Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity
Abstract
:1. Introduction
2. Current Influenza Vaccines and Limitations
3. Vaccine Adjuvants
4. Vaccine Adjuvants Assist Influenza Vaccines to Induce Cross-Protective Immunity
4.1. MF59
4.1.1. Induction of Cross-Protective Immunity against Seasonal Influenza Vaccine
4.1.2. Induction of Cross-Clade Immunity against Pre-Pandemic Influenza Vaccine
4.1.3. Safety
4.1.4. Mechanistic Insights
4.2. AS03
4.2.1. Cross-Clade Protection against Pre-Pandemic H5N1 Vaccine
4.2.2. Safety
4.2.3. Mechanistic Insights
4.3. TLR4 Agonists
4.4. TLR7 Agonists
4.5. Flagellin
4.6. Saponin-containing Adjuvants
4.7. Enterotoxin Adjuvants
4.8. CAF01
4.9. Physical Adjuvants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clayville, L.R. Influenza update: A review of currently available vaccines. P & T 2011, 36, 659–684. [Google Scholar]
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26 (Suppl. 4), D49–D53. [Google Scholar] [CrossRef] [Green Version]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 2019, 17, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodewes, R.; Morick, D.; De Mutsert, G.; Osinga, N.; Bestebroer, T.; Van Der Vliet, S.; Smits, S.L.; Kuiken, T.; Rimmelzwaan, G.F.; Fouchier, R.A.; et al. Recurring influenza B virus infections in seals. Emerg. Infect Dis. 2013, 19, 511–512. [Google Scholar] [CrossRef] [PubMed]
- Boivin, S.; Cusack, S.; Ruigrok, R.W.; Hart, D.J. Influenza A virus polymerase: Structural insights into replication and host adaptation mechanisms. J. Biol. Chem. 2010, 285, 28411–28417. [Google Scholar] [CrossRef] [Green Version]
- Nobusawa, E.; Sato, K. Comparison of the mutation rates of human influenza A and B viruses. J. Virol. 2006, 80, 3675–3678. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.C.; Wilson, I.A. A Perspective on the Structural and Functional Constraints for Immune Evasion: Insights from Influenza Virus. J. Mol. Biol. 2017, 429, 2694–2709. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Morens, D.M. Pandemic influenza--including a risk assessment of H5N1. Rev. Sci. Tech. 2009, 28, 187–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowen, A.C. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu. Rev. Virol. 2017, 4, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect Dis. 2006, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Rambhia, K.J.; Watson, M.; Sell, T.K.; Waldhorn, R.; Toner, E. Mass vaccination for the 2009 H1N1 pandemic: Approaches, challenges, and recommendations. Biosecur. Bioterror. 2010, 8, 321–330. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Kash, J.C.; Morens, D.M. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Saunders-Hastings, P.R.; Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 2016, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Fineberg, H.V. Pandemic preparedness and response—Lessons from the H1N1 influenza of 2009. N. Engl. J. Med. 2014, 370, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Trifonov, V.; Khiabanian, H.; Rabadan, R. Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N. Engl. J. Med. 2009, 361, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.S.; Webby, R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev. 2013, 26, 476–492. [Google Scholar] [CrossRef] [Green Version]
- Tosh, P.K.; Jacobson, R.M.; Poland, G.A. Influenza vaccines: From surveillance through production to protection. Mayo Clin. Proc. 2010, 85, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Paules, C.I.; Sullivan, S.G.; Subbarao, K.; Fauci, A.S. Chasing Seasonal Influenza-The Need for a Universal Influenza Vaccine. N. Engl. J. Med. 2018, 378, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Berlanda Scorza, F.; Tsvetnitsky, V.; Donnelly, J.J. Universal influenza vaccines: Shifting to better vaccines. Vaccine 2016, 34, 2926–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, L.D.; Schultz-Cherry, S. Development of a Universal Influenza Vaccine. J. Immunol. 2019, 202, 392–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, P.T.; Crépey, P.; Pitman, R.J.; Macabeo, B.; Chit, A.; Postma, M.J. Cost-Effectiveness of Quadrivalent versus Trivalent Influenza Vaccine in the United States. Value Health 2016, 19, 964–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrose, C.S.; Levin, M.J. The rationale for quadrivalent influenza vaccines. Hum. Vaccines Immunother. 2012, 8, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Soema, P.C.; Kompier, R.; Amorij, J.P.; Kersten, G.F. Current and next generation influenza vaccines: Formulation and production strategies. Eur. J. Pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahr. E.V 2015, 94, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Huckriede, A.; Bungener, L.; Stegmann, T.; Daemen, T.; Medema, J.; Palache, A.M.; Wilschut, J.C. The virosome concept for influenza vaccines. Vaccine 2005, 23 (Suppl. 1), S26–S38. [Google Scholar] [CrossRef]
- Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef]
- Chen, J.R.; Liu, Y.M.; Tseng, Y.C.; Ma, C. Better influenza vaccines: An industry perspective. J. Biomed. Sci. 2020, 27, 33. [Google Scholar] [CrossRef]
- Kon, T.C.; Onu, A.; Berbecila, L.; Lupulescu, E.; Ghiorgisor, A.; Kersten, G.F.; Cui, Y.-Q.; Amorij, J.-P.; Van Der Pol, L. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes. PLoS ONE 2016, 11, e0150700. [Google Scholar] [CrossRef] [Green Version]
- Milián, E.; Kamen, A.A. Current and Emerging Cell Culture Manufacturing Technologies for Influenza Vaccines. Biomed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamayoshi, S.; Kawaoka, Y. Current and future influenza vaccines. Nat. Med. 2019, 25, 212–220. [Google Scholar] [CrossRef]
- Cox, M.M.; Izikson, R.; Post, P.; Dunkle, L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Adv. Vaccines 2015, 3, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, H.J. Alternative routes of influenza vaccine delivery. Expert. Opin. Drug Deliv. 2006, 3, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Amorij, J.P.; Hinrichs, W.; Frijlink, H.W.; Wilschut, J.C.; Huckriede, A. Needle-free influenza vaccination. Lancet Infect Dis. 2010, 10, 699–711. [Google Scholar] [CrossRef]
- McAllister, L.; Anderson, J.; Werth, K.; Cho, I.; Copeland, K.; Bouveret, N.L.C.; Plant, D.; Mendelman, P.M.; Cobb, D.K. Needle-free jet injection for administration of influenza vaccine: A randomised non-inferiority trial. Lancet (Lond. Engl.) 2014, 384, 674–681. [Google Scholar] [CrossRef]
- Ravi, A.D.; Sadhna, D.; Nagpaal, D.; Chawla, L. Needle free injection technology: A complete insight. Int. J. Pharm. Investig. 2015, 5, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kis, E.E.; Winter, G.; Myschik, J. Devices for intradermal vaccination. Vaccine 2012, 30, 523–538. [Google Scholar] [CrossRef]
- Romani, N.; Flacher, V.; Tripp, C.H.; Sparber, F.; Ebner, S.; Stoitzner, P. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination. Curr. Top. Microbiol. Immunol. 2011, 351, 113–138. [Google Scholar] [CrossRef] [Green Version]
- Sticchi, L.; Alberti, M.; Alicino, C.; Crovari, P. The intradermal vaccination: Past experiences and current perspectives. J. Prev. Med. Hyg. 2010, 51, 7–14. [Google Scholar]
- Icardi, G.; Orsi, A.; Ceravolo, A.; Ansaldi, F. Current evidence on intradermal influenza vaccines administered by Soluvia licensed micro injection system. Hum. Vaccin. Immunother. 2012, 8, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Levin, Y.; Kochba, E.; Hung, I.; Kenney, R. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future. Hum. Vaccines Immunother. 2015, 11, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Who Writing Group; Ampofo, W.K.; Baylor, N.; Cobey, S.; Cox, N.J.; Daves, S.; Edwards, S.; Ferguson, N.; Grohmann, G.; Hay, A.; et al. Improving influenza vaccine virus selection: Report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14-16 June 2010. Influenza Other Respir. Viruses 2012, 6, 142–152, e141–e145. [Google Scholar] [CrossRef] [Green Version]
- Jennings, L.C.; Monto, A.S.; Chan, P.K.; Szucs, T.D.; Nicholson, K.G. Stockpiling prepandemic influenza vaccines: A new cornerstone of pandemic preparedness plans. Lancet Infect. Dis. 2008, 8, 650–658. [Google Scholar] [CrossRef]
- Poovorawan, Y.; Pyungporn, S.; Prachayangprecha, S.; Makkoch, J. Global alert to avian influenza virus infection: From H5N1 to H7N9. Pathog. Glob. Health 2013, 107, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, K.L.; Treanor, J.J. Vaccines for seasonal and pandemic influenza. J. Infect. Dis. 2006, 194 (Suppl. 2), S111–S118. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, E.; Qiu, X.; Wilson, P.C.; Bahl, J.; Krammer, F. The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci. Rep. 2018, 8, 10432. [Google Scholar] [CrossRef]
- Raymond, D.D.; Bajic, G.; Ferdman, J.; Suphaphiphat, P.; Settembre, E.C.; Moody, M.A.; Schmidt, A.G.; Harrison, S.C. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc. Natl. Acad. Sci. USA 2018, 115, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Wiley, D.C.; Skehel, J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987, 56, 365–394. [Google Scholar] [CrossRef]
- Mair, C.M.; Ludwig, K.; Herrmann, A.; Sieben, C. Receptor binding and pH stability-how influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta 2014, 1838, 1153–1168. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wan, X.-F.; Ye, Z.; Plant, E.P.; Zhao, Y.; Xu, Y.; Li, X.; Finch, C.; Zhao, N.; Kawano, T.; et al. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps. Sci. Rep. 2015, 5, 15279. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, R.K.; Nowalk, M.P.; Chung, J.; Jackson, M.L.; Jackson, L.A.; Petrie, J.G.; Monto, A.S.; McLean, H.Q.; Belongia, E.A.; Gaglani, M.; et al. 2014-2015 Influenza Vaccine Effectiveness in the United States by Vaccine Type. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 1564–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belongia, E.A.; Kieke, B.A.; Donahue, J.G.; Greenlee, R.T.; Balish, A.; Foust, A.; Lindstrom, S.; Shay, D.K.; Marshfield Influenza Study Group. Effectiveness of inactivated influenza vaccines varied substantially with antigenic match from the 2004-2005 season to the 2006–2007 season. J. Infect. Dis. 2009, 199, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Jiao, X.; Liu, X. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design. Front. Microbiol. 2017, 8, 1898. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, P.; Pei, Y.; Tsang, T.K.; Gu, D.; Wang, W.; Zhang, J.; Horby, P.W.; Uyeki, T.M.; Cowling, B.J.; et al. Assessment of Human-to-Human Transmissibility of Avian Influenza A(H7N9) Virus Across 5 Waves by Analyzing Clusters of Case Patients in Mainland China, 2013-2017. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Baz, M.; Luke, C.J.; Cheng, X.; Jin, H.; Subbarao, K. H5N1 vaccines in humans. Virus Res. 2013, 178, 78–98. [Google Scholar] [CrossRef] [Green Version]
- Clegg, C.H.; Rininger, J.A.; Baldwin, S.L. Clinical vaccine development for H5N1 influenza. Expert Rev. Vaccines 2013, 12, 767–777. [Google Scholar] [CrossRef]
- Mulligan, M.J.; I Bernstein, D.; Winokur, P.L.; E Rupp, R.; Anderson, E.; Rouphael, N.; Dickey, M.; Stapleton, J.T.; Edupuganti, S.; Spearman, P.; et al. Serological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: A randomized clinical trial. JAMA 2014, 312, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Koutsakos, M.; Kedzierska, K.; Subbarao, K. Immune Responses to Avian Influenza Viruses. J. Immunol. 2019, 202, 382–391. [Google Scholar] [CrossRef] [Green Version]
- El Sahly, H.M.; Keitel, W.A. Pandemic H5N1 influenza vaccine development: An update. Expert Rev. Vaccines 2008, 7, 241–247. [Google Scholar] [CrossRef]
- Guan, Y.; Smith, G.J.; Webby, R.; Webster, R.G. Molecular epidemiology of H5N1 avian influenza. Rev. Sci. Tech. 2009, 28, 39–47. [Google Scholar] [CrossRef]
- Lu, J.; Raghwani, J.; Pryce, R.; Bowden, T.A.; Thézé, J.; Huang, S.; Song, Y.; Zou, L.; Liang, L.; Bai, R.; et al. Molecular Evolution, Diversity, and Adaptation of Influenza A(H7N9) Viruses in China. Emerg. Infect Dis. 2018, 24, 1795–1805. [Google Scholar] [CrossRef]
- Kwon, H.-I.; Kim, Y.-I.; Park, S.-J.; Song, M.-S.; Kim, E.-H.; Kim, S.M.; Si, Y.-J.; Lee, I.-W.; Song, B.-M.; Lee, Y.-J.; et al. Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, A.; Preiss, S.; Tavares Da Silva, F.; Garcon, N. Vaccine Adjuvants: From 1920 to 2015 and Beyond. Vaccines 2015, 3, 320–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Gavillet, B.M.; Ahmed, S.; Egan, W.M.; Del Giudice, G.; Golding, H.; Gust, I.; Neels, P.; Reed, S.G.; Sheets, R.L.; Siegrist, C.; et al. Mode of action of adjuvants: Implications for vaccine safety and design. Biologicals 2010, 38, 594–601. [Google Scholar] [CrossRef]
- Rizza, P.; Ferrantini, M.; Capone, I.; Belardelli, F. Cytokines as natural adjuvants for vaccines: Where are we now? Trends Immunol. 2002, 23, 381–383. [Google Scholar] [CrossRef]
- McKee, A.S.; Marrack, P. Old and new adjuvants. Curr. Opin. Immunol. 2017, 47, 44–51. [Google Scholar] [CrossRef]
- Kool, M.; Fierens, K.; Lambrecht, B.N. Alum adjuvant: Some of the tricks of the oldest adjuvant. J. Med. Microbiol. 2012, 61, 927–934. [Google Scholar] [CrossRef] [Green Version]
- HogenEsch, H.; O’Hagan, D.T.; Fox, C.B. Optimizing the utilization of aluminum adjuvants in vaccines: You might just get what you want. Npj Vaccines 2018, 3, 51. [Google Scholar] [CrossRef]
- Lindblad, E.B. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 2004, 82, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Powers, D.C.; Smith, G.E.; Anderson, E.L.; Kennedy, D.J.; Hackett, C.S.; Wilkinson, B.E.; Volvovitz, F.; Belshe, R.B.; Treanor, J.J. Influenza A virus vaccines containing purified recombinant H3 hemagglutinin are well tolerated and induce protective immune responses in healthy adults. J. Infect. Dis. 1995, 171, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.J.; Müller, M.; Oh, H.M.; Tambyah, P.A.; Joukhadar, C.; Montomoli, E.; Fisher, D.; Berezuk, G.; Fritsch, S.; Löw-Baselli, A.; et al. A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N. Engl. J. Med. 2008, 358, 2573–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.J.; Shih, Y.J.; Chen, C.H.; Fang, C.T. Aluminum salts as an adjuvant for pre-pandemic influenza vaccines: A meta-analysis. Sci. Rep. 2018, 8, 11460. [Google Scholar] [CrossRef]
- Yin, D.P.; Zhu, B.P.; Wang, H.Q.; Cao, L.; Di Wu, W.; Jiang, K.Y.; Xia, W.; Zhang, G.M.; Zheng, J.-S.; Cao, L.S.; et al. Effect of aluminum hydroxide adjuvant on the immunogenicity of the 2009 pandemic influenza A/H1N1 vaccine: Multi-level modeling of data with repeated measures. Biomed. Env. Sci. 2011, 24, 624–629. [Google Scholar] [CrossRef]
- Hutchison, S.; Benson, R.A.; Gibson, V.B.; Pollock, A.H.; Garside, P.; Brewer, J.M. Antigen depot is not required for alum adjuvanticity. FASEB J. 2012, 26, 1272–1279. [Google Scholar] [CrossRef] [Green Version]
- Kool, M.; Soullié, T.; van Nimwegen, M.; Willart, M.A.; Muskens, F.; Jung, S.; Hoogsteden, H.C.; Hammad, H.; Lambrecht, B.N. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 2008, 205, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Eisenbarth, S.C.; Colegio, O.R.; O’Connor, W.; Sutterwala, F.S.; Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008, 453, 1122–1126. [Google Scholar] [CrossRef]
- Li, H.; Willingham, S.B.; Ting, J.P.; Re, F. Cutting edge: Inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 2008, 181, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Kool, M.; Pétrilli, V.; De Smedt, T.; Rolaz, A.; Hammad, H.; Van Nimwegen, M.; Bergen, I.M.; Castillo, R.; Lambrecht, B.N.; Tschopp, J. Cutting edge: Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 2008, 181, 3755–3759. [Google Scholar] [CrossRef] [Green Version]
- Franchi, L.; Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 2008, 38, 2085–2089. [Google Scholar] [CrossRef]
- Wen, Y.; Shi, Y. Alum: An old dog with new tricks. Emerg. Microbes Infect 2016, 5, e25. [Google Scholar] [CrossRef] [PubMed]
- Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hagan, D.T.; Tsai, T.F.; Brito, L.A. Emulsion based vaccine adjuvants. Hum. Vaccin. Immunother. 2013, 9, 1698–1700. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.F. Fluad(R)-MF59(R)-Adjuvanted Influenza Vaccine in Older Adults. Infect Chemother 2013, 45, 159–174. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, D.T.; Ott, G.S.; Nest, G.V.; Rappuoli, R.; Giudice, G.D. The history of MF59((R)) adjuvant: A phoenix that arose from the ashes. Expert Rev. Vaccines 2013, 12, 13–30. [Google Scholar] [CrossRef]
- Weir, J.P.; Gruber, M.F. An overview of the regulation of influenza vaccines in the United States. Influenza Other Respir. Viruses 2016, 10, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Schaffner, W.; Chen, W.H.; Hopkins, R.H.; Neuzil, K. Effective Immunization of Older Adults against Seasonal Influenza. Am. J. Med. 2018, 131, 865–873. [Google Scholar] [CrossRef]
- Wilkins, A.L.; Kazmin, D.; Napolitani, G.; Clutterbuck, E.A.; Pulendran, B.; Siegrist, C.-A.; Pollard, A.J. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Front. Immunol. 2017, 8, 1760. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.A.; Campbell, J.D.; Frey, S.E.; Edwards, K.M.; Keitel, W.A.; Kotloff, K.L.; Berry, A.A.; Atmar, R.L.; Creech, C.B.; Thomsen, I.P.; et al. Effect of Varying Doses of a Monovalent H7N9 Influenza Vaccine With and Without AS03 and MF59 Adjuvants on Immune Response: A Randomized Clinical Trial. JAMA 2015, 314, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.I.; Edwards, K.M.; Dekker, C.L.; Belshe, R.; Talbot, H.K.B.; Graham, I.L.; Noah, D.L.; He, F.; Hill, H. Effects of adjuvants on the safety and immunogenicity of an avian influenza H5N1 vaccine in adults. J. Infect. Dis. 2008, 197, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Garcon, N.; Di Pasquale, A. From discovery to licensure, the Adjuvant System story. Hum. Vaccines Immunother. 2017, 13, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Laupeze, B.; Herve, C.; Di Pasquale, A.; Tavares Da Silva, F. Adjuvant Systems for vaccines: 13years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine 2019, 37, 5670–5680. [Google Scholar] [CrossRef]
- Di, M.S.; Basevi, V.; Borsari, S.; Balduzzi, S.; Magrini, N. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine. Lancet Oncol. 2012, 13, e50. [Google Scholar] [CrossRef]
- Garcon, N.; Morel, S.; Didierlaurent, A.; Descamps, D.; Wettendorff, M.; Van Mechelen, M. Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 2011, 25, 217–226. [Google Scholar] [CrossRef]
- Thompson, B.S.; Chilton, P.M.; Ward, J.R.; Evans, J.T.; Mitchell, T.C. The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol. 2005, 78, 1273–1280. [Google Scholar] [CrossRef]
- Brito, L.A.; Malyala, P.; O’Hagan, D.T. Vaccine adjuvant formulations: A pharmaceutical perspective. Semin. Immunol. 2013, 25, 130–145. [Google Scholar] [CrossRef]
- Garcon, N.; Vaughn, D.W.; Didierlaurent, A.M. Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 2012, 11, 349–366. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Russell, R.F.; Kinnear, E. Adjuvanted influenza vaccines. Hum. Vaccines Immunother. 2018, 14, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Nicoll, A.; Ciancio, B.C.; Kramarz, P. Pandemic influenza A(H1N1) 2009 vaccines in the European Union. Euro Surveill 2009, 14, 19361. [Google Scholar] [PubMed]
- Leroux-Roels, G. Prepandemic H5N1 influenza vaccine adjuvanted with AS03: A review of the pre-clinical and clinical data. Expert Opin. Biol. 2009, 9, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Garcon, N.; Chomez, P.; Van Mechelen, M. GlaxoSmithKline Adjuvant Systems in vaccines: Concepts, achievements and perspectives. Expert Rev. Vaccines 2007, 6, 723–739. [Google Scholar] [CrossRef] [PubMed]
- Garcon, N.; Van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 2011, 10, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Gosling, R.; von Seidlein, L. The Future of the RTS,S/AS01 Malaria Vaccine: An Alternative Development Plan. PLoS Med. 2016, 13, e1001994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didierlaurent, A.M.; Laupèze, B.; Di Pasquale, A.; Hergli, N.; Collignon, C.; Garçon, N. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert Rev. Vaccines 2017, 16, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.D. Development of the CpG Adjuvant 1018: A Case Study. Methods Mol. Biol. 2017, 1494, 15–27. [Google Scholar] [CrossRef]
- Schillie, S.H.A.; Link-Gelles, R.; Romero, J.; Ward, J.; Nelson, N. Recommendations of the Advisory Committee on Immunization Practices for Use of a Hepatitis B Vaccine with a Novel Adjuvant. Mmwr. Morb. Mortal. Wkly Rep. 2018, 67, 455–458. [Google Scholar] [CrossRef]
- Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D.M. CpG DNA as a vaccine adjuvant. Expert. Rev. Vaccines 2011, 10, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Minutello, M.; Senatore, F.; Cecchinelli, G.; Bianchi, M.; Andreani, T.; Podda, A.; Crovari, P. Safety and immunogenicity of an inactivated subunit influenza virus vaccine combined with MF59 adjuvant emulsion in elderly subjects, immunized for three consecutive influenza seasons. Vaccine 1999, 17, 99–104. [Google Scholar] [CrossRef]
- Ansaldi, F.; Bacilieri, S.; Durando, P.; Sticchi, L.; Valle, L.; Montomoli, E.; Icardi, G.; Gasparini, R.; Crovari, P. Cross-protection by MF59-adjuvanted influenza vaccine: Neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine 2008, 26, 1525–1529. [Google Scholar] [CrossRef]
- Nolan, T.; Bravo, L.; Ceballos, A.; Mitha, E.; Gray, G.; Quiambao, B.; Patel, S.S.; Bizjajeva, S.; Bock, H.; Nazaire-Bermal, N.; et al. Enhanced and persistent antibody response against homologous and heterologous strains elicited by a MF59-adjuvanted influenza vaccine in infants and young children. Vaccine 2014, 32, 6146–6156. [Google Scholar] [CrossRef] [PubMed]
- Banzhoff, A.; Gasparini, R.; Laghi-Pasini, F.; Staniscia, T.; Durando, P.; Montomoli, E.; Capecchi, P.; Di Giovanni, P.; Sticchi, L.; Gentile, C.; et al. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PLoS ONE 2009, 4, e4384. [Google Scholar] [CrossRef]
- Vesikari, T.; Forstén, A.; Borkowski, A.; Gaitatzis, N.; Banzhoff, A.; Clemens, R. Homologous and heterologous antibody responses to a one-year booster dose of an MF59((R)) adjuvanted A/H5N1 pre-pandemic influenza vaccine in pediatric subjects. Hum. Vaccines Immunother. 2012, 8, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, G.; Hancock, K.; Hoschler, K.; Devos, J.; Praus, M.; Bardelli, M.; Malzone, C.; Castellino, F.; Gentile, C.; McNally, T.; et al. Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc. Natl. Acad. Sci. USA 2009, 106, 7962–7967. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, J.; Van Dijken, H.; De Heij, F.; Spijkers, S.; Mouthaan, J.; De Jong, R.; Roholl, P.; Adami, E.A.; Akamatsu, M.A.; Ho, P.L.; et al. H7N9 influenza split vaccine with SWE oil-in-water adjuvant greatly enhances cross-reactive humoral immunity and protection against severe pneumonia in ferrets. Npj Vaccines 2020, 5, 38. [Google Scholar] [CrossRef]
- Hatta, M.; Zhong, G.; Chiba, S.; Lopes, T.J.; Neumann, G.; Kawaoka, Y. Effectiveness of Whole, Inactivated, Low Pathogenicity Influenza A(H7N9) Vaccine against Antigenically Distinct, Highly Pathogenic H7N9 Virus. Emerg. Infect Dis. 2018, 24, 1910–1913. [Google Scholar] [CrossRef]
- Khurana, S.; Chearwae, W.; Castellino, F.; Manischewitz, J.; King, L.R.; Honorkiewicz, A.; Rock, M.T.; Edwards, K.M.; Del Giudice, G.; Rappuoli, R.; et al. Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci. Transl. Med. 2010, 2, 15ra5. [Google Scholar] [CrossRef]
- Khurana, S.; Verma, N.; Yewdell, J.W.; Hilbert, A.K.; Castellino, F.; Lattanzi, M.; Del Giudice, G.; Rappuoli, R.; Golding, H. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci. Transl. Med. 2011, 3, 85ra48. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.W.S.; Hwang, S.-J.; Lim, F.S.; Oh, H.M.L.; Thongcharoen, P.; Yang, P.-C.; Bock, H.L.; Dramé, M.; Gillard, P.; Hutagalung, Y.; et al. Immunogenicity and tolerability of an AS03(A)-adjuvanted prepandemic influenza vaccine: A phase III study in a large population of Asian adults. Vaccine 2009, 27, 7428–7435. [Google Scholar] [CrossRef]
- Langley, J.M.; Frenette, L.; Ferguson, L.; Riff, D.; Sheldon, E.; Risi, G.; Johnson, C.; Li, P.; Kenney, R.; Innis, B.L.; et al. Safety and cross-reactive immunogenicity of candidate AS03-adjuvanted prepandemic H5N1 influenza vaccines: A randomized controlled phase 1/2 trial in adults. J. Infect. Dis. 2010, 201, 1644–1653. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, T.F.; Horacek, T.; Knuf, M.; Damman, H.-G.; Roman, F.; Dramé, M.; Gillard, P.; Jilg, W. Single dose vaccination with AS03-adjuvanted H5N1 vaccines in a randomized trial induces strong and broad immune responsiveness to booster vaccination in adults. Vaccine 2009, 27, 6284–6290. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Roman, F.; Forgus, S.; Maes, C.; De Boever, F.; Dramé, M.; Gillard, P.; Van Der Most, R.; Van Mechelen, M.; Hanon, E.; et al. Priming with AS03 A-adjuvanted H5N1 influenza vaccine improves the kinetics, magnitude and durability of the immune response after a heterologous booster vaccination: An open non-randomised extension of a double-blind randomised primary study. Vaccine 2010, 28, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Moris, P.; Van Der Most, R.; Leroux-Roels, I.; Clement, F.; Dramé, M.; Hanon, E.; Leroux-Roels, G.G.; Van Mechelen, M. H5N1 influenza vaccine formulated with AS03 A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J. Clin. Immunol. 2011, 31, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, S.; and the CHI Consortium; Coyle, E.M.; Manischewitz, J.; King, L.R.; Gao, J.; Germain, R.N.; Schwartzberg, P.L.; Tsang, J.S.; Golding, H. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ Vaccines 2018, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Belser, J.A.; Pulit-Penaloza, J.A.; Creager, H.M.; Guo, Z.; Jefferson, S.N.; Liu, F.; York, I.A.; Stevens, J.; Maines, T.R.; et al. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets. Virology 2017, 508, 164–169. [Google Scholar] [CrossRef]
- Miller, E.; Andrews, N.; Stellitano, L.; Stowe, J.; Winstone, A.; Shneerson, J.; Verity, C. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: Retrospective analysis. BMJ 2013, 346, f794. [Google Scholar] [CrossRef] [Green Version]
- Nohynek, H.; Jokinen, J.J.; Partinen, M.; Vaarala, O.; Kirjavainen, T.; Sundman, J.; Himanen, S.-L.; Hublin, C.; Julkunen, I.; Olsén, P.; et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS ONE 2012, 7, e33536. [Google Scholar] [CrossRef]
- Han, F.; Lin, L.; Warby, S.C.; Faraco, J.; Li, J.; Dong, S.X.; An, P.; Zhao, L.; Wang, L.H.; Li, Q.Y.; et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 2011, 70, 410–417. [Google Scholar] [CrossRef]
- De La Herrán-Arita, A.K.; Kornum, B.R.; Mahlios, J.; Jiang, W.; Lin, L.; Hou, T.; Macaubas, C.; Einen, M.; Plazzi, G.; Crowe, C.; et al. CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a 2009 H1N1 influenza A epitope in narcolepsy. Sci. Transl. Med. 2013, 5, 216ra176. [Google Scholar] [CrossRef]
- Tsai, T.F.; Crucitti, A.; Nacci, P.; Nicolay, U.; Della Cioppa, G.; Ferguson, J.; Clemens, R. Explorations of clinical trials and pharmacovigilance databases of MF59(R)-adjuvanted influenza vaccines for associated cases of narcolepsy. Scand J. Infect Dis. 2011, 43, 702–706. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, S.D.; Lee, E.; Namkoong, K.; Choe, K.-W.; Song, J.Y.; Cheong, H.J.; Jeong, H.W.; Heo, J.Y. Incidence of narcolepsy before and after MF59-adjuvanted influenza A(H1N1)pdm09 vaccination in South Korean soldiers. Vaccine 2015, 33, 4868–4872. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 2015, 15, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Pillet, S.; Aubin, Éric; Trépanier, S.; Poulin, J.-F.; Yassine-Diab, B.; Ter Meulen, J.; Ward, B.J.; Landry, N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. Npj Vaccines 2018, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, D.; Van Hoeven, N.; Baldwin, S.; Levin, Y.; Kochba, E.; Magill, A.; Charland, N.; Landry, N.; Nu, K.; Frevol, A.; et al. The adjuvant GLA-AF enhances human intradermal vaccine responses. Sci. Adv. 2018, 4, eaas9930. [Google Scholar] [CrossRef] [Green Version]
- Clegg, C.H.; Roque, R.; Perrone, L.A.; Rininger, J.A.; Bowen, R.; Reed, S.G. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza. PLoS ONE 2014, 9, e88979. [Google Scholar] [CrossRef] [Green Version]
- Ko, E.-J.; Lee, Y.; Lee, Y.-T.; Kim, Y.-J.; Kim, K.-H.; Kang, S.-M. MPL and CpG combination adjuvants promote homologous and heterosubtypic cross protection of inactivated split influenza virus vaccine. Antivir. Res. 2018, 156, 107–115. [Google Scholar] [CrossRef]
- Goff, P.H.; Hayashi, T.; Martínez-Gil, L.; Corr, M.; Crain, B.; Yao, S.; Cottam, H.B.; Chan, M.; Ramos, I.; Eggink, D.; et al. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. J. Virol. 2015, 89, 3221–3235. [Google Scholar] [CrossRef] [Green Version]
- Hung, I.F.-N.; Zhang, A.J.; To, K.K.-W.; Chan, J.F.-W.; Li, P.; Wong, T.-L.; Zhang, R.; Chan, T.-C.; Chan, B.C.-Y.; Wai, H.H.; et al. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: A single-centre, double-blind, randomised, controlled phase 2b/3 trial. Lancet Infect Dis. 2016, 16, 209–218. [Google Scholar] [CrossRef]
- Van Hoeven, N.; Fox, C.B.; Granger, B.; Evers, T.; Joshi, S.W.; Nana, G.I.; Evans, S.C.; Lin, S.; Liang, H.; Liang, L.; et al. A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci. Rep. 2017, 7, 46426. [Google Scholar] [CrossRef]
- Wang, B.-Z.; Quan, F.-S.; Kang, S.-M.; Bozja, J.; Skountzou, I.; Compans, R.W. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol. 2008, 82, 11813–11823. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-Z.; Xu, R.; Quan, F.-S.; Kang, S.-M.; Wang, L.; Compans, R.W. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS ONE 2010, 5, e13972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambhara, S.; Woods, S.; Arpino, R.; Kurichh, A.; Tamane, A.; Underdown, B.; Klein, M.; Bengtsson, K.L.; Morein, B.; Burt, D. Heterotypic protection against influenza by immunostimulating complexes is associated with the induction of cross-reactive cytotoxic T lymphocytes. J. Infect. Dis. 1998, 177, 1266–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, F.; Saeland, E.; Baart, M.; Koldijk, M.; Tolboom, J.T.; Dekking, L.; Koudstaal, W.; Lovgren-Bengtsson, K.; Goudsmit, J.; Radošević, K. Matrix-M adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine. Virol. J. 2015, 12, 210. [Google Scholar] [CrossRef]
- Smith, G.; Liu, Y.V.; Flyer, D.C.; Massare, M.J.; Zhou, B.; Patel, N.; Ellingsworth, L.R.; Lewis, M.; Cummings, J.F.; Glenn, G. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. Vaccine 2017, 35, 5366–5372. [Google Scholar] [CrossRef] [PubMed]
- Cox, F.; Roos, A.; Hafkemeijer, N.; Baart, M.; Tolboom, J.; Dekking, L.; Stittelaar, K.; Goudsmit, J.; Radošević, K.; Saeland, E. Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge. PLoS ONE 2015, 10, e0135723. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.J.; Major, D.; Pedersen, G.K.; Pathirana, R.D.; Hoschler, K.; Guilfoyle, K.; Roseby, S.; Bredholt, G.; Assmus, J.; Breakwell, L.; et al. Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets. PLoS ONE 2015, 10, e0131652. [Google Scholar] [CrossRef] [Green Version]
- Quan, F.S.; Compans, R.W.; Nguyen, H.H.; Kang, S.M. Induction of heterosubtypic immunity to influenza virus by intranasal immunization. J. Virol. 2008, 82, 1350–1359. [Google Scholar] [CrossRef] [Green Version]
- Tamura, S.; Ito, Y.; Asanuma, H.; Hirabayashi, Y.; Suzuki, Y.; Nagamine, T.; Aizawa, C.; Kurata, T. Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J. Immunol. 1992, 149, 981–988. [Google Scholar]
- Tumpey, T.M.; Renshaw, M.; Clements, J.D.; Katz, J.M. Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection. J. Virol. 2001, 75, 5141–5150. [Google Scholar] [CrossRef] [Green Version]
- Rosenkrands, I.; Vingsbo-Lundberg, C.; Bundgaard, T.J.; Lindenstrøm, T.; Enouf, V.; Van Der Werf, S.; Andersen, P.; Agger, E.M. Enhanced humoral and cell-mediated immune responses after immunization with trivalent influenza vaccine adjuvanted with cationic liposomes. Vaccine 2011, 29, 6283–6291. [Google Scholar] [CrossRef]
- Christensen, D.; Christensen, J.P.; Korsholm, K.S.; Isling, L.K.; Erneholm, K.; Thomsen, A.R.; Andersen, P. Seasonal Influenza Split Vaccines Confer Partial Cross-Protection against Heterologous Influenza Virus in Ferrets When Combined with the CAF01 Adjuvant. Front. Immunol. 2017, 8, 1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, B.; Wu, M.X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl. Acad. Sci. USA 2015, 112, 5005–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P.M.; Casella, C.R.; Mitchell, T.C. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007, 316, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Pantel, A.; Cheong, C.; Dandamudi, D.; Shrestha, E.; Mehandru, S.; Brane, L.; Ruane, D.; Teixeira, A.; Bozzacco, L.; Steinman, R.M.; et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T-cell immunity in vivo. Eur. J. Immunol. 2012, 42, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Coler, R.N.; Bertholet, S.; Moutaftsi, M.; Guderian, J.A.; Windish, H.P.; Baldwin, S.L.; Laughlin, E.M.; Duthie, M.S.; Fox, C.B.; Carter, D.; et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS ONE 2011, 6, e16333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behzad, H.; Huckriede, A.L.W.; Haynes, L.; Gentleman, B.; Coyle, K.; Wilschut, J.C.; Kollmann, T.R.; Reed, S.G.; McElhaney, J.E. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J. Infect. Dis. 2012, 205, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, A.J.; Perry, C.M. Topical imiquimod: A review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs 2007, 67, 2187–2210. [Google Scholar] [CrossRef]
- Smith, K.D.; Andersen-Nissen, E.; Hayashi, F.; Strobe, K.; A Bergman, M.; Barrett, S.L.R.; Cookson, B.T.; Aderem, A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 2003, 4, 1247–1253. [Google Scholar] [CrossRef]
- Mizel, S.B.; Bates, J.T. Flagellin as an adjuvant: Cellular mechanisms and potential. J. Immunol. 2010, 185, 5677–5682. [Google Scholar] [CrossRef] [Green Version]
- Hajam, I.A.; Dar, P.A.; Shahnawaz, I.; Jaume, J.C.; Lee, J.H. Bacterial flagellin-a potent immunomodulatory agent. Exp. Mol. Med. 2017, 49, e373. [Google Scholar] [CrossRef]
- Song, W.S.; Jeon, Y.J.; Namgung, B.; Hong, M.; Yoon, S.I. A conserved TLR5 binding and activation hot spot on flagellin. Sci. Rep. 2017, 7, 40878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Halff, E.F.; Diebolder, C.A.; Versteeg, M.; Schouten, A.; Brondijk, T.H.C.; Huizinga, E.G. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J. Biol. Chem. 2012, 287, 38460–38472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Tuo, W. QS-21: A Potent Vaccine Adjuvant. Nat. Prod. Chem. Res. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Kensil, C.R.; Patel, U.; Lennick, M.; Marciani, D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol. 1991, 146, 431–437. [Google Scholar] [PubMed]
- Kensil, C.R.; Kammer, R. QS-21: A water-soluble triterpene glycoside adjuvant. Expert Opin. Investig. Drugs 1998, 7, 1475–1482. [Google Scholar] [CrossRef]
- Lovgren Bengtsson, K.; Morein, B.; Osterhaus, A.D. ISCOM technology-based Matrix M adjuvant: Success in future vaccines relies on formulation. Expert Rev. Vaccines 2011, 10, 401–403. [Google Scholar] [CrossRef]
- Cox, J.C.; Sjolander, A.; Barr, I.G. ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 247–271. [Google Scholar] [CrossRef]
- Sun, H.X.; Xie, Y.; Ye, Y.P. ISCOMs and ISCOMATRIX. Vaccine 2009, 27, 4388–4401. [Google Scholar] [CrossRef]
- Temizoz, B.; Kuroda, E.; Ishii, K.J. Vaccine adjuvants as potential cancer immunotherapeutics. Int. Immunol. 2016, 28, 329–338. [Google Scholar] [CrossRef]
- Pizza, M.; Giuliani, M.; Fontana, M.; Monaci, E.; Douce, G.; Dougan, G.; Mills, K.; Rappuoli, R.; Del Giudice, G. Mucosal vaccines: Non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 2001, 19, 2534–2541. [Google Scholar] [CrossRef]
- Beddoe, T.; Paton, A.W.; Le Nours, J.; Rossjohn, J.; Paton, J.C. Structure, biological functions and applications of the AB5 toxins. Trends Biochem. Sci. 2010, 35, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valli, E.; Harriett, A.J.; Nowakowska, M.K.; Baudier, R.L.; Provosty, W.B.; McSween, Z.; Lawson, L.B.; Nakanishi, Y.; Norton, E.B. LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (muMT) mice. Sci. Rep. 2019, 9, 15128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, J.D.; Norton, E.B. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Hora, V.P.; Conceicao, F.R.; Dellagostin, O.A.; Doolan, D.L. Non-toxic derivatives of LT as potent adjuvants. Vaccine 2011, 29, 1538–1544. [Google Scholar] [CrossRef]
- Agger, E.M.; Rosenkrands, I.; Hansen, J.; Brahimi, K.; Vandahl, B.S.; Aagaard, C.; Werninghaus, K.; Kirschning, C.; Lang, R.; Christensen, D.; et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile adjuvant for vaccines with different immunological requirements. PLoS ONE 2008, 3, e3116. [Google Scholar] [CrossRef] [Green Version]
- Davidsen, J.; Rosenkrands, I.; Christensen, D.; Vangala, A.; Kirby, D.; Perrie, Y.; Agger, E.M.; Andersen, P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta 2005, 1718, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Lopes, P.P.; Todorov, G.; Pham, T.T.; Nesburn, A.B.; Bahraoui, E.; Benmohamed, L. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8(+) TEM and TRM Cell Responses against Herpesvirus Infection and Disease. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Pravetoni, M.; Bhayana, B.; Pentel, P.R.; Wu, M.X. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine 2012, 31, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zeng, Q.; Wu, M.X. Improved efficacy of dendritic cell-based immunotherapy by cutaneous laser illumination. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 2240–2249. [Google Scholar] [CrossRef] [Green Version]
- Morse, K.; Kimizuka, Y.; Chan, M.P.K.; Shibata, M.; Shimaoka, Y.; Takeuchi, S.; Forbes, B.; Nirschl, C.J.; Li, B.; Zeng, Y.; et al. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. J. Immunol. 2017, 199, 1319–1332. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kim, P.; Farinelli, B.; Doukas, A.; Yun, S.-H.; Gelfand, J.A.; Anderson, R.R.; Wu, M.X. A novel laser vaccine adjuvant increases the motility of antigen presenting cells. PLoS ONE 2010, 5, e13776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiwagi, S.; Yuan, J.; Forbes, B.; Hibert, M.L.; Lee, E.L.Q.; Whicher, L.; Goudie, C.; Yang, Y.; Chen, T.; Edelblute, B.; et al. Near-infrared laser adjuvant for influenza vaccine. PLoS ONE 2013, 8, e82899. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, J.A.; Nazarian, R.M.; Kashiwagi, S.; Brauns, T.; Martin, B.; Kimizuka, Y.; Korek, S.; Botvinick, E.; Elkins, K.; Thomas, L.; et al. A pilot clinical trial of a near-infrared laser vaccine adjuvant: Safety, tolerability, and cutaneous immune cell trafficking. FASEB J. 2019, 33, 3074–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Shah, D.; Chen, X.; Anderson, R.R.; Wu, M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat. Commun. 2014, 5, 4447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Zhu, X.; Hossen, N.; Kakar, P.; Zhao, Y.; Chen, X. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat. Commun. 2018, 9, 3695. [Google Scholar] [CrossRef]
Categories | Vaccine Types | ||
---|---|---|---|
Number of viral strains | Trivalent (two type A, one type B) | Quadrivalent (two type A, two type B) | |
Live-attenuated or inactivated | Inactivated (subunit, split-virion, virosome) | Live-attenuated | |
Production method | Egg-based | Cell-based | Recombinant protein-based |
Delivery routes (devices) | IM (traditional needles, needle-free Jet Injectors) | IN (Intranasal Sprayer) | ID (Intradermal Microinjection Systems, MicronJet600) |
Usage | Seasonal | Pre-pandemic | Pandemic |
Adjuvants | Formulation and Type | Year of Approval | Vaccines |
---|---|---|---|
Alum | Aluminum salts | 1930s | A number of vaccines (e.g., tetanus and diphtheria vaccines) |
MF59 | Squalene emulsion (Novartis) | 1997 | Seasonal influenza vaccine |
AS04 | MPL adsorbed on Alum adjuvant | 2009 | HPV vaccine |
AS03 | Squalene emulsion (GlaxoSmithKline) | 2013 | Pre-pandemic H5N1 vaccine |
AS01 | MPL/QS21 in liposome | 2015 | RTS,S malaria vaccine |
CpG 1018 | 22-mer oligonucleotide | 2017 | Hepatitis B VLP vaccine |
Adjuvant | Vaccine and Immunization Regimen | Age Group | Cross-Protective Immunity | Safety | Reference |
---|---|---|---|---|---|
MF59 | Trivalent influenza vaccine (TIV), subunit, single dose | Elderly | Heterologous HI GMT against seasonal influenza strains | More local and systemic adverse reactions. No serious adverse events related to vaccination | [110] |
MF59 | TIV, subunit, single dose | Elderly | Heterologous HI GMT against H3N2 | Not studied | [111] |
MF59 | TIV, subunit, two doses (28 days apart) | Infants and young children | Heterologous HI GMT and seroconversion rates against all strains after the first and second dose | Higher rates of solicited adverse reactions. No serious adverse events related to vaccination | [112] |
MF59 | H5N1 vaccine (A/Vietnam/1194/2004, clade 1); subunit, two-dose prime (21 days apart) and one-dose boost (6 months later) | Non-elderly adults and elderly | HI GMT against clade 2 strain A/turkey/Turkey/1/05 detectable after two-dose priming and increased after boost | Common solicited adverse reactions, such as myalgia and headache. No serious adverse events related to vaccination | [113] |
MF59 | H5N1 vaccine (A/Vietnam/1194/2004, clade 1); two-dose prime (21 days apart) and one-dose boost (12 months later) | Pediatrics | HI GMT against clade 2 strains A/Indonesia/5/2005 and A/Anhui/1/2005 after prime and significantly enhanced after boost | Common mild–moderate local and systemic adverse reactions. No serious adverse events related to vaccination | [114] |
MF59 | H5N3 vaccine prime (A/duck/Singapore/97, clade 0); H5N1 vaccine boost (A/Vietnam/1194/ 2004, clade 1); two-dose prime (21 days apart) or three-dose prime with the third dose given 16 months later, two-dose boost 6 years later (21 days apart) | Non-elderly adults | Heterologous immunity against clade 0 strain A/Hong Kong/156/97, clade 1 strain A/Cambodia/R04050550/2007, and clade 2 strains A/Indonesia/5/2005, A/Turkey/15/2006, and A/Anhui/1/2005 | Common mild–moderate local and systemic adverse reactions. No serious adverse events related to vaccination | [115] |
AS03 | Split-virion H5N1 vaccine (A/Vietnam/1194/2004, clade 1); two doses (21 days apart) | Non-elderly adults | HI GMT against clade 2 strain A/Indonesia/05/2005 after second dose | Higher rates of mild–moderate adverse reactions. No serious adverse events related to vaccination | [120] |
AS03 | Split-virion H5N1 vaccine (A/Indonesia/5/2005, clade 2); two doses (21 days apart) | Non-elderly adults | HI GMT against clade 1 strain A/Vietnam/1194/04 after second dose | More common adverse events. No serious adverse events related to vaccination | [121] |
AS03 | Split-virion H5N1 vaccine prime (A/Vietnam/1194/2004, clade 1); same strain or clade 2 strain boost (A/Indonesia/05/2005); One or two-dose prime (21 days apart) and one-dose boost 6 or 12 months later | Non-elderly adults | Seroconversion against clade 2 strain A/Indonesia/05/2005 after two-dose prime | No vaccine-related serious adverse events | [122] |
AS03 | Split-virion H5N1 vaccine prime (A/Vietnam/1194/2004, clade 1) and clade 2 strain boost (A/Indonesia/5/2005); two-dose prime (21 days apart); one or two-dose boost 14 months later (21 days apart) | Non-elderly adults | Rapid induction of HI GMT against clade 2 strain in adjuvanted vaccine-primed subjects | No vaccine-related serious adverse events | [123] |
AS03 | Split-virion H5N1 vaccine (A/Vietnam/1194/2004, clade 1); two doses (21 days apart) | Non-elderly adults | Cross-reactive CD4+ T cells against clade 2 strains A/Indonesia/5/2005 and A/Anhui/1/2005 | Not studied | [124] |
Adjuvant | Vaccine and Immunization Regimen | Study Subjects | Cross-Protective Immunity | Safety | Reference |
---|---|---|---|---|---|
SWE | Split virion vaccine of A/Shanghai/2/2013 (H7N9)-A/Puerto Rico/8/34 (PR8)-IDCDC-RG32A.3; two doses (21 days apart); IM | Ferrets | HI titer against heterologous Eurasian and North American Lineages of H7N2, H7N3, H7N7, and H7N9 viruses, Heterologous protection against A/Anhui/1/2013 (H7N9) virus | Not studied | [116] |
AddaVax | Inactivated whole virus vaccine of reassortant A/Hong Kong/125/2017 (H7N9) and PR8 backbone; two doses (28 days apart); IM | Ferrets | HI titer and protection against highly pathogenic heterologous H7N9 rGD/3-NA294R virus | Not studied | [117] |
GLA-SE | Plant-produced H5-VLP (A/Indonesia/05/2005, clade 2); two doses (21 days apart); IM | Non-elderly adults | Polyfunctional and sustained heterologous CD4+ T cell responses against influenza H2 protein | Higher incidences of solicited symptoms and mostly mild or moderate | [134] |
GLA-AF | Plant-produced H5-VLP (A/Indonesia/05/2005, clade 2); two doses (21 days apart); ID | Non-elderly adults | HI GMI and seroconversion against heterologous clade 2 virus A/Anhui/1/2005 and HI GMI and seroconversion against clade 1 virus A/Vietnam/1203/2004 | Transient erythema; no serious adverse events related to vaccination | [135] |
GLA-AF | Plant-produced H5-VLP (A/Indonesia/5/05, clade 2); two doses (21 days apart) in mice and guinea pigs; one dose in ferrets; IM or ID | Mice, guinea pig, and ferrets | HI titer and protection against heterologous virus A/Duck/Hunan/795/2002 in mice and protection against clade 1 strain A/Vietnam/1203/04 in ferrets | Guinea pigs: no temperature spikes or body weight decrease; Ferrets: no local reactions or body temperature increase | [135] |
GLA-AF | Recombinant HA (rHA) of H5N1 A/Vietnam/1203/04 or A/Indonesia /05/05 viruses; one dose in mice and one or two doses (21 days apart) in ferrets; IM | Mice and ferrets | Cross-clade HI titer and protection | Not studies | [136] |
MPL and CPG combination | Split virion vaccine of A/California/04/2009 H1N1; one or two doses (21 days apart); IM | Mice | HI titer and protection against heterosubtypic reassortant H5N1 A/Vietnam/1203/2004 virus | Not studied | [137] |
TLR4 and TLR7 agonist combination | rHA of PR8 H1N1; chimeric rHA (same stalk region); one dose (rHA) or 3 doses (chimeric rHA); IM | Mice | Heterologous protection against A/California/04/2009 H1N1 virus; Heterologous protection against B/Florida/04/2006 (Yamagata lineage); Heterosubtypic protection against reassortant A/Vietnam/1203/2004 H5N1 virus | Not studied | [138] |
Imiquimod (Aldara) | TIV (Intanza); one dose; ID | Healthy student volunteers | Heterologous HI and MN titer against non-vaccine strains | More common redness and swelling; no serious adverse events related to vaccination | [139] |
3M-052 | rHA of A/Vietnam/1203/04 H5N1; two doses with 28 days apart in mice; one dose in ferrets; IM | Mice and ferrets | Cross-clade antibody binding in mice and heterologous protection against A/Whooper Swan/Mongolia/ 244/05 H5N1 virus in ferrets | Not studied | [140] |
Membrane-anchored flagellin | HA/M1VLPs based on PR8 virus; two doses (28 days apart); IM or IN | Mice | Heterosubtypic protection against A/Philippines/82 (H3N2) virus | Not studied | [141,142] |
ISCOMs | Fluzone® monovalent subunit vaccine of A/Taiwan/1/86 H1N1; two doses (21 days apart); subcutaneous | Mice | Heterosubtypic protection against A/Japan/305/57 (H2N2) virus due to CTL but not antibody responses | Not studied | [143] |
Matrix-M | Trivalent virosomal vaccine; one to three doses (21 days apart); IM | Mice | Heterologous protection against influenza A and B strains | Not studied | [144] |
Matrix-M | TIV; two doses (21 days apart); IM | Mice and ferrets | Heterologous protection against H3N2 strain A/Texas/71/2007; Heterosubtypic protection against H5N1 and H7N7 viruses | Not studied | [145,146] |
Matrix-M | Inactivated virosomal H5N1 vaccine of A/Vietnam/1194/2004 (clade 1); two doses (21 days apart); IM | Non-elderly adults | HI titer against heterologous clade 1 virus (A/Cambodia/R0405050/2007) and cross-clade HI titer against clade 2 viruses (A/Indonesia/5/2005 and A/turkey/Turkey/1/2005) | Not studied | [147] |
Cholera toxin | Inactivated PR8 vaccine; two doses (14 days apart); IN | Mice | Heterologous protection against H1N1 and heterosubtypic protection against H3N2 virus (A/Philippines/82) | Not studied | [148] |
Cholera toxin B subunit | HA of A/Fukuoka /C29/85 (H3N2) or A/Sichuan/2/87 (H3N2); one dose; IN | Mice | Heterologous protection against H3N2 virus (A/Guizhou/54/89-X) | Not studied | [149] |
LT (R192G) | Whole-inactivated X-31 (H3N2) vaccine; three doses (7 days apart); IN | Mice | Heterosubtypic protection against H5N1 virus | Not studied | [150] |
CAF01 | TIV; two doses (3-4 weeks apart); subcutaneous | Mice and ferrets | Heterologous protection against H1N1 viruses | Not studied | [151,152] |
NAFL | Inactivated PR8 vaccine; one dose; transdermal | Mice and miniature pigs | Heterologous and heterosubtypic protection against H1N1 and H3N2 viruses in mice | Minimal local reactions in miniature pigs | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, Y.; Li, Y.; Chen, X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines 2021, 9, 75. https://doi.org/10.3390/vaccines9020075
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines. 2021; 9(2):75. https://doi.org/10.3390/vaccines9020075
Chicago/Turabian StyleLi, Zhuofan, Yiwen Zhao, Yibo Li, and Xinyuan Chen. 2021. "Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity" Vaccines 9, no. 2: 75. https://doi.org/10.3390/vaccines9020075
APA StyleLi, Z., Zhao, Y., Li, Y., & Chen, X. (2021). Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines, 9(2), 75. https://doi.org/10.3390/vaccines9020075