol. 1996, 77, 3033–3040. [Google Scholar] [CrossRef]
- Purcell, M.K.; Kurath, G.; Garver, K.A.; Herwig, R.P.; Winton, J.R. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish. Shellfish. Immunol. 2004, 17, 447–462. [Google Scholar] [CrossRef]
- Anderson, E.D.; Mourich, D.V.; Leong, J.C. Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Mol. Mar. Bio Biotech. 1996, 5, 105–113. [Google Scholar]
- Peñaranda, M.M.D.; LaPatra, S.E.; Kurath, G. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immunol. 2011, 31, 43–51. [Google Scholar] [CrossRef]
- Kurath, G. Biotechnology and DNA vaccines for aquatic animals. Rev. Sci. Tech. (Int. Off. Epizoot.) 2008, 27, 175–196. [Google Scholar] [CrossRef]
- Jones, D.R.; Rutan, B.J.; Wargo, A.R. Impact of vaccination and pathogen exposure dosage on shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. J. Aquat. Anim. Health 2020, 32, 95–108. [Google Scholar] [CrossRef]
- Garver, K.A.; LaPatra, S.E.; Kurath, G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook tshawytscha and sockye O. nerka salmon. Dis. Aquat. Org. 2005, 64, 13–22. [Google Scholar] [CrossRef]
- Kurath, G.; Winton, J.R.; Dale, O.B.; Purcell, M.K.; Falk, K.; Busch, R. Atlantic salmon, S almo salar L. are broadly susceptible to isolates representing the N orth A merican genogroups of infectious hematopoietic necrosis virus. J. Fish. Dis. 2016, 39, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Troyer, R.M.; LaPatra, S.E.; Kurath, G. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture. J. Gen. Virol. 2000, 81, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Foreman, M.G.; Guo, M.; Garver, K.A.; Stucchi, D.; Chandler, P.; Wan, D.; Morrison, J.; Tuele, D. Modelling infectious hematopoietic necrosis virus dispersion from marine salmon farms in the Discovery Islands, British Columbia, Canada. PLoS ONE 2015, 10, e0130951. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.; Akuffo, H.; Pawlowski, A.; Haile, M.; Schön, T.; Britton, S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005, 23, 1326–1334. [Google Scholar] [CrossRef]
- Praharaj, I.; Platts-Mills, J.A.; Taneja, S.; Antony, K.; Yuhas, K.; Flores, J.; Cho, I.; Bhandari, N.; Revathy, R.; Bavdekar, A.; et al. Diarrheal etiology and impact of coinfections on rotavirus vaccine efficacy estimates in a clinical trial of a monovalent human–Bovine (116E) oral rotavirus vaccine, Rotavac, India. Clin. Infect. Dis. 2018, 69, 243–250. [Google Scholar] [CrossRef]
- Figueroa, C.; Bustos, P.; Torrealba, D.; Dixon, B.; Soto, C.; Conejeros, P.; Gallardo, J.A. Coinfection takes its toll: Sea lice override the protective effects of vaccination against a bacterial pathogen in Atlantic salmon. Sci. Rep. 2017, 7, 17817. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Vaccination and herd immunity to infectious diseases. Nature 1985, 318, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Doumayrou, J.; Ryan, M.G.; Wargo, A.R. Method for serial passage of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. Dis. Aquat. Org. 2019, 134, 223–236. [Google Scholar] [CrossRef]
- Wargo, A.R.; Kurath, G. In vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding. J. Virol. 2011, 85, 3959–3967. [Google Scholar] [CrossRef]
- Wargo, A.R.; Kurath, G. Viral fitness: Definitions, measurement, and current insights. Curr. Opin. Virol. 2012, 2, 538–545. [Google Scholar] [CrossRef]
- Wargo, A.R.; Scott, R.J.; Kerr, B.; Kurath, G. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout. Virus Res. 2017, 227, 200–211. [Google Scholar] [CrossRef]
- Wargo, A.R.; Kurath, G.; Scott, R.J.; Kerr, B. Virus shedding kinetics and unconventional virulence tradeoffs. PLoS Pathog. 2021, 17, e1009528. [Google Scholar] [CrossRef]
- Gandon, S.; Mackinnon, M.J.; Nee, S.; Read, A.F. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001, 414, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Baigent, S.J.; Powers, C.; Kgosana, L.B.; Blackwell, L.; Smith, L.P.; Kennedy, D.A.; Walkden-Brown, S.W.; Nair, V.K. Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biol. 2015, 13, e1002198. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Kurath, G.; Brito, I.L.; Purcell, M.K.; Read, A.F.; Winton, J.R.; Wargo, A.R. Potential drivers of virulence evolution in aquaculture. Evol. Appl. 2016, 9, 344–354. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Read, A.F. Why does drug resistance readily evolve but vaccine resistance does not? Proc. R. Soc. B Biol. Sci. 2017, 284, 20162562. [Google Scholar] [CrossRef]
- Biacchesi, S.; Bremont, M. Vaccination against viral hemorrhagic septicemia and infectious hematopoietic necrosis. In Fish Vaccination; Gudding, R., Lillehaug, A., Evensen, O., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2014; pp. 289–302. [Google Scholar]
- Fijan, N.; Sulimanovic, E.; Bearzotti, M.; Muzinic, D.; Zwillenberg, L.O.; Chilmonczyk, S.; Vautherot, J.F.; de Kinkelin, P. Some properties of the epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpi. Ann. L’institut Pasteur Virol. 1983, 134, 207–220. [Google Scholar] [CrossRef]
- Nichol, S.T.; Rowe, J.E.; Winton, J.R. Molecular epizootiology and evolution of the glycoprotein and non-virion protein genes of infectious hematopoietic necrosis virus, a fish rhabdovirus. Virus Res. 1995, 38, 159–173. [Google Scholar] [CrossRef]
- Breyta, R.; Jones, A.; Kurath, G. Differential susceptibility in steelhead trout populations to an emergent MD strain of infectious hematopoietic necrosis virus. Dis. Aquat. Org. 2014, 112, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Breyta, R.; Black, A.; Kaufman, J.; Kurath, G. Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids. Infect. Genet. Evol. 2016, 45, 347–358. [Google Scholar] [CrossRef]
- Batts, W.N.; Winton, J.R. Enhanced detection of infectious hematopoetic necrosis virus and other fish viruses by pretreatment of cell monolayers with polyethylene glycol. J. Aquat. Anim. Health 1989, 1, 284–290. [Google Scholar] [CrossRef]
- Garver, K.; Batts, W.; Kurath, G. Virulence comparisons of infectious hematopoietic necrosis virus U and M genogroups in sockeye salmon and rainbow trout. J. Aquat. Anim. Health 2006, 18, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Wargo, A.R.; Garver, K.A.; Kurath, G. Virulence correlates with fitness in vivo for two M group genotypes of infectious hematopoietic necrosis virus (IHNV). Virology 2010, 404, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, D.; Pascho, R.J.; Jenes, C.K. Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission. J. Fish. Dis. 1983, 6, 321–330. [Google Scholar] [CrossRef]
- Nishimura, T.; Ishida, Y.; Yamamoto, S.; Fukuda, H.; Okamoto, N.; Sano, T. Infectious haematopoietic necrosis: Virus titer in the fish bodies, rearing water and feces of artificially infected rainbow trout fry. Fish. Pathol. 1988, 23, 13–17. [Google Scholar] [CrossRef]
- Kell, A.M.; Wargo, A.R.; Kurath, G. Viral fitness does not correlate with three genotype displacement events involving infectious hematopoietic necrosis virus. Virology 2014, 464, 146–155. [Google Scholar] [CrossRef] [PubMed]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Therneau, T. R Package, version 2.7; A package for survival analysis in S. 2015. Available online: https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf (accessed on 19 May 2024).
- Therneau, T.M.; Therneau, M.T.M. R Package, version 2.5; Package ‘coxme’. 2015. Available online: https://rdrr.io/cran/coxme/ (accessed on 19 May 2024).
- Amend, D.F. Potency testing of fish vaccines. Dev. Biol. Stand. 1981, 49, 447–454. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. R Package, version 3.1-119; nlme: Linear and Nonlinear Mixed Effects Models. 2015. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 19 May 2024).
- LaPatra, S.E.; Rohovec, J.S.; Fryer, J.L. Detection of infectious hematopoietic necrosis virus in fish mucus. Fish. Pathol. 1989, 24, 197–202. [Google Scholar] [CrossRef]
- Seeley, M.E.; Hale, R.C.; Zwollo, P.; Vogelbein, W.; Verry, G.; Wargo, A.R. Microplastics exacerbate virus-mediated mortality in fish. Sci. Total Environ. 2023, 866, 161191. [Google Scholar] [CrossRef]
- Råberg, L.; Sim, D.; Read, A.F. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 2007, 318, 812–814. [Google Scholar] [CrossRef]
- Peñaranda, M.M.D.; Purcell, M.K.; Kurath, G. Differential virulence mechanisms of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics. J. Gen. Virol. 2009, 90, 2172–2182. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.E. Variation in protection by BCG: Implications of and for heterologous immunity. Lancet 1995, 346, 1339–1345. [Google Scholar] [CrossRef]
- Ristow, S.S.; Arnzen de Avila, J. Monoclonal antibodies to the glycoprotein and nucleoprotein of infectious hematopoietic necrosis virus (IHNV) reveal differences among isolates of the virus by fluorescence, neutralization and electrophoresis. Dis. Aquat. Org. 1991, 11, 105–115. [Google Scholar] [CrossRef]
- Winton, J.R.; Arakawa, C.K.; Lannan, C.N.; Fryer, J.L. Neutralizing monoclonal antibodies recognize antigenic variants among isolates of infectious hematopoietic necrosis virus. Dis. Aquat. Org. 1988, 4, 199–204. [Google Scholar] [CrossRef]
- Huang, C.; Chien, M.-S.; Landolt, M.; Winton, J. Characterization of the infectious hematopoietic necrosis virus glycoprotein using neutralizing monoclonal antibodies. Dis. Aquat. Org. 1994, 18, 29–35. [Google Scholar] [CrossRef]
- Oberg, L.A.; Wirkkula, J.; Mourich, D.; Leong, J.C. Bacterially expressed nucleoprotein of infectious hematopoietic necrosis virus augments protective immunity induced by the glycoprotein vaccine in fish. J. Virol. 1991, 65, 4486–4489. [Google Scholar] [CrossRef]
- Peñaranda, M.M.D.; Wargo, A.R.; Kurath, G. In vivo fitness correlates with host-specific virulence of infectious hematopoietic necrosis virus (IHNV) in sockeye salmon and rainbow trout. Virology 2011, 417, 312–319. [Google Scholar] [CrossRef]
- Engelking, H.M.; Harry, J.B.; Leong, J.-A.C. Comparison of representative strains of infectious hematopoietic necrosis virus by serological neutralization and cross-protection assays. Appl. Environ. Microbiol. 1991, 57, 1372–1378. [Google Scholar] [CrossRef]
- Huo, C.; Huang, D.; Ma, Z.; Li, G.; Li, T.; Lin, W.; Jiang, N.; Xing, W.; Xu, G.; Yu, H.; et al. Specificity of DNA Vaccines against the Genogroup J and U Infectious Hematopoietic Necrosis Virus Strains Prevalent in China. Viruses 2022, 14, 2707. [Google Scholar] [CrossRef]
- Troyer, R.M.; Garver, K.A.; Ranson, J.C.; Wargo, A.R.; Kurath, G. In vivo virus growth competition assays demonstrate equal fitness of fish rhabdovirus strains that co-circulate in aquaculture. Virus Res. 2008, 137, 179–188. [Google Scholar] [CrossRef]
- Breyta, R.; McKenney, D.; Tesfaye, T.; Ono, K.; Kurath, G. Increasing virulence, but not infectivity, associated with serially emergent virus strains of a fish rhabdovirus. Virus Evol. 2016, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hardin, G. Tragedy of Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- de Roode, J.C.; Pansini, R.; Cheesman, S.J.; Helinski, M.E.H.; Huijben, S.; Wargo, A.R.; Bell, A.S.; Chan, B.H.K.; Walliker, D.; Read, A.F. Virulence and competitive ability in genetically diverse malaria infections. Proc. Natl. Acad. Sci. USA 2005, 102, 7624–7628. [Google Scholar] [CrossRef] [PubMed]
- Kurath, G.; Wargo, A.R. Evolution of viral virulence: Empirical studies. In Virus Evolution: Current Research and Future Directions; Weaver, S.C., Denison, M., Roossinck, M., Vignuzzi, M., Eds.; Caister Academic Press: Portland, OR, USA, 2016; pp. 155–214. [Google Scholar]
- Alizon, S.; De Roode, J.C.; Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 2013, 16, 556–567. [Google Scholar] [CrossRef]
- Fleming-Davies, A.E.; Williams, P.D.; Dhondt, A.A.; Dobson, A.P.; Hochachka, W.M.; Leon, A.E.; Ley, D.H.; Osnas, E.E.; Hawley, D.M. Incomplete host immunity favors the evolution of virulence in an emergent pathogen. Science 2018, 359, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Nair, V. Evolution of Marek’s disease—A paradigm for incessant race between the pathogen and the host. Vet. J. 2005, 170, 175–183. [Google Scholar] [CrossRef]
- Atkins, K.E.; Read, A.F.; Savill, N.J.; Renz, K.G.; Islam, A.; Walkden-Brown, S.W.; Woolhouse, M.E.J. Vaccination and reduced cohort duration can drive virulence evolution: Marek’s disease virus and industrialized agriculture. Evolution 2013, 67, 851–860. [Google Scholar] [CrossRef]
- Kumar, G.; Engle, C.; Tucker, C. Factors driving aquaculture technology adoption. J. World Aquac. Soc. 2018, 49, 447–476. [Google Scholar] [CrossRef]
- Langwig, K.E.; Wargo, A.R.; Jones, D.R.; Viss, J.R.; Rutan, B.J.; Egan, N.A.; Sá-Guimarães, P.; Kim, M.S.; Kurath, G.; Gomes, M.G.M. Vaccine effects on heterogeneity in susceptibility and implications for population health management. mBio 2017, 8, e00796-17. [Google Scholar] [CrossRef]
- Day, T.; Kennedy, D.A.; Read, A.F.; Gandon, S. Pathogen evolution during vaccination campaigns. PLOS Biol. 2022, 20, e3001804. [Google Scholar] [CrossRef] [PubMed]
- Kurath, G.; Garver, K.A.; Troyer, R.M.; Emmenegger, E.J.; Einer-Jensen, K.; Anderson, E.D. Phylogeography of infectious hematopoietic necrosis virus in North America. J. Gen. Virol. 2003, 84, 803–814. [Google Scholar] [CrossRef]
- The malERA Consultative Group on Vaccines. A research agenda for malaria eradication: Vaccines. PLoS Med. 2011, 8, e1000398. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doumayrou, J.; Frazier, M.G.; Brown, H.N.; Wargo, A.R. Efficacy of Three Vaccine Regimens Against Infectious Hematopoietic Necrosis Virus Transmission Potential in Rainbow Trout. Vaccines 2025, 13, 864. https://doi.org/10.3390/vaccines13080864
Doumayrou J, Frazier MG, Brown HN, Wargo AR. Efficacy of Three Vaccine Regimens Against Infectious Hematopoietic Necrosis Virus Transmission Potential in Rainbow Trout. Vaccines. 2025; 13(8):864. https://doi.org/10.3390/vaccines13080864
Chicago/Turabian StyleDoumayrou, Juliette, Mary G. Frazier, Hannah N. Brown, and Andrew R. Wargo. 2025. "Efficacy of Three Vaccine Regimens Against Infectious Hematopoietic Necrosis Virus Transmission Potential in Rainbow Trout" Vaccines 13, no. 8: 864. https://doi.org/10.3390/vaccines13080864
APA StyleDoumayrou, J., Frazier, M. G., Brown, H. N., & Wargo, A. R. (2025). Efficacy of Three Vaccine Regimens Against Infectious Hematopoietic Necrosis Virus Transmission Potential in Rainbow Trout. Vaccines, 13(8), 864. https://doi.org/10.3390/vaccines13080864