The Path to New Pediatric Vaccines against Pertussis
Abstract
:1. Introduction
2. Effect of Pertussis Vaccination and the Recent Resurgence of Pertussis
3. The Importance of Animal Models
4. Novel Pertussis Vaccines
5. Live Attenuated Pertussis Vaccines
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattoo, S.; Cherry, J.D. Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 2005, 18, 326–382. [Google Scholar] [CrossRef] [Green Version]
- Hewlett, E.L.; Edwards, K.M. Pertussis—not just for kids. N. Engl. J. Med. 2005, 352, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Von König, C.H.W.; Halperin, S.; Riffelmann, M.; Guiso, N. Pertussis of adults and infants. Lancet Infect. Dis. 2002, 2, 744–750. [Google Scholar] [CrossRef]
- Kendrick, P.L. Can Whooping Cough Be Eradicated? J. Infect. Dis. 1975, 132, 707–712. [Google Scholar] [CrossRef]
- Mortimer, E.A.; Jones, P.K. An evaluation of pertussis vaccine. Rev. Infect. Dis. 1979, 1, 927–934. [Google Scholar] [CrossRef]
- Cherry, J.D. Pertussis in the Preantibiotic and Prevaccine Era, with Emphasis on Adult Pertussis. Clin. Infect. Dis. 1999, 28, S107–S111. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.C. Age incidence of the common communicable diseases of children: A study of case rates among all children and among children not previously attacked and of death rates and the estimated case fatality. Public Health Rep. 1929, 44, 763–827. [Google Scholar] [CrossRef]
- Fine, P.E.; Clarkson, J. The Recurrence of Whooping Cough: Possible Implications for Assessment of Vaccine Efficacy. Lancet 1982, 319, 666–669. [Google Scholar] [CrossRef]
- Mannerstedt, G. Pertussis in adults. J. Pediatr. 1934, 5, 596–600. [Google Scholar] [CrossRef]
- Kilgore, P.E.; Salim, A.M.; Zervos, M.J.; Schmitt, H.-J. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin. Microbiol. Rev. 2016, 29, 449–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Immunization Coverage with DTP3 Vaccines in Infants (from <50%). 2016. Available online: http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/passive/big_dtp3_map_global_coverage.jpg (accessed on 1 March 2021).
- Yeung, K.H.T.; Duclos, P.; Nelson, E.A.S.; Hutubessy, R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017, 17, 974–980. [Google Scholar] [CrossRef]
- Chiappini, E.; Stival, A.; Galli, L.; De Martino, M. Pertussis re-emergence in the post-vaccination era. BMC Infect. Dis. 2013, 13, 151. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.L.; Meade, B.D.; Messionnier, N.E. Pertussis resurgence: Perspectives from the working group meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J. Infect. Dis. 2014, 209, S32–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Stefanelli, P.; Fry, N.K.; Fedele, G.; He, Q.; Paterson, P.; Tan, T.; Knuf, M.; Rodrigo, C.; Olivier, C.W.; et al. Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Front. Immunol. 2019, 10, 1344. [Google Scholar] [CrossRef] [Green Version]
- Althouse, B.M.; Scarpino, S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015, 13, 146. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, R.W.; Wetterlow, L.H.; Sullivan, C.L. Immunization and Antibody Response in the Newborn Infant. N. Engl. J. Med. 1965, 273, 959–965.e1. [Google Scholar] [CrossRef]
- Halasa, N.B.; O’Shea, A.; Shi, J.R.; LaFleur, B.J.; Edwards, K.M. Poor immune responses to a birth dose of diphtheria, tetanus, and acellular pertussis vaccine. J. Pediatr. 2008, 153, 327–332.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuf, M.; Schmitt, H.J.; Wolter, J.; Schuerman, L.; Jacquet, J.M.; Kieninger, D.; Siegrist, C.A.; Zepp, F. Neonatal vaccination with an acellular pertussis vaccine accelerates the acquisition of pertussis antibodies in infants. J. Pediatr. 2008, 152, 655–660. [Google Scholar] [CrossRef]
- Belloni, C.; Silvestri, A.D.; Tinelli, C.; Avanzini, M.A.; Marconi, M.; Strano, F.; Rondini, G.; Chirico, G. Immunogenicity of a Three-Component Acellular Pertussis Vaccine Administered at Birth. Pediatrics 2003, 111, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Wood, N.; Nolan, T.; Marshall, H.; Richmond, P.; Gibbs, E.; Perrett, K.; McIntyre, P. Immunogenicity and safety of monovalent acellular pertussis vaccine at birth. A randomized clinical trial. JAMA Pediatr. 2018, 172, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Njamkepo, E.; Bourillon, A.; Floret, D.D.; Gaudelus, J.; Gerber, M.; Grimprel, E.; Greenberg, D.; Halperin, S.; Liese, J.; et al. Transmission of Bordetella pertussis to Young Infants. Pediatr. Infect. Dis. J. 2007, 26, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Urwyler, P.; Heininger, U. Protecting newborns from pertussis—The challenge of complete cocooning. BMC Infect. Dis. 2014, 14, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, S.L.; Cunningham, H.M.; Franklin, L.J.; Lester, R.A. Uptake of a government-funded pertussis-containing booster vaccination program for parents of new babies in Victoria, Australia. Vaccine 2015, 33, 1791–1796. [Google Scholar] [CrossRef]
- Healy, C.M.; Rench, M.A.; Wootton, S.H.; Castagnini, L.A. Evaluation of the Impact of a Pertussis Cocooning Program on Infant Pertussis Infection. Pediatr. Infect. Dis. J. 2015, 34, 22–26. [Google Scholar] [CrossRef]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holubová, J.; Staněk, O.; Brázdilová, L.; Mašín, J.; Bumba, L.; Gorringe, A.R.; Alexander, F.; Šebo, P. Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines 2020, 8, 695. [Google Scholar] [CrossRef]
- Dubois, V.; Chatagnon, J.; Thiriard, A.; Bauderlique-Le Roy, H.; Debrie, A.S.; Coutte, L.; Locht, C. Suppression of mucosal Th17 memory response by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.M.; Borkner, L.; Misiak, A.; Curham, L.; Allen, A.C.; Mills, K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes. Infect. 2019, 8, 169–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maertens, K.; Orije, M.R.P.; Van Damme, P.; Leuridan, E. Vaccination during pregnancy: Current and possible future recommendations. Eur. J. Nucl. Med. Mol. Imaging 2020, 179, 235–242. [Google Scholar] [CrossRef]
- Drezner, D.; Youngster, M.; Klainer, H.; Youngster, I. Maternal vaccinations coverage and reasons for non-compliance—A cross-sectional observational study. BMC Pregnancy Childbirth 2020, 20, 541. [Google Scholar] [CrossRef]
- Kahn, K.E.; Black, C.L.; Ding, H.; Williams, W.W.; Lu, P.-J.; Fiebelkorn, A.P.; Havers, F.; D’Angelo, D.V.; Ball, S.; Fink, R.V.; et al. Influenza and Tdap Vaccination Coverage Among Pregnant Women—United States, April 2018. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 1055–1059. [Google Scholar] [CrossRef]
- Englund, J.A.; Anderson, E.L.; Reed, G.F.; Decker, M.D.; Edwards, K.M.; Pichichero, M.E.; Steinhoff, M.C.; Rennels, M.B.; Deforest, A.; Meade, B.D. The effect of maternal antibody on the serologic response and the incidence of adverse reactions after primary immunization with acellular and whole-cell pertussis vaccines combined with diphtheria and tetanus toxoids. Pediatrics 1995, 96, 580–584. [Google Scholar] [PubMed]
- Wanlapakorn, N.; Maertens, K.; Vongpunsawad, S.; Puenpa, J.; Tran, T.M.P.; Hens, N.; Van Damme, P.; Thiriard, A.; Raze, D.; Locht, C.; et al. Quantity and Quality of Antibodies After Acellular Versus Whole-cell Pertussis Vaccines in Infants Born to Mothers Who Received Tetanus, Diphtheria, and Acellular Pertussis Vaccine During Pregnancy: A Randomized Trial. Clin. Infect. Dis. 2019, 71, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Directly transmitted infectious diseases: Control by vaccination. Science 1982, 215, 1053–1060. [Google Scholar] [CrossRef]
- Merkel, T.J. Toward a Controlled Human Infection Model of Pertussis. Clin. Infect. Dis. 2019, 71, 412–414. [Google Scholar] [CrossRef]
- Higgs, R.; Higgins, S.C.; Ross, P.J.; Mills, K.H.G. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012, 5, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Elahi, S.; Holmstrom, J.; Gerdts, V. The benefits of using diverse animal models for studying pertussis. Trends Microbiol. 2007, 15, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Warfel, J.M.; Beren, J.; Kelly, V.K.; Lee, G.; Merkel, T.J. Nonhuman Primate Model of Pertussis. Infect. Immun. 2012, 80, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, P.L.; Eldering, G.; Dixon, M.K.; Misner, J. Mouse protection tests in the study of pertussis vaccine: A comparative series using the intracerebral route for challenge. Am. J. Public Health 1947, 37, 803–810. [Google Scholar] [CrossRef]
- Bunney, W.E.; Volk, V.K.; Kendrick, P.; Top, F.H. History of the antigen committees of the American Public Health Association. Am. J. Public Health Nations Health 1965, 55, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.G.; Ryan, M.; Ryan, E.; Mahon, B.P. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infect. Immun. 1998, 66, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Janda, W.M.; Santos, E.; Stevens, J.; Celig, D.; Terrile, L.; Schreckenberger, P.C. Unexpected isolation of Bordetella pertussis from a blood culture. J. Clin. Microbiol. 1994, 32, 2851–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trøseid, M.; Jonassen, T.Ø.; Steinbakk, M. Isolation of Bordetella pertussis in blood culture from a patient with multiple myeloma. J. Infect. 2006, 52, e11–e13. [Google Scholar] [CrossRef] [PubMed]
- Mahon, B.P.; Sheahan, B.J.; Griffin, F.; Murphy, G.; Mills, K.H.G. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin µ chain genes. J. Exp. Med. 1997, 186, 1843–1851. [Google Scholar] [CrossRef]
- Solans, L.; Locht, C. The Role of Mucosal Immunity in Pertussis. Front. Immunol. 2019, 9, 3068. [Google Scholar] [CrossRef] [Green Version]
- Solans, L.; Debrie, A.S.; Borkner, L.; Aguilo, N.; Thiriard, A.; Coutte, L.; Uranga, S.; Trottein, F.; Martin, C.; Mills, K.H.G.; et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018, 11, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.M.; Misiak, A.; McManus, R.M.; Allen, A.C.; Lynch, M.A.; Mills, K.H.G. Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice withBordetella pertussis. J. Immunol. 2017, 199, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Warfel, J.M.; Beren, J.; Merkel, T.J. Airborne Transmission of Bordetella pertussis. J. Infect. Dis. 2012, 206, 902–906. [Google Scholar] [CrossRef]
- Antunes, R.D.S.; Babor, M.; Carpenter, C.; Khalil, N.; Cortese, M.; Mentzer, A.J.; Seumois, G.; Petro, C.D.; Purcell, L.A.; Vijayanand, P.; et al. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Investig. 2018, 128, 3853–3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warfel, J.M.; Merkel, T.J. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 2013, 6, 787–796. [Google Scholar] [CrossRef]
- Warfel, J.M.; Papin, J.F.; Wolf, R.F.; Zimmerman, L.I.; Merkel, T.J. Maternal and Neonatal Vaccination Protects Newborn Baboons From Pertussis Infection. J. Infect. Dis. 2014, 210, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Kapil, P.; Papin, J.F.; Wolf, R.F.; Zimmerman, L.I.; Wagner, L.D.; Merkel, T.J. Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J. Infect. Dis. 2018, 217, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.W.; DiVenere, A.M.; Papin, J.F.; Connelly, S.; Kaleko, M.; Maynard, J.A. Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. Sci. Adv. 2020, 6, eaay9258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wearing, H.J.; Rohani, P. Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures. PLOS Pathog. 2009, 5, e1000647. [Google Scholar] [CrossRef] [Green Version]
- Warfel, J.M.; Edwards, K.M. Pertussis vaccines and the challenge of inducing durable immunity. Curr. Opin. Immunol. 2015, 35, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Chasaide, C.N.; Mills, K.H.G. Next-generation pertussis vaccines based on the induction of protective T cells in the respiratory tract. Vaccines 2020, 8, 621. [Google Scholar] [CrossRef]
- Dewan, K.K.; Linz, B.; DeRocco, S.E.; Harvill, E.T. Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines 2020, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Hozbor, D. New Pertussis Vaccines: A Need and a Challenge. Adv. Exp. Med. Biol. 2019, 1183, 115–126. [Google Scholar] [CrossRef]
- Locht, C. Will we have new pertussis vaccines? Vaccine 2018, 36, 5460–5469. [Google Scholar] [CrossRef] [PubMed]
- Chatzis, O.; Blanchard-Rohner, G.; Mondoulet, L.; Pelletier, B.; De Gea-Hominal, A.; Roux, H.; Huttner, A.; Hervé, P.L.; Rohr, M.; Matthey, A.; et al. Safety and immunogenicity of the epicutaneous reactivation of pertussis toxin immunity iin healthy adults: A phase I, randomized, double-blind, placebo-controlled trial. Clin. Microbiol. Infect. 2020, 5, S1198. [Google Scholar]
- Gallivet, B.M.; Mondoulet, L.; Dhelft, V.; Eberhardt, C.S.; Auderset, F.; Pham, H.T.; Petre, J.; Lambert, P.H.; Benhamou, P.H.; Siegrist, C.A. Needle-free and adjuvant-free epicutaneous boosting of pertussis immunity: Preclinical proof of concept. Vaccine 2015, 33, 146–159. [Google Scholar]
- Thomas, G. Respiratory and humoral immune response to aerosol and intramuscular pertussis vaccine. J. Hyg. 1975, 74, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berstad, A.H.; Holst, J.; Frøholm, L.; Haugen, I.; Wedege, E.; Oftung, F.; Haneberg, B. A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J. Med. Microbiol. 2000, 49, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, E.J.; McNeela, E.; Murphy, G.A.; Stewart, H.; O’hagan, D.; Pizza, M.; Rappuoli, R.; Mills, K.H. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: Differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immun. 1999, 67, 6270–6280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couch, R.B. Nasal vaccination, Escherichia coli enterotoxin, and Bell’s palsy. N. Engl. J. Med. 2004, 350, 860–861. [Google Scholar] [CrossRef]
- Shi, W.; Kou, Y.; Jiang, H.; Gao, F.; Kong, W.; Su, W.; Xu, F.; Jiang, C. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol. Lett. 2018, 198, 26–32. [Google Scholar] [CrossRef]
- Boehm, D.T.; Wolf, M.A.; Hall, J.M.; Wong, T.Y.; Sen-Kilic, E.; Basinger, H.D.; Dziadowicz, S.A.; Gutierrez, M.D.L.P.; Blackwood, C.B.; Bradford, S.D.; et al. Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. npj Vaccines 2019, 4, 40. [Google Scholar] [CrossRef]
- Allen, A.C.; Wilk, M.M.; Misiak, A.; Borkner, L.; Murphy, D.; Mills, K.H.G. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal. Immunol. 2018, 11, 1763–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, P.J.; Sutton, C.E.; Higgins, S.; Allen, A.C.; Walsh, K.; Misiak, A.; Lavelle, E.D.; McLoughlin, R.M.; Mills, K.H.G. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013, 6, e1003264. [Google Scholar] [CrossRef] [Green Version]
- Misiak, A.; Leuzzi, R.; Allen, A.C.; Galletti, B.; Baudner, B.C.; D’Oro, U.; O’Hagan, D.T.; Pizza, M.; Seubert, A.; Mills, K.H.G. Addition of TLR7 agonist to an acellular pertussis vaccine enhances Th1 and T17 responses and protective immunity in a mouse model. Vaccine 2017, 35, 5256–5263. [Google Scholar] [CrossRef]
- Geurtsen, J.; Fransen, F.; Vandebriel, R.J.; Gremmer, E.R.; de la Fonteyne-Blanestijn, L.J.; Kuipers, B.; Tommassen, J.; van der Ley, P. Supplementation of whole-cell pertussis vaccines with lipopolysaccharide analogs: Modification of vaccine-induced immune responses. Vaccine 2008, 26, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; Agnolon, V.; Berti, F.; Bufali, S.; O’Hagan, D.T.; Baudner, B.C. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Eur. J. Pharm. Biopharm. 2016, 105, 1–8. [Google Scholar] [CrossRef]
- Li, P.; Asokanathan, C.; Liu, F.; Khaing, K.K.; Kmiec, D.; Wei, X.; Song, B.; Xing, D.; Kong, D. PGLA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune responses in a murine model. Int. J. Pharm. 2016, 513, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Olin, P. The best acellular pertussis vaccines are multi-component. Pediatr. Infect. Dis. J. 1997, 16, 517–519. [Google Scholar] [CrossRef]
- Queenan, A.M.; Dowling, D.J.; Cheng, W.K.; Fae, K.; Fernandez, J.; Flynn, P.J.; Joshi, S.; Brightman, S.E.; Ramirez, J.; Serroyen, J.; et al. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine 2019, 37, 80–89. [Google Scholar] [CrossRef]
- Fedele, G.; Schiavoni, I.; Adkins, I.; Klimova, N.; Sebo, P. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins 2017, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Boehm, D.T.; Hall, J.M.; Wong, T.Y.; DiVenere, A.M.; Sen-Kilic, E.; Bevere, J.R.; Bradford, S.D.; Blackwood, C.B.; Elkins, C.M.; DeRoos, K.A.; et al. Evaluation of adenylate cyclase toxin antigen in acellular pertussis vaccines by using a Bordetella pertussis challenge model in mice. Infect. Immun. 2018, 86, e00857-17. [Google Scholar] [CrossRef] [Green Version]
- Marr, N.; Oliver, D.C.; Laurent, V.; Poolman, J.; Denoël, P.; Fernandez, R.C. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 2008, 26, 4306–4311. [Google Scholar] [CrossRef]
- Suzuki, K.; Shinzawa, N.; Ishigaki, K.; Nakamura, K.; Abe, H.; Horiguchi, Y.; Fukui-Miyazaki, A.; Ikuta, K. Protective effects of in vivo -expressed autotransporters against Bordetella pertussis infection. Microbiol. Immunol. 2017, 61, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizagaray, M.L.; Gomes, M.T.R.; Guimaraes, E.S.; Rumbo, M.; Hozbor, D.F.; Oliveira, S.C.; Moreno, G. Canonical and Noncanonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Front. Immunol. 2020, 11, 1879. [Google Scholar] [CrossRef]
- Kanojia, G.; Raeven, R.H.M.; van der Maas, L.; Bindels, T.H.E.; van Riet, E.; Metz, B.; Soema, P.C.; Ten Have, R.; Frijlink, H.W.; Amorij, J.P.; et al. Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J. Control. Release 2018, 286, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Moreno, G.; Bottero, D.; Gaillard, M.E.; Fingermann, M.; Graieb, A.; Rumbo, M.; Hozbor, D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008, 26, 4639–4646. [Google Scholar] [CrossRef]
- Raeven, R.H.; Brummelman, J.; Pennings, J.L.; van der Maas, L.; Tilstra, W.; Helm, K.; van Riet, E.; Jiskoot, W.; van Els, C.A.; Han, W.G.; et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to whole-cell vaccine. Sci. Rep. 2016, 6, 38240. [Google Scholar] [CrossRef] [PubMed]
- Asensio, C.J.; Gaillard, M.E.; Moreno, G.; Bottero, D.; Zurita, E.; Rumbo, M.; Van Der Ley, P.; Van Der Ark, A.; Hozbor, D. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011, 29, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, M.E.; Bottero, D.; Errea, A.; Ormazábal, M.; Zurita, M.E.; Moreno, G.; Rumbo, M.; Castuma, C.; Bartel, E.; Flores, D.; et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 2014, 32, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Stibitz, S. The BvgASR virulence regulon of Bordetella pertussis. Curr. Opin. Microbiol. 2019, 47, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Raeven, R.H.M.; Van Vlies, N.; Salverda, M.L.M.; Van Der Maas, L.; Uittenbogaard, J.P.; Bindels, T.H.E.; Rigters, J.; Verhagen, L.M.; Kruijer, S.; Van Riet, E.; et al. The Role of Virulence Proteins in Protection Conferred by Bordetella pertussis Outer Membrane Vesicle Vaccines. Vaccines 2020, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Raeven, R.H.M.; Rockx-Brouwer, D.; Kanojia, G.; Van Der Maas, L.; Bindels, T.H.E.; Have, R.T.; Van Riet, E.; Metz, B.; Kersten, G.F.A. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Zurita, M.E.; Wilk, M.M.; Carriquiriborde, F.; Bartel, E.; Moreno, G.; Misiak, A.; Mills, K.H.G.; Hozbor, D. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Front. Cell Infect. Microbiol. 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Maskell, D.; Novotny, P.; Dougan, G. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect. Immun. 1990, 58, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Cornford-Nairns, R.; Daggard, G.; Mukkur, T. Construction and preliminary immunobiological characterization of a novel, non-reverting, intranasal live attenuated whooping cough vaccine candidate. J. Microbiol. Biotechnol. 2012, 22, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, N.; Debrie, A.-S.; Raze, D.; Bertout, J.; Rouanet, C.; Ben Younes, A.; Creusy, C.; Engle, J.; Goldman, E.W.; Locht, C. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough. PLoS Pathog. 2006, 2, e65. [Google Scholar] [CrossRef] [PubMed]
- Debrie, A.-S.; Mielcarek, N.; Lecher, S.; Roux, X.; Sirard, J.-C.; Locht, C. Early Protection against Pertussis Induced by Live Attenuated Bordetella pertussis BPZE1 Depends on TLR. J. Immunol. 2019, 203, 3293–3300. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lim, A.; Phoon, M.C.; Narasaraju, T.; Ng, J.K.W.; Poh, W.P.; Sim, M.K.; Chow, V.T.; Locht, C.; Alonso, S. Attenuated Bordetella pertussis Protects against Highly Pathogenic Influenza A Viruses by Dampening the Cytokine Storm. J. Virol. 2010, 84, 7105–7113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnöller, C.; Roux, X.; Sawant, D.; Raze, D.; Olszewska, W.; Locht, C.; Openshaw, P.J. Attenuated Bordetella pertussis vaccine protects against respiratory syncytial virus disease via an IL-17-dependent mechanism. Am. J. Respir. Crit. Care. Med. 2014, 189, 194–202. [Google Scholar]
- Blecher, T.; Kammoun, H.; Coutte, L.; Debrie, A.S.; Mielcarek, N.; Sirard, J.C.; Cauchi, S.; Locht, C. Live attenuated Bordetella pertussis vaccine candidate BPZE1 transiently protects against lethal pneumococcal disease in mice. Vaccine 2018, in press. [Google Scholar]
- Cauchi, S.; Locht, C. Non-specific effects of live attenuated pertussis vaccine against heterologous infectious and inflammatory diseases. Front. Immunol. 2018, 9, 2872. [Google Scholar] [CrossRef] [Green Version]
- Skerry, C.M.; Cassidy, J.P.; English, K.; Feunou, P.F.; Locht, C.; Mahon, B.P. A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice. Clin. Vaccine Immunol. 2009, 16, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Feunou, P.F.; Ismaili, J.; Debrie, A.S.; Huot, L.; Hot, D.; Raze, D.; Lemoine, Y.; Locht, C. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 2008, 26, 5722–5727. [Google Scholar] [CrossRef]
- Thalen, M.; Debrie, A.-S.; Coutte, L.; Raze, D.; Solovay, K.; Rubin, K.; Mielcarek, N.; Locht, C. Manufacture of a Stable Lyophilized Formulation of the Live Attenuated Pertussis Vaccine BPZE1. Vaccines 2020, 8, 523. [Google Scholar] [CrossRef]
- Locht, C.; Papin, J.F.; Lecher, S.; Debrie, A.-S.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. J. Infect. Dis. 2017, 216, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Medkova, A.Y.; Sinyashina, L.N.; Amichba, A.A.; Semin, E.G.; Shevtsova, Z.V.; Matua, A.Z.; Djidaryan, A.A.; Kubrava, D.T.; Kondzhariya, I.G.; Barkaya, V.S.; et al. Preclinical studies of safety, immunogenicity and protective activity of attenuated Bordetella pertussis bacteria on the rhesus macaque model. J. Microbiol. Epidemiol. Immunol. 2020, 97, 312–323. [Google Scholar] [CrossRef]
- Thorstensson, R.; Trollfors, B.; Al-Tawil, N.; Jahnmatz, M.; Bergström, J.; Ljungman, M.; Törner, A.; Wehlin, L.; Van Broekhoven, A.; Bosman, F.; et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine—BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male vol-unteers. PLoS ONE 2014, 9, e83449. [Google Scholar] [CrossRef]
- Jahnmatz, M.; Richert, L.; Al-Tawil, N.; Storsaeter, J.; Colin, C.; Bauduin, C.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N.; et al. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: A phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect. Dis. 2020, 20, 1290–1301. [Google Scholar] [CrossRef]
- Lin, A.; Apostolovic, D.; Jahnmatz, M.; Liang, F.; Ols, S.; Tecleab, T.; Wu, C.; Van Hage, M.; Solovay, K.; Rubin, K.; et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J. Clin. Investig. 2020, 130, 2332–2346. [Google Scholar] [CrossRef] [PubMed]
- Mascart, F.; Verscheure, V.; Malfroot, A.; Hainaut, M.; Piérard, D.; Temerman, S.; Peltier, A.; Debrie, A.-S.; Levy, J.; Del Giudice, G.; et al. Bordetella pertussisInfection in 2-Month-Old Infants Promotes Type 1 T Cell Responses. J. Immunol. 2003, 170, 1504–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdin Trunz, B.; Fine, P.E.M.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and military tuberculosis worldwide: A meta-analysis and assessment of cost-effectiveness. Lancet 2006, 367, 1173–1180. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locht, C. The Path to New Pediatric Vaccines against Pertussis. Vaccines 2021, 9, 228. https://doi.org/10.3390/vaccines9030228
Locht C. The Path to New Pediatric Vaccines against Pertussis. Vaccines. 2021; 9(3):228. https://doi.org/10.3390/vaccines9030228
Chicago/Turabian StyleLocht, Camille. 2021. "The Path to New Pediatric Vaccines against Pertussis" Vaccines 9, no. 3: 228. https://doi.org/10.3390/vaccines9030228
APA StyleLocht, C. (2021). The Path to New Pediatric Vaccines against Pertussis. Vaccines, 9(3), 228. https://doi.org/10.3390/vaccines9030228