Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development
Abstract
:1. Introduction
1.1. Protein Composition of Schistosome Life-Cycle Stages
1.1.1. Eggs
1.1.2. Miracidia
1.1.3. Cercariae
1.1.4. Schistosomula
1.1.5. Adult Worms
2. Protease Inhibitors and Schistosomiasis
2.1. Serpins
2.2. Schistosome Serpins
2.3. Functionally Characterized Schistosome Serpins
2.3.1. Elafin
2.3.2. SmPi56
2.3.3. SmSrpQ
2.3.4. SmKI-1
2.3.5. SjKI-1
2.3.6. SjB10
3. Sm29 Protein
4. Sm14 Protein
5. Heat Shock Proteins
5.1. S. mansoni Hsp60
5.2. Hsp60 Inhibitors
6. Current Status of Schistosomiasis Treatment
6.1. Tetraspanin Proteins
6.2. Paramyosin
6.3. Calpain
6.4. S. mansoni 29 Kilodalton Protein
6.5. Sm14
6.6. Schistosoma mansoni Kunitz Type Protease Inhibitor
6.7. Schistosoma mansoni Asparaginyl Endopeptidase (SmAE/Sm32)
7. Future Prospects of Protein Vaccine Candidates against Schistosoma Infection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ran, X.; Gestwicki, J.E. Inhibitors of protein–protein interactions (PPIs): An analysis of scaffold choices and buried surface area. Curr. Opin. Chem. Biol. 2018, 44, 75–86. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Loukas, A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev. 2008, 21, 225–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salari, P.; Fürst, T.; Knopp, S.; Utzinger, J.; Tediosi, F. Cost of interventions to control schistosomiasis: A systematic review of the literature. PLoS Negl. Trop. Dis. 2020, 14, e0008098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Bear, J.W.; Long, T.; Skinner, D.; McKerrow, J.H. Predictions of novel Schistosoma mansoni-human protein interactions consistent with experimental data. Sci. Rep. 2018, 8, 1–14. [Google Scholar]
- Becker, J.M.; Ganatra, A.A.; Kandie, F.; Mühlbauer, L.; Ahlheim, J.; Brack, W.; Torto, B.; Agola, E.L.; McOdimba, F.; Hollert, H. Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Oyinloye, B.E.; Adenowo, A.F.; Kappo, A.P. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals 2015, 8, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Yu, H.; Zhu, X. The associations of hub gene polymorphisms in PI3K/AKT/mTOR pathway and Schistosomiasis Japonica infection and hepatic fibrosis. Infect. Genet. Evol. 2020, 85, 104423. [Google Scholar] [CrossRef]
- Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet 2006, 368, 1106–1118. [Google Scholar] [CrossRef]
- Adenowo, A.F.; Oyinloye, B.E.; Ogunyinka, B.I.; Kappo, A.P. Impact of human schistosomiasis in sub-Saharan Africa. Braz. J. Infect. Dis. 2015, 19, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aruleba, R.T.; Adekiya, T.A.; Oyinloye, B.E.; Masamba, P.; Mbatha, L.S.; Pretorius, A.; Kappo, A.P. PZQ therapy: How close are we in the development of effective alternative anti-schistosomal drugs? Infect. Disord. Drug Targets 2019, 19, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.D.; Imani, R.A.; Blackburn, V.R.; Cupit, P.M.; Melman, S.D.; Goronga, T.; Webb, T.; Loker, E.S.; Cunningham, C. Towards an understanding of the mechanism of action of praziquantel. Mol. Biochem. Parasitol. 2009, 164, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Paixão Siqueira, L.; Fontes, D.A.F.; Aguilera, C.S.B.; Timóteo, T.R.R.; Ângelos, M.A.; Silva, L.C.P.B.B.; de Melo, C.G.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Schistosomiasis: Drugs used and treatment strategies. Acta Trop. 2017, 176, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: Praziquantel forever? Mol. Biochem. Parasitol. 2014, 195, 23–29. [Google Scholar] [CrossRef]
- Utzinger, J.; Keiser, J. Schistosomiasis and soil-transmitted helminthiasis: Common drugs for treatment and control. Expert Opin. Pharmacother. 2004, 5, 263–285. [Google Scholar] [CrossRef]
- Melman, S.D.; Steinauer, M.L.; Cunningham, C.; Kubatko, L.S.; Mwangi, I.N.; Wynn, N.B.; Mutuku, M.W.; Karanja, D.M.; Colley, D.G.; Black, C.L. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl. Trop. Dis. 2009, 3, e504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, H.; Petukhov, P.A.; Banta, P.R.; Jadhav, A.; Lea, W.A.; Cheng, Q.; Arnér, E.S.; Simeonov, A.; Thatcher, G.R.; Angelucci, F. Characterization of lead compounds targeting the selenoprotein thioredoxin glutathione reductase for treatment of schistosomiasis. ACS Infect. Dis. 2020, 6, 393–405. [Google Scholar] [CrossRef]
- Calixto, N.M.; Dos Santos, D.B.; Bezerra, J.C.B.; Silva, L.D.A. In silico repositioning of approved drugs against Schistosoma mansoni energy metabolism targets. PLoS ONE 2018, 13, e0203340. [Google Scholar] [CrossRef] [Green Version]
- Fogarty, C.E.; Zhao, M.; McManus, D.P.; Duke, M.G.; Cummins, S.F.; Wang, T. Comparative study of excretory–secretory proteins released by Schistosoma mansoni-resistant, susceptible and naïve Biomphalaria glabrata. Parasites Vectors 2019, 12, 1–17. [Google Scholar] [CrossRef]
- Cuesta-Astroz, Y.; de Oliveira, F.S.; Nahum, L.A.; Oliveira, G. Helminth secretomes reflect different lifestyles and parasitized hosts. Int. J. Parasitol. 2017, 47, 529–544. [Google Scholar] [CrossRef]
- Cuesta-Astroz, Y.; Santos, A.; Oliveira, G.; Jensen, L.J. Analysis of predicted host–parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism. Front. Immunol. 2019, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, J.; Pearson, M.S.; Becker, L.; Mekonnen, G.G.; Amoah, A.S.; Van Dam, G.; Corstjens, P.L.; Murray, J.; Mduluza, T.; Mutapi, F. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl.Trop. Dis. 2019, 13, e0007362. [Google Scholar] [CrossRef] [Green Version]
- Abouel-Nour, M.F.; Lotfy, M.; Attallah, A.M.; Doughty, B.L. Schistosoma mansoni major egg antigen Smp40: Molecular modeling and potential immunoreactivity for anti-pathology vaccine development. Mem. Inst. Oswaldo Cruz 2006, 101, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roger, E.; Grunau, C.; Pierce, R.J.; Hirai, H.; Gourbal, B.; Galinier, R.; Emans, R.; Cesari, I.M.; Cosseau, C.; Mitta, G. Controlled chaos of polymorphic mucins in a metazoan parasite (Schistosoma mansoni) interacting with its invertebrate host (Biomphalaria glabrata). PLoS Negl.Trop. Dis. 2008, 2, e330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeberlein, S.; Obieglo, K.; Ozir-Fazalalikhan, A.; Chayé, M.A.; Veninga, H.; van der Vlugt, L.E.; Voskamp, A.; Boon, L.; den Haan, J.M.; Westerhof, L.B. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathog. 2017, 13, e1006539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieson, W.; Wilson, R.A. A comparative proteomic study of the undeveloped and developed Schistosoma mansoni egg and its contents: The miracidium, hatch fluid and secretions. Int. J. Parasitol. 2010, 40, 617–628. [Google Scholar] [CrossRef]
- Ludolf, F.; Patrocínio, P.R.; Corrêa-Oliveira, R.; Gazzinelli, A.; Falcone, F.H.; Teixeira-Ferreira, A.; Perales, J.; Oliveira, G.C.; Silva-Pereira, R.A. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Negl. Trop. Dis. 2014, 8, e2745. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, H.; Vigh, L. The small heat shock proteins and their clients. Cell. Mol. Life Sci. 2007, 64, 294–306. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, M.; Rotgans, B.A.; Strong, A.; Liang, D.; Ni, G.; Limpanont, Y.; Ramasoota, P.; McManus, D.P.; Cummins, S.F. Proteomic analysis of the Schistosoma mansoni miracidium. PLoS ONE 2016, 11, e0147247. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.V.; Bredesen, D.E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 2004, 16, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Delcroix, M.; Sajid, M.; Caffrey, C.R.; Lim, K.-C.; Dvořák, J.; Hsieh, I.; Bahgat, M.; Dissous, C.; McKerrow, J.H. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J. Biol. Chem. 2006, 281, 39316–39329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stack, C.; Dalton, J.P.; Robinson, M.W. The phylogeny, structure and function of trematode cysteine proteases, with particular emphasis on the Fasciola hepatica cathepsin L family. In Cysteine Proteases of Pathogenic Organisms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 116–135. [Google Scholar]
- Zhang, T.; Mo, X.-J.; Xu, B.; Yang, Z.; Gobert, G.N.; Yan, S.; Feng, Z.; Hu, W. Enzyme activity of Schistosoma japonicum cercarial elastase SjCE-2b ascertained by in vitro refolded recombinant protein. Acta Trop. 2018, 187, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, G.M.; Medzihradszky, K.F.; Lim, K.-C.; Hansell, E.; McKerrow, J.H. Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol. Cell. Proteom. 2005, 4, 1862–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaza, S.M. Heat shock proteins and parasitic diseases: Part 1: Helminths. Parasitol. United J. 2014, 7, 93. [Google Scholar] [CrossRef]
- Abou-El-Naga, I.F. Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020, 147, 634–642. [Google Scholar] [CrossRef]
- Sotillo, J.; Pearson, M.; Becker, L.; Mulvenna, J.; Loukas, A. A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. Int. J. Parasitol. 2015, 45, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, C.; Caldas, I.; Coura Filho, P.; Correa-Oliveira, R.; Oliveira, S. CD4+ T cells of schistosomiasis naturally resistant individuals living in an endemic area produce interferon-gamma and tumour necrosis factor-alpha in response to the recombinant 14KDA Schistosoma mansoni fatty acid-binding protein. Scand. J. Immunol. 2000, 51, 595–601. [Google Scholar] [CrossRef]
- Liu, F.; Cui, S.-J.; Hu, W.; Feng, Z.; Wang, Z.-Q.; Han, Z.-G. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol. Cell. Proteom. 2009, 8, 1236–1251. [Google Scholar] [CrossRef] [Green Version]
- Ramajo-Hernández, A.; Pérez-Sánchez, R.; Ramajo-Martín, V.; Oleaga, A. Schistosoma bovis: Plasminogen binding in adults and the identification of plasminogen-binding proteins from the worm tegument. Exp. Parasitol. 2007, 115, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Horn, M.; Fajtová, P.; Arreola, L.R.; Ulrychová, L.; Bartošová-Sojková, P.; Franta, Z.; Protasio, A.V.; Opavský, D.; Vondrášek, J.; McKerrow, J.H. Trypsin-and chymotrypsin-like serine proteases in Schistosoma mansoni–‘the undiscovered country’. PLoS Negl. Trop. Dis. 2014, 8, e2766. [Google Scholar] [CrossRef] [Green Version]
- Cleenewerk, L.; Garssen, J.; Hogenkamp, A. Clinical use of Schistosoma mansoni antigens as novel immunotherapies for autoimmune disorders. Front. Immunol. 2020, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Fukui, N.; Adachi, M.; Saiki, E.; Yamasaki, A.; Matsumura, R.; Kuroyanagi, D.; Hongo, K.; Mizobata, T.; Kawata, Y. Human Molecular Chaperone Hsp60 and Its Apical Domain Suppress Amyloid Fibril Formation of α-Synuclein. Int. J. Mol. Sci. 2020, 21, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 2001, 276, 33293–33296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, D.C.; Evans, D.L.; Carrell, R.W. Serpins: Implications of a mobile reactive centre. Curr. Opin. Biotechnol. 1992, 3, 399–407. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Rennebeck, G.; Harrison, S.M.; Xi, R.; Harrison, D.A. Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities. BMC Cell Biol. 2004, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- De Magalhães, M.T.; Mambelli, F.S.; Santos, B.P.; Morais, S.B.; Oliveira, S.C. Serine protease inhibitors containing a Kunitz domain: Their role in modulation of host inflammatory responses and parasite survival. Microbes Infect. 2018, 20, 606–609. [Google Scholar] [CrossRef]
- Khan, M.S.; Singh, P.; Azhar, A.; Naseem, A.; Rashid, Q.; Kabir, M.A.; Jairajpuri, M.A. Serpin inhibition mechanism: A delicate balance between native metastable state and polymerization. J. Amino Acids 2011, 2011, 606797. [Google Scholar] [CrossRef] [Green Version]
- Quezada, L.A.L.; McKerrow, J.H. Schistosome serine protease inhibitors: Parasite defense or homeostasis? Ann. Acad. Bras. Ciências 2011, 83, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Huntington, J.A. Shape-shifting serpins–advantages of a mobile mechanism. Trends Biochem. Sci 2006, 31, 427–435. [Google Scholar] [CrossRef]
- Hopkins, P.C.; Carrell, R.W.; Stone, S.R. Effects of mutations in the hinge region of serpins. Biochemistry 1993, 32, 7650–7657. [Google Scholar] [CrossRef] [PubMed]
- Hansell, E.; Braschi, S.; Medzihradszky, K.F.; Sajid, M.; Debnath, M.; Ingram, J.; Lim, K.; McKerrow, J.H. Proteomic analysis of skin invasion by blood fluke larvae. PLoS Negl. Trop. Dis. 2008, 2, e262. [Google Scholar] [CrossRef] [Green Version]
- Soria, C.L.D.; Lee, J.; Chong, T.; Coghlan, A.; Tracey, A.; Young, M.D.; Andrews, T.; Hall, C.; Ng, B.L.; Rawlinson, K. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat. Commun. 2020, 11, 1–16. [Google Scholar]
- Nowacki, F.C.; Swain, M.T.; Klychnikov, O.I.; Niazi, U.; Ivens, A.; Quintana, J.F.; Hensbergen, P.J.; Hokke, C.H.; Buck, A.H.; Hoffmann, K.F. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J. Extracell. Vesicles 2015, 4, 28665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adebayo, A.S.; Anumudu, C.I. Annotation of virulence factors in schistosomes for the development of a SchistoVir database. J. Comput. Biol. Bioinform. Res. 2013, 5, 6–14. [Google Scholar] [CrossRef]
- Pakchotanon, P.; Molee, P.; Nuamtanong, S.; Limpanont, Y.; Chusongsang, P.; Limsomboon, J.; Chusongsang, Y.; Maneewatchararangsri, S.; Chaisri, U.; Adisakwattana, P. Molecular characterization of serine protease inhibitor isoform 3, SmSPI, from Schistosoma mansoni. Parasitol. Res. 2016, 115, 2981–2994. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, W.P.d.O.S.; de Araújo, J.M.; Carvalho, G.B.; Alves, C.C.; de Moura Coelho, A.T.; Dutra, I.T.S.; Teixeira, S.S.F.; de Azambuja Ribeiro, R.I.M.; de Moraes Mourão, M.; da Silva-Pereira, R.A. Sm16, A Schistosoma mansoni Immunomodulatory Protein, Fails to Elicit a Protective Immune Response and Does Not Have an Essential Role in Parasite Survival in the Definitive Host. J. Immunol. Res. 2019, 2019, 6793596. [Google Scholar] [CrossRef] [Green Version]
- Haas, W.; Haeberlein, S. Penetration of cercariae into the living human skin: Schistosoma mansoni vs. Trichobilharzia szidati. Parasitol. Res. 2009, 105, 1061–1066. [Google Scholar] [CrossRef]
- Salter, J.P.; Lim, K.-C.; Hansell, E.; Hsieh, I.; McKerrow, J.H. Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. J. Biol. Chem. 2000, 275, 38667–38673. [Google Scholar] [CrossRef] [Green Version]
- Fishelson, Z.; Amiri, P.; Friend, D.S.; Marikovsky, M.; Petitt, M.; Newport, G.; Mckerrow, J.H. Schistosoma mansoni: Cell-specific expression and secretion of a serine protease during development of cercariae. Exp. Parasitol. 1992, 75, 87–98. [Google Scholar] [CrossRef]
- Wang, J.; Ortiz, C.; Fontenot, L.; Xie, Y.; Ho, W.; Mattai, S.A.; Shih, D.Q.; Koon, H.W. High circulating elafin levels are associated with Crohn’s disease-associated intestinal strictures. PLoS ONE 2020, 15, e0231796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, K.K.; Wingate, H.; Yokota, T.; Liu, Y.; Mills, G.B.; Zhang, F.; Fang, B.; Su, C.-H.; Zhang, M.; Yi, M. Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Breast Cancer Res. 2013, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White Bear, J. Predictions of Protein-Protein Interactions in Schistosoma Mansoni. Master’s Thesis, UCSF, San Francisco, CA, USA, 2012. [Google Scholar]
- Simpson, A.; Maxwell, A.; Govan, J.; Haslett, C.; Sallenave, J.-M. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett. 1999, 452, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Ingram, J.R.; Rafi, S.B.; Eroy-Reveles, A.A.; Ray, M.; Lambeth, L.; Hsieh, I.; Ruelas, D.; Lim, K.; Sakanari, J.; Craik, C.S. Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2012, 6, e1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, S.B.; Figueiredo, B.C.; Assis, N.R.; Alvarenga, D.M.; de Magalhães, M.T.; Ferreira, R.S.; Vieira, A.T.; Menezes, G.B.; Oliveira, S.C. Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation. PLoS Pathog. 2018, 14, e1006870. [Google Scholar] [CrossRef] [Green Version]
- Cascão, R.; Moura, R.A.; Perpétuo, I.; Canhão, H.; Vieira-Sousa, E.; Mourão, A.F.; Rodrigues, A.M.; Polido-Pereira, J.; Queiroz, M.V.; Rosário, H.S. Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gramegna, A.; Amati, F.; Terranova, L.; Sotgiu, G.; Tarsia, P.; Miglietta, D.; Calderazzo, M.A.; Aliberti, S.; Blasi, F. Neutrophil elastase in bronchiectasis. Respir. Res. 2017, 18, 1–13. [Google Scholar] [CrossRef]
- Freudenstein-Dan, A.; Gold, D.; Fishelson, Z. Killing of schistosomes by elastase and hydrogen peroxide: Implications for leukocyte-mediated schistosome killing. J. Parasitol. 2003, 89, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.L.; Fischer, K.; Gobert, G.N.; McManus, D.P. Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasites Vectors 2015, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghendler, Y.; Arnon, R.; Fishelson, Z. Schistosoma mansoni: Isolation and characterization of Smpi56, a novel serine protease inhibitor. Exp. Parasitol. 1994, 78, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Macedo Soares, M.F.D.; Araujo, C.A. Helminth products as a potential therapeutic strategy for inflammatory diseases. Inflamm. Allergy-Drug Targets 2008, 7, 113–118. [Google Scholar] [CrossRef]
- Quezada, L.A.L.; Sajid, M.; Lim, K.C.; McKerrow, J.H. A blood fluke serine protease inhibitor regulates an endogenous larval elastase. J. Biol. Chem. 2012, 287, 7074–7083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quezada, L.A.L. Function of Macromolecular Serine Protease Inhibitors in the Human Blood Fluke Schistosoma Mansoni. Ph.D. Thesis, University of California, San Francisco, CA, USA, 2011. [Google Scholar]
- Lim, K.-C.; Sun, E.; Bahgat, M.; Bucks, D.; Guy, R.; Hinz, R.S.; Cullander, C.; McKerrow, J.H. Blockage of skin invasion by schistosome cercariae by serine protease inhibitors. Am. J. Trop. Med. Hyg. 1999, 60, 487–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Goenaga, J.; López-Abán, J.; Protasio, A.V.; Vicente Santiago, B.; Del Olmo, E.; Vanegas, M.; Fernández-Soto, P.; Patarroyo, M.A.; Muro, A. Peptides derived of Kunitz-type serine protease inhibitor as potential vaccine against experimental schistosomiasis. Front. Immunol. 2019, 10, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, H.; Lee, K.S.; Kim, B.Y.; Zou, F.M.; Yoon, H.J.; Je, Y.H.; Li, J.; Jin, B.R. A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS ONE 2013, 8, e53343. [Google Scholar] [CrossRef]
- Hewitson, J.P.; Grainger, J.R.; Maizels, R.M. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 2009, 167, 1–11. [Google Scholar] [CrossRef]
- Van Hellemond, J.J.; Retra, K.; Brouwers, J.F.; van Balkom, B.W.; Yazdanbakhsh, M.; Shoemaker, C.B.; Tielens, A.G. Functions of the tegument of schistosomes: Clues from the proteome and lipidome. Int. J. Parasitol. 2006, 36, 691–699. [Google Scholar] [CrossRef]
- Mebius, M.M.; van Genderen, P.J.; Urbanus, R.T.; Tielens, A.G.; de Groot, P.G.; van Hellemond, J.J. Interference with the host haemostatic system by schistosomes. PLoS Pathog. 2013, 9, e1003781. [Google Scholar] [CrossRef] [Green Version]
- Gader, A.G.M.A. Tissue factor pathway inhibitor [TFPI]: A natural coagulation inhibitor and potential therapeutic agent—A review. J. Taibah Univ. Med. Sci. 2009, 4, 1–15. [Google Scholar]
- Wolberg, A.S.; Aleman, M.M.; Leiderman, K.; Machlus, K.R. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth. Analg. 2012, 114, 275. [Google Scholar] [CrossRef] [Green Version]
- Cheever, A.W.; Macedonia, J.G.; Mosimann, J.E.; Cheever, E.A. Kinetics of egg production and egg excretion by Schistosoma mansoni and S. japonicum in mice infected with a single pair of worms. Am. J. Trop. Med. Hyg. 1994, 50, 281–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- File, S. Interaction of schistosome eggs with vascular endothelium. J. Parasitol. 1995, 81, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Bachler, M.; Niederwanger, C.; Hell, T.; Höfer, J.; Gerstmeyr, D.; Schenk, B.; Treml, B.; Fries, D. Influence of factor XII deficiency on activated partial thromboplastin time (aPTT) in critically ill patients. J. Thromb. Thrombolysis 2019, 48, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z.M. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 319. [Google Scholar] [PubMed]
- Hwang, J.-H.; Lee, W.-G.; Na, B.-K.; Lee, H.-W.; Cho, S.-H.; Kim, T.-S. Identification and characterization of a serine protease inhibitor of Paragonimus westermani. Parasitol. Res. 2009, 104, 495–501. [Google Scholar] [CrossRef]
- Molehin, A.J.; Gobert, G.N.; Mcmanus, D.P. Serine protease inhibitors of parasitic helminths. Parasitology 2012, 139, 681. [Google Scholar] [CrossRef]
- Irving, J.A.; Pike, R.N.; Lesk, A.M.; Whisstock, J.C. Phylogeny of the serpin superfamily: Implications of patterns of amino acid conservation for structure and function. Genome Res. 2000, 10, 1845–1864. [Google Scholar] [CrossRef] [Green Version]
- Van Gent, D.; Sharp, P.; Morgan, K.; Kalsheker, N. Serpins: Structure, function and molecular evolution. Int. J. Biochem. Cell Biol. 2003, 35, 1536–1547. [Google Scholar] [CrossRef]
- Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev. 2002, 102, 4751–4804. [Google Scholar] [CrossRef]
- McCarthy, B.J.; Worrall, D.M. Analysis of serpin inhibitory function by mutagenesis of ovalbumin and generation of chimeric ovalbumin/PAI-2 fusion proteins. J. Mol. Biol. 1997, 267, 561–569. [Google Scholar] [CrossRef]
- Jones, M.K.; Bong, S.H.; Green, K.M.; Duke, M.; Loukas, A.; McManus, D.P. Correlative and dynamic imaging of the hatching biology of Schistosoma japonicum from eggs prepared by high pressure freezing. PLoS Negl. Trop. Dis. 2008, 2, e334. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.; Harrop, R.; Shah, B.; Wilson, R. The schistosome egg: Development and secretions. Parasitology 2001, 122, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Jang-Lee, J.; Curwen, R.S.; Ashton, P.D.; Tissot, B.; Mathieson, W.; Panico, M.; Dell, A.; Wilson, R.A.; Haslam, S.M. Glycomics analysis of Schistosoma mansoni egg and cercarial secretions. Mol. Cell. Proteom. 2007, 6, 1485–1499. [Google Scholar] [CrossRef] [Green Version]
- Molehin, A.J.; Gobert, G.N.; Driguez, P.; Mcmanus, D.P. Functional characterization of SjB10, an intracellular serpin from Schistosoma japonicum. Parasitology 2014, 141, 1746. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Haas, T.A.; Biesterfeldt, J.; Mankawsky, L.; Blanton, R.E.; Lee, X. Purification and crystallization of a novel membrane-anchored protein: The Schistosoma haematobium serpin. Acta Crystallogr. Sect. D Biol. Crystallogr. 1999, 55, 350–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harder, A. Chemotherapeutic approaches to schistosomes: Current knowledge and outlook. Parasitol. Res. 2002, 88, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, N. Schistosomiasis vaccine development: Approaches and prospects. Mem. Inst. Oswaldo Cruz 1995, 90, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chistulo, L.; Loverde, P.; Engels, D. Disease watch: Schistosomiasis. TDR Nat. Rev. Microbiol. 2004, 2, 12–13. [Google Scholar]
- Bergquist, N.R. Schistosomiasis: From risk assessment to control. Trends Parasitol. 2002, 18, 309–314. [Google Scholar] [CrossRef]
- Smithers, S.; Hackett, F.; Braga, V.; Simpson, A. Immunoblotting identifies additional antigens recognised by mice protectively vaccinated with adult Schistosoma mansoni tegumental membranes. Parasitol. Res. 1990, 76, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Abath, F.G.; Xavier, E.M.; Allen, R.; Gomes, Y.M.; Lucena-Silva, N.; Baliza, M.; Simpson, A.J. Characterization of Sm13, a tegumental antigen of Schistosoma mansoni. Parasitol. Res. 2000, 86, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.C.; Macedo, G.C.; Gava, E.; Kitten, G.T.; Mati, V.L.; de Melo, A.L.; Caliari, M.V.; Almeida, G.T.; Venancio, T.M.; Verjovski-Almeida, S. Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl. Trop. Dis. 2008, 2, e308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuah, C.; Jones, M.K.; Burke, M.L.; McManus, D.P.; Gobert, G.N. Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol. 2014, 30, 141–150. [Google Scholar] [CrossRef]
- Delgado, V.; McLaren, D.J. Evidence for enhancement of IgGl subclass expression in mice polyvaccinated with radiation-attenuated cercariae of Schistosoma mansoni and the role of this isotype in serum-transferred immunity. Parasite Immunol. 1990, 12, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Dunne, D.; Bickle, Q.; Worth, A.B.; Richardson, B. The blocking of human antibody-dependent, eosinophil-mediated killing of Schistosoma mansoni schistosomula by monoclonal antibodies which cross-react with a polysaccharide-containing egg antigen. Parasitology 1987, 94, 269–280. [Google Scholar] [CrossRef]
- Hagan, P.; Blumenthal, U.J.; Dunn, D.; Simpson, A.J.; Wilkins, H.A. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 1991, 349, 243–245. [Google Scholar] [CrossRef]
- Gobert, G.N.; McInnes, R.; Moertel, L.; Nelson, C.; Jones, M.K.; Hu, W.; McManus, D.P. Transcriptomics tool for the human Schistosoma blood flukes using microarray gene expression profiling. Exp. Parasitol. 2006, 114, 160–172. [Google Scholar] [CrossRef]
- Meyer, F.; Meyer, H.; Bueding, E. Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochim. Biophys. Acta 1970, 210, 257–266. [Google Scholar] [CrossRef]
- Rogers, M. Do parasites express receptors for host lipoproteins? Parasitol. Today 1991, 7, 117–120. [Google Scholar] [CrossRef]
- Furlong, S. Unique roles for lipids in Schistosoma mansoni. Parasitol. Today 1991, 7, 59–62. [Google Scholar] [CrossRef]
- Moser, D.; Tendler, M.; Griffiths, G.; Klinkert, M.-Q. A 14-kDa Schistosoma mansoni polypeptide is homologous to a gene family of fatty acid binding proteins. J. Biol. Chem. 1991, 266, 8447–8454. [Google Scholar] [CrossRef]
- Tendler, M.; Brito, C.A.; Vilar, M.M.; Serra-Freire, N.; Diogo, C.M.; Almeida, M.S.; Delbem, A.; Da Silva, J.F.; Savino, W.; Garratt, R.C. A Schistosoma mansoni fatty acid-binding protein, Sm14, is the potential basis of a dual-purpose anti-helminth vaccine. Proc. Natl. Acad. Sci. USA 1996, 93, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossallam, S.F.; Amer, E.I.; Ewaisha, R.E.; Khalil, A.M.; Aboushleib, H.M.; Bahey-El-Din, M. Fusion protein comprised of the two schistosomal antigens, Sm14 and Sm29, provides significant protection against Schistosoma mansoni in murine infection model. BMC Infect. Dis. 2015, 15, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masamba, P.; Adenowo, A.F.; Oyinloye, B.E.; Kappo, A.P. Universal stress proteins as new targets for environmental and therapeutic interventions of Schistosomiasis. Int. J. Environ. Res. Public Health 2016, 13, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, K.; Jolly, E.R. Hsp70 may be a molecular regulator of schistosome host invasion. PLoS Negl.Trop. Dis. 2016, 10, e0004986. [Google Scholar] [CrossRef] [Green Version]
- Zininga, T.; Shonhai, A. Are heat shock proteins druggable candidates. Am. J. Biochem. Biotechnol 2014, 10, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Crellen, T.; Allan, F.; David, S.; Durrant, C.; Huckvale, T.; Holroyd, N.; Emery, A.M.; Rollinson, D.; Aanensen, D.M.; Berriman, M. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, K.; Varrecchia, M.; Knudsen, G.M.; Jolly, E.R. Immunolocalization of anti-hsf1 to the acetabular glands of infectious schistosomes suggests a non-transcriptional function for this transcriptional activator. PLoS Negl. Trop. Dis. 2014, 8, e3051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da’Dara, A.A.; Li, C.; Yu, X.; Zheng, M.; Zhou, J.; Shollenberger, L.M.; Li, Y.-S.; Harn, D.A. Prime-boost vaccine regimen for SjTPI and SjC23 schistosome vaccines, increases efficacy in water buffalo in a field trial in China. Front. Immunol. 2019, 10, 284. [Google Scholar] [CrossRef]
- Zahoor, Z.; Davies, A.J.; Kirk, R.S.; Rollinson, D.; Walker, A.J. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata. Cell Stress Chaperones 2010, 15, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Lu, X.; Yuan, L. LncRNA: A link between RNA and cancer. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2014, 1839, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Moser, D.; Doumbo, O.; Klinkert, M.Q. The humoral response to heat shock protein 70 in human and murine Schistosomiasis mansoni. Parasite Immunol. 1990, 12, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K. Identifying a Role for Heat Shock Proteins in Schistosoma Mansoni. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2017. [Google Scholar]
- Tielens, A.G.; Vandenheuvel, J.M.; Vaneden, W. Schistosoma mansoni: An HSP60 homologue is constitutively expressed in cercariae, adults, and sporocysts. Exp. Parasitol. 1993, 77, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, T.A.; Aruleba, R.T.; Oyinloye, B.E.; Okosun, K.O.; Kappo, A.P. The effect of climate change and the snail-Schistosome cycle in transmission and bio-control of Schistosomiasis in sub-Saharan Africa. Int. J. Environ. Res. Public Health 2020, 17, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinda, C.; Chimbari, M.; Mukaratirwa, S. Implications of changing temperatures on the growth, fecundity and survival of intermediate host snails of schistosomiasis: A systematic review. Int. J. Environ. Res. Public Health 2017, 14, 80. [Google Scholar] [CrossRef] [Green Version]
- Mangal, T.D.; Paterson, S.; Fenton, A. Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: A mechanistic model. PLoS ONE 2008, 3, e1438. [Google Scholar] [CrossRef] [Green Version]
- McCreesh, N.; Booth, M. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: An agent-based modelling study. PLoS ONE 2014, 9, e101462. [Google Scholar] [CrossRef]
- Hayer-Hartl, M.; Bracher, A.; Hartl, F.U. The GroEL–GroES chaperonin machine: A nano-cage for protein folding. Trends Biochem. Sci. 2016, 41, 62–76. [Google Scholar] [CrossRef]
- Horwich, A. Structure and Action of Molecular Chaperones. In Structural Analysis of GroEL/GroES Chaperonin-Mediated Protein Folding: Machines That Assist Protein Folding In The Cell; World Scientific Publishing: Hackensack, NJ, USA, 2016; Volume 6, p. 49. [Google Scholar]
- Iizuka, R.; Yoshida, T.; Shomura, Y.; Miki, K.; Maruyama, T.; Odaka, M.; Yohda, M. ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin. J. Biol. Chem. 2003, 278, 44959–44965. [Google Scholar] [CrossRef] [Green Version]
- Radons, J. The ATP-driven Hsp60 machinery: Biological and clinical implications. Curr. Immunol. Rev. 2017, 13, 19–43. [Google Scholar] [CrossRef]
- Meng, Q.; Li, B.X.; Xiao, X. Toward developing chemical modulators of Hsp60 as potential therapeutics. Front. Mol. Biosci. 2018, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, R.P.; Mengarda, A.C.; Silva, M.P.; Roquini, D.B.; Salvadori, M.C.; Teixeira, F.S.; Pinto, P.L.; Morais, T.R.; Ferreira, L.L.; Andricopulo, A.D. H1-antihistamines as antischistosomal drugs: In vitro and in vivo studies. Parasites Vectors 2020, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci. 2008, 29, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Neves, B.J.; Andrade, C.H.; Cravo, P.V. Natural products as leads in schistosome drug discovery. Molecules 2015, 20, 1872–1903. [Google Scholar] [CrossRef]
- Toor, J.; Turner, H.C.; Truscott, J.E.; Werkman, M.; Phillips, A.E.; Alsallaq, R.; Medley, G.F.; King, C.H.; Anderson, R.M. The design of schistosomiasis monitoring and evaluation programmes: The importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Negl.Trop. Dis. 2018, 12, e0006717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, A.X.; Agosti, J.M.; Walson, J.L.; Hall, B.F.; Gordon, L. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am. J. Trop. Med. Hyg. 2014, 90, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.A.; Siddiqui, S.Z. Sm-p80-based schistosomiasis vaccine: Preparation for human clinical trials. Trends Parasitol. 2017, 33, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berditchevski, F.; Odintsova, E. Tetraspanins as regulators of protein trafficking. Traffic 2007, 8, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Charrin, S.; Jouannet, S.; Boucheix, C.; Rubinstein, E. Tetraspanins at a glance. J. Cell Sci. 2014, 127, 3641–3648. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.H.; Pearson, M.S.; Bethony, J.M.; Smyth, D.J.; Jones, M.K.; Duke, M.; Don, T.A.; McManus, D.P.; Correa-Oliveira, R.; Loukas, A. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat. Med. 2006, 12, 835–840. [Google Scholar] [CrossRef]
- Diab, T.; Aly, I. PP-188 efficacy of Schistosoma mansoni Paramyosin (Sm97) and fatty acid binding protein (Sm-FABP) as a candidate vaccine against schistosomiasis mansoni. Int. J. Infect. Dis. 2011, 15, S97. [Google Scholar] [CrossRef]
- Eyayu, T.; Zeleke, A.J.; Worku, L. Current status and future prospects of protein vaccine candidates against Schistosoma mansoni infection. Parasite Epidemiol. Control 2020, 11, e00176. [Google Scholar] [CrossRef] [PubMed]
- Tebeje, B.M.; Harvie, M.; You, H.; Loukas, A.; McManus, D.P. Schistosomiasis vaccines: Where do we stand? Parasites Vectors 2016, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, A.; Hall, B.; Vadas, M. Acquisition of murine major histocompatibility complex gene products by schistosomula of Schistosoma mansoni. J. Exp. Med. 1978, 148, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, B.L.; Kurtis, J.D.; Wiest, P.M.; Arias, P.; Aligui, F.; Acosta, L.; Peters, P.; Olds, G.R. Paramyosin: A candidate vaccine antigen against Schistosoma japonicum. Parasite Immunol. 1996, 18, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Jiz, M.A.; Wu, H.; Olveda, R.; Jarilla, B.; Kurtis, J.D. Development of paramyosin as a vaccine candidate for schistosomiasis. Front. Immunol. 2015, 6, 347. [Google Scholar] [CrossRef] [Green Version]
- Leenstra, T.; Acosta, L.P.; Wu, H.-W.; Langdon, G.C.; Solomon, J.S.; Manalo, D.L.; Su, L.; Jiz, M.; Jarilla, B.; Pablo, A.O. T-helper-2 cytokine responses to Sj97 predict resistance to reinfection with Schistosoma japonicum. Infect. Immun. 2006, 74, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, S.; Zhang, W.; Ahmad, G.; Torben, W.; Alam, M.U.; Le, L.; Damian, R.T.; Wolf, R.F.; White, G.L.; Carey, D.W. Cross-species protection: Schistosoma mansoni Sm-p80 vaccine confers protection against Schistosoma haematobium in hamsters and baboons. Vaccine 2014, 32, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, G.; Zhang, W.; Torben, W.; Haskins, C.; Diggs, S.; Noor, Z.; Le, L.; Siddiqui, A.A. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol. Res. 2009, 105, 1767–1777. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, G.; Zhang, W.; Torben, W.; Noor, Z.; Siddiqui, A.A. Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice. Int. J. Infect. Dis. 2010, 14, e781–e787. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, G.; Zhang, W.; Torben, W.; Ahrorov, A.; Damian, R.T.; Wolf, R.F.; White, G.L.; Carey, D.W.; Mwinzi, P.N.; Ganley-Leal, L. Preclinical prophylactic efficacy testing of Sm-p80–based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where Schistosomiasis is endemic. J. Infect. Dis. 2011, 204, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ahmad, G.; Torben, W.; Noor, Z.; Le, L.; Damian, R.T.; Wolf, R.F.; White, G.L.; Chavez-Suarez, M.; Podesta, R.B. Sm-p80—Based DNA Vaccine Provides Baboons with Levels of Protection against Schistosoma mansoni Infection Comparable to Those Achieved by the Irradiated Cercarial Vaccine. J. Infect. Dis. 2010, 201, 1105–1112. [Google Scholar] [CrossRef]
- Zhang, W.; Ahmad, G.; Le, L.; Rojo, J.U.; Karmakar, S.; Tillery, K.A.; Torben, W.; Damian, R.T.; Wolf, R.F.; White, G.L. Longevity of Sm-p80-specific antibody responses following vaccination with Sm-p80 vaccine in mice and baboons and transplacental transfer of Sm-p80-specific antibodies in a baboon. Parasitol. Res. 2014, 113, 2239–2250. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.C.; Araujo, N.; dos Santos, V.C.F.; Couto, F.B.; Assis, N.R.; Morais, S.B.; Oliveira, S.C.; Fonseca, C.T. Sm29, but not Sm22. 6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection. PLoS Negl.Trop. Dis. 2015, 9, e0003537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.C.; Araujo, N.; Bernardes, W.P.d.O.S.; Mendes, M.M.; Oliveira, S.C.; Fonseca, C.T. A Strong humoral immune response induced by a vaccine formulation containing rSm29 adsorbed to alum is associated with protection against Schistosoma mansoni reinfection in mice. Front. Immunol. 2018, 9, 2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.S.; Ribeiro, A.P.D.; Cardoso, F.C.; Martins, V.P.; Figueiredo, B.C.; Assis, N.R.; Morais, S.B.; Caliari, M.V.; Loukas, A.; Oliveira, S.C. A multivalent chimeric vaccine composed of S chistosoma mansoni Sm TSP-2 and Sm29 was able to induce protection against infection in mice. Parasite Immunol. 2014, 36, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tendler, M.; Simpson, A.J. The biotechnology-value chain: Development of Sm14 as a schistosomiasis vaccine. Acta Trop. 2008, 108, 263–266. [Google Scholar] [CrossRef]
- Santini-Oliveira, M.; Coler, R.N.; Parra, J.; Veloso, V.; Jayashankar, L.; Pinto, P.M.; Ciol, M.A.; Bergquist, R.; Reed, S.G.; Tendler, M. Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine 2016, 34, 586–594. [Google Scholar] [CrossRef]
- Tendler, M.; Almeida, M.; Simpson, A. Development of the Brazilian anti schistosomiasis vaccine based on the recombinant fatty acid binding protein Sm14 plus GLA-SE adjuvant. Front. Immunol. 2015, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, S.L.; Duke, M.; Harvie, M.; McManus, D.P. Kunitz-type protease inhibitor as a vaccine candidate against schistosomiasis mansoni. Int. J. Infect. Dis. 2018, 66, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Noya, O.; de Noya, B.A.; Guzmán, F.; Bermúdez, H. Immunogenicity of Sm32 synthetic peptides derived from the Schistosoma mansoni adult worm. Immunol. Lett. 2003, 88, 211–219. [Google Scholar] [CrossRef]
- Chacon, N.; Losada, S.; Bermudez, H.; Cesari, I.; Hoebeke, J.; Noya, O. Immunogenicity of polymerizable synthetic peptides derived from a vaccine candidate against schistosomiasis: The asparaginyl endopeptidase (Sm32). Immunol. Lett. 2003, 88, 199–210. [Google Scholar] [CrossRef]
- Dalton, J.; Clough, K.; Jones, M.; Brindley, P. The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 1997, 114, 105–112. [Google Scholar] [CrossRef]
- Chlichlia, K.; Bahgat, M.; Ruppel, A.; Schirrmacher, V. DNA vaccination with asparaginyl endopeptidase (Sm32) from the parasite Schistosoma mansoni: Anti-fecundity effect induced in mice. Vaccine 2001, 20, 439–447. [Google Scholar] [CrossRef]
- Molehin, A.J.; Rojo, J.U.; Siddiqui, S.Z.; Gray, S.A.; Carter, D.; Siddiqui, A.A. Development of a schistosomiasis vaccine. Expert Rev. Vaccines 2016, 15, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driguez, P.; McManus, D.P.; Gobert, G.N. Clinical implications of recent findings in schistosome proteomics. Expert Rev. Proteom. 2016, 13, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, M.; Hotez, P.J.; Beaumier, C.M.; Gillespie, P.; Strych, U.; Hayward, T.; Bottazzi, M.E. Advancing a vaccine to prevent human schistosomiasis. Vaccine 2016, 34, 2988–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Schistosoma mansoni | |||||
---|---|---|---|---|---|
Database Gene Name | Size (kDa) | Reactive Central Loop Amino Acid Sequence | Potentially Targeted Protease | Similarity to Mammalian Serpin | Reference |
Smp_003300 | 43.7 | EDGVEAAAATVMGIGLRSA | SmCl2 | α1-antitrypsin (53%) | [53] |
Smp_090080 | 46.0 | ESGIEATTVTSPIFVPISA | Elastase-2 | Neuroserpin (48%) | [54] |
Smp_090090 | 46.3 | EVGMEARSVANAMFIPLSS | CT, Cat | Neuroserpin (52%) | [50] |
Smp_062080 | 43.3 | EQGVVAAAASSVEVVQLSA | Cercarial elastase | SCCA-2 (53%) | [55] |
Smp_155530 | 51.0 | EEGVVAAGVTACVFDNCDS | Peptidase complex (SPC) | SCCA-2 (55%) | [50] |
Smp_155550 | 43.5 | EKGAVAAAATATRMIRCTA | Peptidase complex (SPC) | PAI-2 (53%) | [50] |
Smp_155560 | 43.6 | EKGAVAAAATATQMVRCTA | Peptidase complex (SPC) | SCCA2/SCCA1 (52%) | [56] |
Smp_155560 | 43.8 | EKGAVAAAATATQMVRYSA | Peptidase complex (SPC) | PAI-2 (54%) | [56] |
Schistosoma japonicum | |||||
Sjp_0113720 | 26.4 | EKGVEAAAATAIYSLGRSL | Thrombin | Ovalbumin (52%) | [50] |
Sjp_0076600 | 45.0 | EEGAVAAAASATVMLKCSA | Peptidase complex (SPC) | SerpinB6c (57%) | [50] |
Sjp_0085750 | 45.6 | ESGIEAASVTSPIIVPISA | Elastase-2 | Neuroserpin (50%) | [50] |
Sjp_0113080 | 43.0 | EKGAEAAAATATKIIPLSL | Cercarial elastase | Proteinase inhibitor 6 (53%) | [50] |
Schistosoma haematobium | |||||
ShSPI | 45.9 | ESGIEATTVTSPIFVPFSA | Cercarial elastase | Ovalbumin (48%) | [57] |
Protease Inhibitor | Specie | Protease Inhibited | Location of Expression | References |
---|---|---|---|---|
SmSrpQ | Schistosoma mansoni | SmCE | Cercariae | [74] |
SmPi56 | Schistosoma mansoni | NE | Adult worms | [50,71,73] |
ShSPI | Schistosoma haematobium | Thrombin | Surface of adult worms | [89,98] |
SjB10 | Schistosoma japonicum | Trypsin, chymotrypsin, pancreatic elastase | Cercariae, schistosomula, eggs, adult male worms | [97] |
SjB6 | Schistosoma japonicum | Trypsin | Eggs | [89] |
SmKI-1 | Schistosoma mansoni | Trypsin, chymotrypsin, NE | Adults, schistosomula, eggs | [67,71] |
SjKI-1 | Schistosoma japonicum | Trypsin, chymotrypsin, NE | Eggs, adult worms | [71] |
SmSPI | Schistosoma mansoni | Chymotrypsin, PE, NE | Head gland of schistosomules, spines of adults | [57] |
Antigen | Location | Target Species | Function | Vaccine Development Stage | References |
---|---|---|---|---|---|
Sm-TSP-2 | Tegument | S. mansoni | Maintains tegument creation and maturation in the adult worm | Phase I | [146] |
Sj97 | Tegument of schistosomula and penetration glands of the cercariae | S. japonicum | Associated with resistance to infection and re-infection | Pre-clinical | [2] |
Sm97 | Tegument and cercariae | S. mansoni | Offers protective immunity to the host | Pre-clinical | [147] |
Sm-p80 | All developmental stages of S. mansoni | S. mansoni | Immune evasion | Pre-clinical | [148] |
Sm29 | Tegument | S. mansoni | Protection against re-infection | Pre-clinical | [116] |
SmKI-1 | Tegument and sub-shell region of eggs | S. mansoni | Inhibits host proteases; permits parasite survival | Pre-clinical | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qokoyi, N.K.; Masamba, P.; Kappo, A.P. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines 2021, 9, 762. https://doi.org/10.3390/vaccines9070762
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines. 2021; 9(7):762. https://doi.org/10.3390/vaccines9070762
Chicago/Turabian StyleQokoyi, Ndibonani Kebonang, Priscilla Masamba, and Abidemi Paul Kappo. 2021. "Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development" Vaccines 9, no. 7: 762. https://doi.org/10.3390/vaccines9070762
APA StyleQokoyi, N. K., Masamba, P., & Kappo, A. P. (2021). Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines, 9(7), 762. https://doi.org/10.3390/vaccines9070762