Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015–2019
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Lahham, A.; Van der Linden, M. Streptococcus pneumoniae carriage, resistance and serotypes among Jordanian children from Wadi Al Seer District, JORDAN. Int. Arab. J. Antimicrob. Agents 2014, 4, 1–8. [Google Scholar] [CrossRef]
- Schaumburg, F.; Alabi, A.; von Eiff, C.; Flamen, A.; Traore, H.; Grobusch, M.P.; Peters, G.; Kremsner, P.G.; van der Linden, M. Streptococcus pneumoniae colonization in remote African Pygmies. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 105–109. [Google Scholar] [CrossRef]
- Simell, B.; Auranen, K.; Kayhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K.L.; Pneumococcal Carriage, G. The fundamental link between pneumococcal carriage and disease. Expert Rev. Vaccines 2012, 11, 841–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, M.G.; Singleton, R.; Bulkow, L.; Rudolph, K.; Zulz, T.; Gounder, P.; Hurburt, D.; Bruden, D.; Hennessey, T. Impact of the 13-valent pneumococcal conjugate vaccine (pcv13) on invasive pneumococcal disease and carriage in Alaska. Vaccine 2015, 33, 4813–4819. [Google Scholar] [CrossRef] [Green Version]
- Al-Lahham, A. Multicenter study of pneumococcal carriage in children 2 to 4 years of age in the winter seasons of 2017–2019 in Irbid and Madaba governorates of Jordan. PLoS ONE 2020, 15, e0237247. [Google Scholar] [CrossRef]
- Allemann, A.; Frey, P.M.; Brugger, S.D.; Hilty, M. Pneumococcal carriage and serotype variation before and after introduction of pneumococcal conjugate vaccines in patients with acute otitis media in Switzerland. Vaccine 2017, 35, 1946–1953. [Google Scholar] [CrossRef]
- Koliou, M.G.; Andreou, K.; Lamnisos, D.; Lavranos, G.; Iakovides, P.; Economou, C.; Soteriades, E.S. Risk factors for carriage of Streptococcus pneumoniae in children. BMC Pediatr. 2018, 18, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaguza, C.; Senghore, M.; Bojang, E.; Gladstone, R.A.; Lo, S.W.; Tientcheu, P.E.; Bancroft, R.E.; Worwui, A.; Foster-Nyarko, E.; Ceesay, F.; et al. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat. Commun. 2020, 11, 3442. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, D.; van Belkum, A.; Sluijter, M.; Luijendijk, A.; de Groot, R.; Rumke, H.C.; Verbrugh, H.A.; Hermans, P.W. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 2004, 363, 1871–1872. [Google Scholar] [CrossRef]
- Krone, C.L.; Wyllie, A.L.; van Beek, J.; Rots, N.Y.; Oja, A.E.; Chu, M.L.; Bruin, J.P.; Bogaert, D.; Sanders, E.A.; Trzcinski, K. Carriage of Streptococcus pneumoniae in aged adults with influenza-like-illness. PLoS ONE 2015, 10, e0119875. [Google Scholar] [CrossRef]
- Devine, V.T.; Jefferies, J.M.; Clarke, S.C.; Faust, S.N. Nasopharyngeal Bacterial Carriage in the Conjugate Vaccine Era with a Focus on Pneumococci. J. Immunol. Res. 2015, 2015, 394368. [Google Scholar] [CrossRef] [Green Version]
- Wardlow, T.J.E.; Hodge, M.J.; World Health Organization (WHO); United Nations Children’s Fund (UNICEF). Pneumonia: The Forgotten Killer of Children; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Williams, J.D. Streptococcus pneumoniae still going strong. Int. J. Antimicrob. Agents 2002, 20, 75. [Google Scholar] [CrossRef]
- Adegbola, R.A.; DeAntonio, R.; Hill, P.C.; Roca, A.; Usuf, E.; Hoet, B.; Greenwood, B.M. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: A systematic review and meta-analysis. PLoS ONE 2014, 9, e103293. [Google Scholar] [CrossRef] [Green Version]
- Burton, D.C.; Flannery, B.; Bennett, N.M.; Farley, M.M.; Gershman, K.; Harrison, L.H.; Lynfield, R.; Petit, S.; Reingold, A.L.; Schaffner, W.; et al. Socioeconomic and racial/ethnic disparities in the incidence of bacteremic pneumonia among US adults. Am. J. Public Health 2010, 100, 1904–1911. [Google Scholar] [CrossRef]
- de St Maurice, A.; Schaffner, W.; Griffin, M.R.; Halasa, N.; Grijalva, C.G. Persistent Sex Disparities in Invasive Pneumococcal Diseases in the Conjugate Vaccine Era. J. Infect. Dis. 2016, 5, 792–797. [Google Scholar] [CrossRef] [Green Version]
- Wiese, A.D.; Griffin, M.R.; Grijalva, C.G. Impact of pneumococcal conjugate vaccines on hospitalizations for pneumonia in the United States. Expert Rev. Vaccines 2019, 18, 327–341. [Google Scholar] [CrossRef]
- De St Maurice, A.; Grijalva, C.G.; Fonnesbeck, C.; Schaffner, W.; Halasa, N.B. Racial and Regional Differences in Rates of Invasive Pneumococcal Disease. Pediatrics 2015, 136, e1186–e1194. [Google Scholar] [CrossRef]
- Al-Lahham, A.; Abu Qayyas, J.; Van der Linden, M. The impact of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae in infants of Ajlun governorate in Jordan. Jordan J. Biol. Sci. 2018, 11, 155–162. [Google Scholar]
- Verani, J.R.; Massora, S.; Acacio, S.; Dos Santos, R.T.; Vubil, D.; Pimenta, F.; Moura, I.; Whitney, C.G.; Costa, M.H.; Macete, E.; et al. Nasopharyngeal carriage of Streptococcus pneumoniae among HIV-infected and uninfected children <5 years of age before introduction of pneumococcal conjugate vaccine in Mozambique. PLoS ONE 2018, 3, e0191113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Soto, K.; Petit, S.; Hadler, J.L. Changing disparities in invasive pneumococcal disease by socioeconomic status and race/ethnicity in Connecticut, 1998–2008. Public Health Rep. 2011, 126, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Wouters, I.; Desmet, S.; Van Heirstraeten, L.; Blaizot, S.; Verhaegen, J.; Van Damme, P.; Malhotra-Kumar, S.; Theeten, H.; Group, N.P.S. Follow-up of serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae in child carriage after a PCV13-to-PCV10 vaccine switch in Belgium. Vaccine 2019, 37, 1080–1086. [Google Scholar] [CrossRef]
- Wouters, I.; Van Heirstraeten, L.; Desmet, S.; Blaizot, S.; Verhaegen, J.; Goossens, H.; Van Damme, P.; Malhotra-Kumar, S.; Theeten, H.; NPcarriage Study Group. Nasopharyngeal s. pneumoniae carriage and density in Belgian infants after 9 years of pneumococcal conjugate vaccine programme. Vaccine 2018, 36, 15–22. [Google Scholar] [CrossRef]
- Magliano, E.; Grazioli, V.; Deflorio, L.; Leuci, A.I.; Mattina, R.; Romano, P.; Cocuzza, C.E. Gender and age-dependent etiology of community-acquired urinary tract infections. Sci. World J. 2012, 2012, 349597. [Google Scholar] [CrossRef] [Green Version]
- Buie, K.A.; Klugman, K.P.; von Gottberg, A.; Perovic, O.; Karstaedt, A.; Crewe-Brown, H.H.; Madhi, S.A.; Feldman, C. Gender as a risk factor for both antibiotic resistance and infection with pediatric serogroups/serotypes, in HIV-infected and -uninfected adults with pneumococcal bacteremia. J. Infect. Dis. 2004, 189, 1996–2000. [Google Scholar] [CrossRef]
- Boken, D.J.; Chartrand, S.A.; Moland, E.S.; Goering, R.V. Colonization with penicillin-nonsusceptible Streptococcus pneumoniae in urban and rural child-care centers. Pediatr. Infect. Dis. J. 1996, 15, 667–672. [Google Scholar] [CrossRef]
- Nisar, M.I.; Nayani, K.; Akhund, T.; Riaz, A.; Irfan, O.; Shakoor, S.; Muneer, S.; Muslim, S.; Hotwani, A.; Kabir, F.; et al. Nasopharyngeal carriage of Streptococcus pneumoniae in children under 5 years of age before introduction of pneumococcal vaccine (PCV10) in urban and rural districts in Pakistan. BMC Infect. Dis. 2018, 18, 672. [Google Scholar] [CrossRef] [PubMed]
- Schultsz, C.; Vien le, M.; Campbell, J.I.; Chau, N.V.; Diep, T.S.; Hoang, N.V.; Nga, T.T.; Savelkoul, P.; Stepnieuwska, K.; Parry, C.; et al. Changes in the nasal carriage of drug-resistant Streptococcus pneumoniae in urban and rural Vietnamese schoolchildren. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 484–492. [Google Scholar] [CrossRef]
- Lee, N.Y.; Song, J.H.; Kim, S.; Peck, K.R.; Ahn, K.M.; Lee, S.I.; Yang, Y.; Li, J.; Chongthaleong, A.; Tiengrim, S.; et al. Carriage of antibiotic-resistant pneumococci among Asian children: A multinational surveillance by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). Clin. Infect. Dis. 2001, 32, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez JA1, F.M.M. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J. Antimicrob. Chemother. 2002, S2, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Monali, R.; De Vita, E.; Mariottini, F.; Privitera, G.; Lopalco, P.L.; Tavoschi, L. Impact of vaccination on invasive pneumococcal disease in Italy 2007–2017: Surveillance challenges and epidemiological changes. Epidemiol. Infect. 2020, 148, 1–21. [Google Scholar] [CrossRef]
- Otoom, S.; Batieha, A.; Hadidi, H.; Hasan, M.; Al-Saudi, K. Evaluation of drug use in Jordan using WHO prescribing indicators. East. Mediterr. Health J. 2002, 8, 537–543. [Google Scholar] [PubMed]
- Abdullahi, O.; Karani, A.; Tigoi, C.C.; Mugo, D.; Kungu, S.; Wanjiru, E.; Jomo, J.; Musyimi, R.; Lipsitch, M.; Scott, J.A. The prevalence and risk factors for pneumococcal colonization of the nasopharynx among children in Kilifi District, Kenya. PLoS ONE 2012, 7, e30787. [Google Scholar] [CrossRef] [PubMed]
City | No. Samples | Male n (%) | Male Carrier n (%) | Female n (%) | Female Carrier n (%) | Total Carriage n (%) |
---|---|---|---|---|---|---|
Amman | 267 | 155 (58.1) | 47 (30.3) | 112 (41.9) | 36 (32.1) | 83 (31.1) |
East Madaba | 415 | 224 (54.0) | 96 (42.9) | 191 (46.0) | 68 (35.6) | 164 (39.5) |
Total | 682 | 379 (55.6) | 143 (37.7) | 303 (44.4) | 104 (34.3) | 247 (36.2) |
City | # PCV7 Injections | Carriage n (%) | * Serotype or VTs or NVTs Recovered |
---|---|---|---|
Amman n = 267 | 1 injection (n = 11) | 1/11 (9.1%) | 6A |
2 injections (n = 9) | 3/9 (33.3%) | All NVT | |
3 injections (n = 49) | 7/49 (14.3%) | All NVT | |
0 injections (n = 198) | 72/198 (36.4%) | VTs (n = 35) (48.6%) | |
Eastern Madaba n = 415 | 1 injection (n = 0) | 0/0 (0.0%) | none |
2 injections (n = 8) | 3/8 (37.5%) | 6B; 19A; others | |
3 injections (n = 0) | 0/0 (0.0%) | none | |
0 injection (n = 407) | 161/407 (39.6%) | VTs (n = 84) (52.2%) |
Antibiotic | Amman (n = 83/267) | Eastern Madaba (n = 164/415) | ||||||
---|---|---|---|---|---|---|---|---|
%S | %I + R | MIC50 | MIC90 | % S | % I + R | MIC50 | MIC90 | |
Penicillin | 18.1 | 81.9 | 1 | 4 | 4.3 | 95.8 | 1 | 2 |
Amoxicillin | 85.5 | 14.5 | 1 | >4 | 92.7 | 7.3 | 0.5 | 2 |
Cefotaxime | 96.4 | 3.6 | 0.5 | 1 | 93.9 | 6.1 | 0.5 | 1 |
Cefuroxime | 41.0 | 59.0 | 4 | >4 | 39.0 | 61.0 | 2 | >4 |
Cefpodoxime | 39.8 | 60.2 | 1 | 2 | 35.4 | 64.6 | 1 | 2 |
Clarithromycin | 41.0 | 59.0 | 2 | >32 | 31.1 | 68.9 | 8 | >32 |
Clindamycin | 68.7 | 31.3 | ≤0.125 | >32 | 59.2 | 40.8 | 0.06 | >32 |
Moxifloxacin | 100 | 0.0 | 0.125 | 0.25 | 100 | 0.0 | 0.125 | 0.25 |
Levofloxacin | 100 | 0.0 | 1 | 2 | 100 | 0.0 | 1 | 2 |
Trimethoprim- Sulfamethoxazole | 38.6 | 61.4 | 2/38 | >8/152 | 26.8 | 73.2 | 4/76 | >8/152 |
Tetracycline | 48.2 | 51.8 | 8 | 16 | 48.8 | 51.2 | 4 | 32 |
Chloramphenicol | 92.8 | 7.2 | ≤4 | ≤4 | 96.3 | 3.7 | ≤4 | ≤4 |
Telithromycin | 100 | 0.0 | 0.03 | 0.125 | 100 | 0.0 | 0.016 | 0.06 |
Vancomycin | 100 | 0.0 | 0.5 | 0.5 | 100 | 0.0 | 0.5 | 0.5 |
Coverage in Amman and Eastern Madaba | PCV7 n (%) | PCV10 n (%) | PCV13 n (%) | PCV20 n (%) |
---|---|---|---|---|
Amman (n = 83) | 35 (42.2) | 35 (42.2) | 40 (48.2) | 50 (60.2) |
Eastern Madaba (n = 164) | 82 (50.0) | 82 (50.0) | 102 (62.2) | 120 (73.2) |
Serotypes from Amman | % Pen R | % Cla R | % Cli R | % Lev R | % Sxt R | % Tet R | % Cha R |
---|---|---|---|---|---|---|---|
6A (n = 3) | 100% | 66.7% | 66.7% | 0.0% | 33.3% | 66.7% | 0.0% |
6B (n = 11) | 90.9% | 72.7% | 72.7% | 0.0% | 90.9% | 63.6% | 18.2% |
6C (n = 1) | 100% | 100% | 100% | 0.0% | 0.0% | 100% | 0.0% |
7B (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
9N (n = 3) | 100% | 0.0% | 0.0% | 0.0% | 33.3% | 100% | 0.0% |
9V (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
11A (n = 6) | 100% | 83.3% | 16.7% | 0.0% | 100% | 66.7% | 0.0% |
14 (n = 2) | 100% | 100% | 100% | 0.0% | 100% | 100% | 0.0% |
15A (n = 4) | 25% | 100% | 75.0% | 0.0% | 100% | 100% | 0.0% |
15B (n = 1) | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
15F (n = 1) | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
16F (n = 1) | 100% | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
17F (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
18A (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
19A (n = 2) | 100% | 100% | 50% | 0.0% | 50% | 50% | 0.0% |
19F (n = 13) | 92.3% | 84.6% | 46.2% | 0.0% | 92.3% | 76.9% | 0.0% |
22F (n = 2) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
23A (n = 3) | 66.7% | 33.3% | 33.3% | 0.0% | 33.3% | 33.3% | 0.0% |
23F (n = 8) | 100% | 50% | 0.0% | 0.0% | 100% | 50% | 0.0% |
33A (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 50.0% |
33F (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
34 (n = 2) | 50% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
35B (n = 4) | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
35A (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 100% | 0.0% | 0.0% |
NT (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
Others (n = 8) | 87.5% | 62.5% | 12.5% | 0.0% | 12.5% | 12.5% | 0.0% |
Serotypes from Eastern Madaba | % Pen R | % Cla R | % Cli R | % Lev R | % Sxt R | % Tet R | % Cha R |
---|---|---|---|---|---|---|---|
3 (n = 3) | 33.3% | 0.0% | 0.0% | 0.0% | 33.3% | 33.3% | 0.0% |
6A (n = 9) | 100% | 100% | 66.7% | 0.0% | 44.4% | 66.7% | 11.1% |
6B (n = 15) | 100% | 73.3% | 60.0% | 0.0% | 86.7% | 73.3% | 13.3% |
6C (n = 1) | 100% | 100% | 100% | 0.0% | 0.0% | 100% | 0.0% |
7B (n = 1) | 100% | 100% | 100% | 0.0% | 0.0% | 100% | 0.0% |
9N (n = 2) | 100% | 0.0% | 0.0% | 0.0% | 50.0% | 100% | 0.0% |
9V (n = 1) | 100% | 0.0% | 0.0% | 0.0% | 100% | 0.0% | 0.0% |
10A (n = 3) | 66.7% | 0.0% | 0.0% | 0.0% | 66.7% | 0.0% | 0.0% |
11A (n = 7) | 100% | 42.9% | 14.3% | 0.0% | 71.4% | 28.6% | 0.0% |
14 (n = 12) | 100% | 100% | 100% | 0.0% | 90.9% | 63.6% | 0.0% |
15A (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
15B (n = 3) | 100% | 100% | 0.0% | 0.0% | 66.7% | 100% | 0.0% |
15C (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
16A (n = 2) | 50% | 0.0% | 0.0% | 0.0% | 50% | 0.0% | 0.0% |
16F (n = 1) | 100% | 0.0% | 0.0% | 0.0% | 100% | 0.0% | 0.0% |
17F (n = 4) | 100% | 0.0% | 0.0% | 0.0% | 25.0% | 0.0% | 0.0% |
18C (n = 4) | 100% | 0.0% | 0.0% | 0.0% | 75% | 25.0% | 0.0% |
19A (n = 8) | 100% | 100% | 25.0% | 0.0% | 87.5% | 25.0% | 0.0% |
19F (n = 35) | 100% | 97.1% | 82.9% | 0.0% | 94.3% | 91.4% | 0.0% |
22A (n = 2) | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
23A (n = 6) | 100% | 66.7% | 16.7% | 0.0% | 50.0% | 33.3% | 0.0% |
23B (n = 1) | 100% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
23F (n = 20) | 100% | 43.8% | 6.3% | 0.0% | 81.3% | 37.5% | 12.5% |
28A (n = 3) | 100% | 100% | 66.7% | 0.0% | 100% | 0.0% | 0.0% |
35A (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 0.0% | 0.0% |
Pool C (n = 1) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Pool G (n = 5) | 100% | 100% | 80.0% | 0.0% | 80.0% | 20.0% | 20.0% |
Pool I (n = 1) | 100% | 100% | 0.0% | 0.0% | 100% | 100% | 0.0% |
NT (n = 5) | 60.0% | 80.0% | 0.0% | 0.0% | 100% | 20.0% | 0.0% |
Others (n = 7) | 100% | 28.6% | 28.6% | 0.0% | 14.3% | 28.6% | 0.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Lahham, A.; Khanfar, N.; Albataina, N.; Al Shwayat, R.; Altwal, R.; Abulfeilat, T.; Alawneh, G.; Khurd, M.; Alqadi Altamimi, A. Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015–2019. Vaccines 2021, 9, 789. https://doi.org/10.3390/vaccines9070789
Al-Lahham A, Khanfar N, Albataina N, Al Shwayat R, Altwal R, Abulfeilat T, Alawneh G, Khurd M, Alqadi Altamimi A. Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015–2019. Vaccines. 2021; 9(7):789. https://doi.org/10.3390/vaccines9070789
Chicago/Turabian StyleAl-Lahham, Adnan, Nashat Khanfar, Noor Albataina, Rana Al Shwayat, Rawsan Altwal, Talal Abulfeilat, Ghaith Alawneh, Mohammad Khurd, and Abdelsalam Alqadi Altamimi. 2021. "Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015–2019" Vaccines 9, no. 7: 789. https://doi.org/10.3390/vaccines9070789
APA StyleAl-Lahham, A., Khanfar, N., Albataina, N., Al Shwayat, R., Altwal, R., Abulfeilat, T., Alawneh, G., Khurd, M., & Alqadi Altamimi, A. (2021). Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015–2019. Vaccines, 9(7), 789. https://doi.org/10.3390/vaccines9070789