From the Infection to the Immunotherapy in Cervical Cancer: Can We Stop the Natural Course of the Disease?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Prophylactic HPV Vaccines
3.1.1. Safety
3.1.2. Efficacy
3.1.3. Therapeutic Vaccines
3.2. Immunotherapy
3.2.1. Drugs That Target Ctla-4
3.2.2. Anti-PD-1 or PD-L1
3.2.3. Adaptive T-Cell therapy
3.3. Outlook
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Zur Hausen, H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 1977, 78, 1–30. [Google Scholar]
- Bosch, F.X.; Lorincz, A.; Munoz, N.; Meijer, C.J.; Shah, K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiSaia, P.J.; Creasman, W.T. (Eds.) Invasive Cervical Cancer. In Clinical Gynecologic Oncology, 8th ed.; Mosby: St. Louis, MO, USA, 2012; pp. 51–106. [Google Scholar]
- Zhou, J.; Sun, X.Y.; Stenzel, D.J.; Frazer, I.H. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991, 185, 251–257. [Google Scholar] [CrossRef]
- Harper, D.M.; DeMars, L.R. HPV vaccines—A review of the first decade. Gynecol. Oncol. 2017, 146, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brotherton, J.M.L.; Bloem, P.N. Population-based HPV vaccination programmes are safe and effective: 2017 update and the impetus for achieving better global coverage. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 42–58. [Google Scholar] [CrossRef]
- Muñoz, N.; Manalastas, R., Jr.; Pitisuttithum, P.; Tresukosol, D.; Monsonego, J.; Ault, K.; Clavel, C.; Luna, J.; Myers, E.; Hood, S.; et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: A randomised, double-blind trial. Lancet 2009, 373, 1949–1957. [Google Scholar]
- Kang, S.; Kim, K.H.; Kim, Y.T.; Kim, Y.T.; Kim, J.H.; Song, Y.S.; Shin, S.H.; Ryu, H.S.; Han, J.W.; Kang, J.H.; et al. Safety and immunogenicity of a vaccine targeting human papillomavirus types 6, 11, 16 and 18: A randomized, placebo-controlled trial in 176 Korean subjects. Int. J. Gynecol. Cancer 2008, 18, 1013–1019. [Google Scholar] [CrossRef]
- Ngan, H.Y.; Cheung, A.N.; Tam, K.F.; Chan, K.K.; Tang, H.W.; Bi, D.; Descamps, D.; Bock, H.L. Human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine: Immunogenicity and safety in healthy Chinese women from Hong Kong. Hong Kong Med. J. 2010, 16, 171–179. [Google Scholar] [PubMed]
- Medina, D.M.; Valencia, A.; de Velasquez, A.; Huang, L.M.; Prymula, R.; Garcia-Sicilia, J.; Rombo, L.; David, M.P.P.; Descamps, D.; Hardt, K.; et al. Safety and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine: A randomized, controlled trial in adolescent girls. J. Adolesc. Health 2010, 46, 414–421. [Google Scholar] [CrossRef]
- Medina, D.M.; Valencia, A.; de Velasquez, A.; Huang, L.M.; Prymula, R.; García-Sicilia, J.; Rombo, L.; David, M.P.; Descamps, D.; Hardt, K.; et al. Human papillomavirus 16/18 AS04-adjuvanted cervical cancer vaccine: Immunogenicity and safety in 15–25 years old healthy Korean women. J. Gynecol. Oncol. 2011, 22, 67–75. [Google Scholar]
- Bhatla, N.; Suri, V.; Basu, P.; Shastri, S.; Datta, S.K.; Bi, D.; Descamps, D.J.; Bock, H.L. Immunogenicity and safety of human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine in healthy Indian women. J. Obstet. Gynaecol. Res. 2010, 36, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Angioli, R.; Lopez, S.; Aloisi, A.; Terranova, C.; De Cicco, C.; Scaletta, G.; Capriglione, S.; Miranda, A.; Luvero, D.; Ricciardi, R.; et al. Ten years of HPV vaccines: State of art and controversies. Crit. Rev. Oncol. Hematol. 2016, 102, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Huh, W.K.; Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; de Andrade, R.P.; Ault, K.A.; Bartholomew, D.; Cestero, R.M.; Fedrizzi, E.N.; Hirschberg, A.L.; et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16–26 years: A randomised, double-blind trial. Lancet 2017, 390, 2143–2159. [Google Scholar] [CrossRef]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Macartney, K.K.; Chiu, C.; Georgousakis, M.; Brotherton, J.M. Safety of human papillomavirus vaccines: A review. Drug Saf. 2013, 36, 393–412. [Google Scholar] [CrossRef]
- Rambout, L.; Hopkins, L.; Hutton, B.; Fergusson, D. Prophylactic vaccination against human papillomavirus infection and disease in women: A systematic review of randomized controlled trials. CMAJ 2007, 177, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Arana, J.E.; Harrington, T.; Cano, M.; Lewis, P.; Mba-Jonas, A.; Rongxia, L.; Stewart, B.; Markowitz, L.E.; Shimabukuro, T.T. Post-licensure safety monitoring of quadrivalent human papillomavirus vaccine in the Vaccine Adverse Event Reporting System (VAERS), 2009–2015. Vaccine 2018, 36, 1781–1788. [Google Scholar] [CrossRef]
- Angioli, R.; Casciello, M.; Lopez, S.; Plotti, F.; Minco, L.D.; Frati, P.; Fineschi, V.; Panici, P.B.; Scaletta, G.; Capriglione, S.; et al. Assessing HPV vaccination perceptions with online social media in Italy. Int. J. Gynecol. Cancer 2019, 29, 453–458. [Google Scholar] [CrossRef]
- Naud, P.S.; Roteli-Martins, C.M.; De Carvalho, N.S.; Teixeira, J.C.; de Borba, P.C.; Sanchez, N.; Zahaf, T.; Catteau, G.; Geeraerts, B.; Descamps, D. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: Final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum. Vaccin Immunother. 2014, 10, 2147–2162. [Google Scholar] [CrossRef] [Green Version]
- Paavonen, J.; Naud, P.; Salmerón, J.; Wheeler, C.M.; Chow, S.N.; Apter, D.; Kitchener, H.; Castellsague, X.; Teixeira, J.C.; Skinner, S.R.; et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): Final analysis of a double-blind, randomised study in young women. Lancet 2009, 374, 301–314. [Google Scholar] [CrossRef]
- Hildesheim, A.; Wacholder, S.; Catteau, G.; Struyf, F.; Dubin, G.; Herrero, R.; CVT Group. Efficacy of the HPV-16/18 vaccine: Final according to protocol results from the blinded phase of the randomized Costa Rica HPV-16/18 vaccine trial. Vaccine 2014, 32, 5087–5097. [Google Scholar] [CrossRef] [Green Version]
- Villa, L.L.; Ault, K.A.; Giuliano, A.R.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Brown, D.R.; Ferenczy, A.; Harper, D.M.; Koutsky, L.A.; et al. Immunologic responses following administration of a vaccine targeting human papillomavirus Types 6, 11, 16, and 18. Vaccine 2006, 24, 5571–5583. [Google Scholar] [CrossRef] [PubMed]
- Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 2007, 356, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- FUTURE I/II Study Group; Dillner, J.; Kjaer, S.K.; Wheeler, C.M.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Perez, G.; Brown, D.R.; Koutsky, L.A.; et al. Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: Randomised controlled trial. BMJ 2010, 341, c3493. [Google Scholar] [CrossRef] [Green Version]
- Toh, Z.Q.; Licciardi, P.V.; Fong, J.; Garland, S.M.; Tabrizi, S.N.; Russell, F.M.; Mulholland, E.K. Reduced dose human papillomavirus vaccination: An update of the current state-of-the-art. Vaccine 2015, 33, 5042–5050. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Prabhu, P.R.; Pawlita, M.; Gheit, T.; Bhatla, N.; Muwonge, R.; Nene, B.M.; Esmy, P.O.; Joshi, S.; Poli, U.R.; et al. Immunogenicity and HPV infection after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre prospective cohort study. Lancet Oncol. 2016, 17, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Kreimer, A.R.; Rodriguez, A.C.; Hildesheim, A.; Herrero, R.; Porras, C.; Schiffman, M.; González, P.; Solomon, D.; Jiménez, S.; Schiller, J.T.; et al. Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J. Natl. Cancer Inst. 2011, 103, 1444–1451. [Google Scholar] [CrossRef]
- Safaeian, M.; Sampson, J.N.; Pan, Y.; Porras, C.; Kemp, T.J.; Herrero, R.; Quint, W.; van Doorn, L.J.; Schussler, J.; Lowy, D.R.; et al. Durability of Protection Afforded by Fewer Doses of the HPV16/18 Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2018, 110, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Kreimer, A.R.; Struyf, F.; Del Rosario-Raymundo, M.R.; Hildesheim, A.; Skinner, S.R.; Wacholder, S.; Garland, S.M.; Herrero, R.; David, M.P.; Wheeler, C.M.; et al. Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: Combined analysis of data from the Costa Rica Vaccine and PATRICIA Trials. Lancet Oncol. 2015, 16, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Wnukowski-Mtonga, P.; Jayasinghe, S.; Chiu, C.; Macartney, K.; Brotherton, J.; Donovan, B.; Hall, M.; Smith, D.W.; Peterson, K.; Campbell-Lloyd, S.; et al. Scientific evidence supporting recommendations on the use of the 9-valent HPV vaccine in a 2-dose vaccine schedule in Australia. Commun. Dis. Intell. 2018, 2020, 44. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Harris, K.; Khan, A.S.; Draghia-Akli, R.; Sewell, D.; Weiner, D.B. Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensus protein in mice and rhesus macaques. Vaccine 2008, 26, 5210–5215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagarazzi, M.L.; Yan, J.; Morrow, M.P.; Shen, X.; Parker, R.L.; Lee, J.C.; Giffear, M.; Pankhong, P.; Khan, A.S.; Broderick, K.E.; et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci. Transl. Med. 2012, 4, 155ra38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [Green Version]
- Callahan, M.K.; Wolchok, J.D. At the bedside: CTLA-4- and PD-1- blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 2013, 94, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.; Fleming, G.F.; Tinker, A.V.; Hirte, H.W.; Tsoref, D.; et al. Association of Ipilimumab With Safety and Antitumor Activity in Women with Metastatic or Recurrent Human Papillomavirus-Related Cervical Carcinoma. JAMA Oncol. 2018, 4, e173776. [Google Scholar] [CrossRef]
- Chemoradiation Therapy and Ipilimumab in Treating Patients with Stages IB2-IIB or IIIB-IVA Cervical Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01711515 (accessed on 20 July 2019).
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhang, M.; Li, J.; Young, K.H. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front. Immunol. 2017, 8, 1597. [Google Scholar] [CrossRef] [Green Version]
- Vici, P.; Mariani, L.; Pizzuti, L.; Sergi, D.; Di Lauro, L.; Vizza, E.; Tomao, F.; Tomao, S.; Cavallotti, C.; Paolini, F.; et al. Immunologic treatments for precancerous lesions and uterine cervical cancer. J. Exp. Clin. Cancer Res. 2014, 33, 29. [Google Scholar] [CrossRef] [Green Version]
- Lyford-Pike, S.; Peng, S.; Young, G.D.; Taube, J.M.; Westra, W.H.; Akpeng, B.; Bruno, T.C.; Richmon, J.D.; Wang, H.; Bishop, J.A.; et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013, 73, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar]
- Tewari, K.S.; Monk, B.J. New strategies in advanced cervical cancer: From angiogenesis blockade to immunotherapy. Clin. Cancer Res. 2014, 20, 5349–5358. [Google Scholar] [CrossRef] [Green Version]
- Hollebecque, A.; Meyer, T.; Moore, K.N.; Machiels, J.P.; De Greve, J.; López-Picazo, J.M.; Oaknin, A.; Kerger, J.N.; Boni, V.; Evans, T.J.; et al. An open-label, multicohort, phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): Efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J. Clin. Oncol. 2017, 35, 5504. [Google Scholar] [CrossRef]
- Chung, H.C.; Ros, W.; Delord, J.P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Kim, M.; Suh, D.H.; Lee, K.H.; Eom, K.Y.; Lee, J.Y.; Lee, Y.Y.; Hansen, H.F.; Mirza, M.R.; Kim, J.W. Major clinical research advances in gynecologic cancer in 2019. J. Gynecol. Oncol. 2020, 31, e48. [Google Scholar] [CrossRef] [Green Version]
- Luvero, D.; Plotti, F.; Lopez, S.; Scaletta, G.; Capriglione, S.; Montera, R.; Antonelli, G.; Ciuffreda, S.; Carassiti, R.; Oliveti, A.; et al. Antiangiogenics and immunotherapies in cervical cancer: An update and future’s view. Med. Oncol. 2017, 34, 115. [Google Scholar] [CrossRef]
- Heeren, A.M.; Punt, S.; Bleeker, M.C.; Gaarenstroom, K.N.; van der Velden, J.; Kenter, G.G.; de Gruijl, T.D.; Jordanova, E.S. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod. Pathol. 2016, 29, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, S.; Draper, L.M.; Langhan, M.M.; Campbell, T.E.; Kwong, M.L.; Wunderlich, J.R.; Dudley, M.E.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 2015, 33, 1543–1550. [Google Scholar] [PubMed] [Green Version]
- Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A.; et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017, 356, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.W.; Xu, Y.; Meng, D.D.; Gao, L.; Shen, W.J.; Liu, Z.L.; Xu, Z.Q. Combined treatment with autologous CIK cells, radiotherapy and chemotherapy in advanced cervical cancer. Pathol. Oncol. Res. 2019, 25, 691–696. [Google Scholar] [CrossRef]
- Veluchamy, J.P.; Heeren, A.M.; Spanholtz, J.; van Eendenburg, J.D.; Heideman, D.A.; Kenter, G.G.; Verheul, H.M.; van der Vliet, H.J.; Jordanova, E.S.; de Gruijl, T.D. High-efficiency lysis of cervical cancer by allogeneic NK cells derived from umbilical cord progenitors is independent of HLA status. Cancer Immunol. Immunother. 2017, 66, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Santin, A.D.; Bellone, S.; Gokden, M.; Cannon, M.J.; Parham, G.P. Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer. N. Engl. J. Med. 2002, 346, 1752–1753. [Google Scholar] [CrossRef]
- Kagabu, M.; Nagasawa, T.; Sato, C.; Fukagawa, Y.; Kawamura, H.; Tomabechi, H.; Takemoto, S.; Shoji, T.; Baba, T. Immunotherapy for Uterine Cervical Cancer Using Checkpoint Inhibitors: Future Directions. Int. J. Mol. Sci. 2020, 21, 2335. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, A.; Bowden, S.; Paraskevaidi, M.; Fotopoulou, C.; Martin-Hirsch, P.; Paraskevaidis, E.; Kyrgiou, M. HPV vaccination and cancer prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 65, 109–124. [Google Scholar] [CrossRef]
NCT Number | Status | Interventions | Gender | Phases | Enrollment |
---|---|---|---|---|---|
NCT4188860 | Recruiting | A combinationof anti PD-1 ab Camrelizumab and albumin bound Paclitaxel | Female | Phase 2 | 34 |
NCT04256213 | Recruiting | Nivolumab and Ipilimumab | Female | Not Applicable | 40 |
NCT03108495 | Recruiting | LN-145 + Pembrolizumab | Female | Phase 2 | 138 |
NCT02635360 | Recruiting | Pembrolizumab | Female | Phase 2 | 88 |
NCT03614949 | Recruiting | Atezolizumab | Female | Phase 2 | 26 |
NCT04405349 | Recruiting | Atezolizumab | Female | Phase 2 | 50 |
NCT03073525 | Active, not recruiting | Atezolizumab | Female | Phase 2 | 25 |
NCT03277482 | Recruiting | Durvalumab | Female | Phase 1 | 32 |
NCT03192059 | Recruiting | Pembrolizumab | Female | Phase 2 | 43 |
NCT02725489 | Active, not recruiting | Durvalumab | Female | Phase 2 | 13 |
NCT4230954 | Recruiting | Cabozanitib and Pembrolizumab | Female | Phase 2 | 39 |
NCT03452332 | Recruiting | Durvalumab/Tremelimumab | Female | Phase 1 | 18 |
NCT03508570 | Recruiting | Ipilimumab | Female | Phase 1 | 48 |
NCT03833479 | recruiting | CRT Maintenance TSR-042 (anti-PD-1 antibody) | Female | Phase 2 | 132 |
NCT03144466 | Recruiting | CRT with Pembrolizumab | Female | Phase 1 | 26 |
NCT03298893 | Recruiting | CRT with Nivolumab | Female | Phase 1 | 21 |
NCT01711515 | Recruiting | CRT with Ipilimumab | Female | Phase 1 | 34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luvero, D.; Lopez, S.; Bogani, G.; Raspagliesi, F.; Angioli, R. From the Infection to the Immunotherapy in Cervical Cancer: Can We Stop the Natural Course of the Disease? Vaccines 2020, 8, 597. https://doi.org/10.3390/vaccines8040597
Luvero D, Lopez S, Bogani G, Raspagliesi F, Angioli R. From the Infection to the Immunotherapy in Cervical Cancer: Can We Stop the Natural Course of the Disease? Vaccines. 2020; 8(4):597. https://doi.org/10.3390/vaccines8040597
Chicago/Turabian StyleLuvero, Daniela, Salvatore Lopez, Giorgio Bogani, Francesco Raspagliesi, and Roberto Angioli. 2020. "From the Infection to the Immunotherapy in Cervical Cancer: Can We Stop the Natural Course of the Disease?" Vaccines 8, no. 4: 597. https://doi.org/10.3390/vaccines8040597