Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Bacterial Strain and Culture Conditions
2.3. Enterobactin Purification and Conjugation
2.4. Enterobactin-Keyhole Limpet Hemocyanin (Ent–KLH) Conjugate Vaccine Preparation
2.5. Vaccination Procedures
2.6. Analysis of Gut Microbiota
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Statistical Analysis
3. Results
3.1. Multiple Vaccinations of Chickens with the Ent–KLH Conjugate Vaccine Did Not Cause Phenotypic Changes in Physiology (Trial A)
3.2. The Ent–KLH Conjugate Vaccine Significantly Elicited Ent-Specific Antibody Response (Trial A)
3.3. Multiple Vaccinations of Chickens with the Ent–KLH Conjugate Reduced Colonization of C. jejuni in Chicken Intestine (Trial A)
3.4. Different Vaccination Regimen Still Significantly Induced High Level of Ent-Specific Antibodies and Reduced Colonization of C. jejuni in the Chicken Intestine (Trial B)
3.5. Persistence of the Ent-Specific Antibodies Upon Single Vaccination of Chickens with the Ent–KLH Conjugate Vaccine (Trial C)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaakoush, N.O.; Castano-Rodriguez, N.; Mitchell, H.M.; Man, S.I.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Facciola, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Lagana, P. Campylobacter: From microbiology to prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef] [PubMed]
- Umaraw, P.; Prajapati, A.; Verma, A.K.; Pathak, V.; Singh, V.P. Control of Campylobacter in poultry industry from farm to poultry processing unit: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakos, A.C.; Gundogdu, O.; Corcionivoschi, N. A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Shank, J.M.; Johnson, J.G. Current and potential treatments for reducing Campylobacter colonization in animal hosts and disease in humans. Front. Microbiol. 2017, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound Emerg. Dis. 2018, 65 (Suppl. 1), 30–48. [Google Scholar] [CrossRef] [Green Version]
- Hermans, D.; Van Deun, K.; Messens, W.; Martel, A.; Van Immerseel, F.; Haesebrouck, F.; Rasschaert, G.; Heyndrickx, M.; Pasmans, F. Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research. Vet. Microbiol. 2011, 152, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Fancher, C.A.; Zhang, L.; Kiess, A.S.; Adhikari, P.A.; Dinh, T.T.N.; Sukumaran, A.T. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions. Microorganisms 2020, 8, 1533. [Google Scholar] [CrossRef]
- Bywater, R.J. Veterinary use of antimicrobials and emergence of resistance in zoonotic and sentinel bacteria in the EU. J. Vet. Med. B 2004, 51, 361–363. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Wieczorek, K.; Wolkowicz, T.; Osek, J. Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Avci, F.Y. A chicken vaccine to protect humans from diarrheal disease. Glycobiology 2016, 26, 1137–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poly, F.; Noll, A.J.; Riddle, M.S.; Porter, C.K. Update on Campylobacter vaccine development. Hum. Vaccin. Immunother. 2019, 15, 1389–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagusztyn-Krynicka, E.K.; Laniewski, P.; Wyszynska, A. Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert Rev. Vaccines 2009, 8, 625–645. [Google Scholar] [CrossRef]
- Miller, C.E.; Williams, P.H.; Ketley, J.M. Pumping iron: Mechanisms for iron uptake by Campylobacter. Microbiology 2009, 155, 3157–3165. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Zeng, X.; Haigh, R.D.; Ketley, J.M.; Lin, J. Identification and characterization of a new ferric enterobactin receptor, CfrB, in Campylobacter. J. Bacteriol. 2010, 192, 4425–4435. [Google Scholar] [CrossRef] [Green Version]
- Palyada, K.; Threadgill, D.; Stintzi, A. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 2004, 186, 4714–4729. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Lin, J. Characterization of high affinity iron acquisition systems in Campylobacter jejuni. Methods Mol. Biol. 2017, 1512, 65–78. [Google Scholar] [CrossRef]
- Liu, X.; Adams, L.J.; Zeng, X.; Lin, J. Evaluation of in ovo vaccination of DNA vaccines for Campylobacter control in broiler chickens. Vaccine 2019, 37, 3785–3792. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.J.; Zeng, X.; Lin, J. Development and evaluation of two live Salmonella-vectored vaccines for Campylobacter control in broiler chickens. Foodborne Pathog. Dis. 2019, 16, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zeng, X.; Mo, Y.; He, B.; Lin, H.; Lin, J. Enterobactin-specific antibodies induced by a novel enterobactin conjugate vaccine. Appl. Environ. Microb. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zeng, X.; Lin, J. Enterobactin-specific antibodies inhibit in vitro growth of different gram-negative bacterial pathogens. Vaccine 2020, 38, 7764–7773. [Google Scholar] [CrossRef] [PubMed]
- Carver, P.L. The battle for iron between humans and microbes. Curr. Med. Chem. 2018, 25, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Detweiler, C.S. A new way to beat intestinal pathogens. Trends Microbiol. 2017, 25, 169–170. [Google Scholar] [CrossRef] [Green Version]
- Ellermann, M.; Arthur, J.C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2017, 105, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Lamb, A.L. Breaking a pathogen’s iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim. Biophys. Acta 2015, 1854, 1054–1070. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Bullock, J.L.; Nolan, E.M. Siderophore-mediated cargo delivery to the cytoplasm of Escherichia coli and Pseudomonas aeruginosa: Syntheses of monofunctionalized enterobactin scaffolds and evaluation of enterobactin-cargo conjugate uptake. J. Am. Chem. Soc. 2012, 134, 18388–18400. [Google Scholar] [CrossRef]
- Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-antibiotic conjugate design: New drugs for bad bugs? Molecules 2019, 24, 3314. [Google Scholar] [CrossRef] [Green Version]
- Sassone-Corsi, M.; Chairatana, P.; Zheng, T.; Perez-Lopez, A.; Edwards, R.A.; George, M.D.; Nolan, E.M.; Raffatellu, M. Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc. Natl. Acad. Sci. USA 2016, 113, 13462–13467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mike, L.A.; Smith, S.N.; Sumner, C.A.; Eaton, K.A.; Mobley, H.L.T. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl. Acad. Sci. USA 2016, 113, 13468–13473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvak, Y.; Byndloss, M.X.; Tsolis, R.M.; Baumler, A.J. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Slifka, M.K.; Amanna, I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 2014, 32, 2948–2957. [Google Scholar] [CrossRef] [Green Version]
- Diraviyam, T.; Zhao, B.; Wang, Y.; Schade, R.; Michael, A.; Zhang, X. Effect of chicken egg yolk antibodies (IgY) against diarrhea in domesticated animals: A systematic review and meta-analysis. PLoS ONE 2014, 9, e97716. [Google Scholar] [CrossRef] [Green Version]
- De Zoete, M.R.; van Putten, J.P.M.; Wagenaar, J.A. Vaccination of chickens against Campylobacter. Vaccine 2007, 25, 5548–5557. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Guo, F.; Guo, J.; Cao, X.; Wang, H.; Yang, B.; Zhou, H.; Su, X.; Zeng, X.; Lin, J.; et al. Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine. Vaccines 2020, 8, 747. https://doi.org/10.3390/vaccines8040747
Cui Y, Guo F, Guo J, Cao X, Wang H, Yang B, Zhou H, Su X, Zeng X, Lin J, et al. Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine. Vaccines. 2020; 8(4):747. https://doi.org/10.3390/vaccines8040747
Chicago/Turabian StyleCui, Yifang, Fangfang Guo, Jie Guo, Xiaoya Cao, Huiwen Wang, Bing Yang, Hongzhuan Zhou, Xia Su, Ximin Zeng, Jun Lin, and et al. 2020. "Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine" Vaccines 8, no. 4: 747. https://doi.org/10.3390/vaccines8040747
APA StyleCui, Y., Guo, F., Guo, J., Cao, X., Wang, H., Yang, B., Zhou, H., Su, X., Zeng, X., Lin, J., & Xu, F. (2020). Immunization of Chickens with the Enterobactin Conjugate Vaccine Reduced Campylobacter jejuni Colonization in the Intestine. Vaccines, 8(4), 747. https://doi.org/10.3390/vaccines8040747