Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grinding and Sieving
2.2. Pre-Treatment
2.3. Bleaching Process
2.4. Acid Hydrolysis Process
2.5. Composition of Hemicellulose, Cellulose, Lignin, and Extractives of Banana Pseudostem Fibre after Pre-Treatment, Bleaching and Acid Hydrolysis
2.5.1. Determination of Extractives Content
2.5.2. Determination of Hemicellulose Content
2.5.3. Determination of Lignin Content
2.5.4. Determination of Cellulose Content
2.6. Analysis of Banana Pseudostem Cellulose Nanofibers
2.6.1. Thermogravimetric Analysis
2.6.2. X-ray Diffraction
2.6.3. Macroscopic Observation
3. Results and Discussion
3.1. Yield after Pre-Treatment and Acid Hydrolysis
3.2. Morphology
3.2.1. Banana Pseudostem Fibers after Pre-Treatment
3.2.2. Transmission Electron Micrograph (TEM) Analysis of Musa acuminata CNF
3.2.3. Comparison of M. acuminata and M. balbisiana Pseudostem via XRD Analysis
3.3. Fourier Transform Infrared Spectroscopy (FTIR) of Banana Pseudostem CNF after Pre-Treatment and Processing
3.4. Thermogravimetric Analysis (TGA) of Commercial and Native Banana Pseudostem
3.5. Materials Composition of Banana Stem Fiber before Pre-Treatment and Bleaching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soni, R.; Asoh, T.-A.; Uyama, H. Cellulose nanofiber reinforced starch membrane with high mechanical strength and durability in water. Carbohydr. Polym. 2020, 238, 116203. [Google Scholar] [CrossRef] [PubMed]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Shen, G.; Yu, G.; Wu, H.; Li, S.; Hou, X.; Li, M.; Li, Q.; Liu, X.; Zhou, M.; Chen, A.; et al. Incorporation of Lipids into Wheat Bran Cellulose/Wheat Gluten Composite Film Improves Its Water Resistance Properties. Membranes 2021, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Subagyo, A.; Chafidz, A. Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. In Banana Nutrition—Function and Processing Kinetics; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Abdullah, N.; Sulaiman, F.; Taib, R.M. Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source. AIP Conf. Proc. 2013, 1528, 325–330. [Google Scholar] [CrossRef]
- Ingale, S.; Joshi, S.J.; Gupte, A. Production of bioethanol using agricultural waste: Banana pseudo stem. Braz. J. Microbiol. 2014, 45, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Danish, M. Prospects of banana waste utilization in wastewater treatment: A review. J. Environ. Manag. 2018, 206, 330–348. [Google Scholar] [CrossRef]
- Cordeiro, N.; Belgacem, M.; Torres, I.; Moura, J. Chemical composition and pulping of banana pseudo-stems. Ind. Crop. Prod. 2004, 19, 147–154. [Google Scholar] [CrossRef]
- Li, K.; Fu, S.; Zhan, H.; Zhan, Y.; Lucia, L.A. Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResources 2010, 5, 576–585. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Boufi, S.; González, I.; Delgado-Aguilar, M.; Tarrés, Q.; Pèlach, M.; Mutjé, P. Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydr. Polym. 2016, 154, 151–166. [Google Scholar] [CrossRef]
- Espinosa, E.; Tarrés, Q.; Domínguez-Robles, J.; Delgado-Aguilar, M.; Mutjé, P.; Rodríguez, A. Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves. J. Clean. Prod. 2018, 172, 233–238. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.D.A.; Menegalli, F.C. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J. Colloid Interface Sci. 2017, 505, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Tibolla, H.; Pelissari, F.M.; Menegalli, F.C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci. Technol. 2014, 59, 1311–1318. [Google Scholar] [CrossRef]
- Razab, M.K.A.A.; Ghani, R.S.M.; Zin, F.A.M.; Yusoff, N.A.A.N.; Noor, A.M. Isolation and Characterization of Cellulose Nanofibrils from Banana Psof Cellulose Nanofibrils from Banana Pseudostem, Oil Palm Trunk, and Kenaf Bast Fibers Using Chemicals and High-intensity Ultrasonication. J. Nat. Fibers 2021, 1–14. [Google Scholar] [CrossRef]
- Hidayati, S.; Zuidar, A.S.; Satyajaya, W.; Murhadi; Retnowati, D. Isolation and characterization of formacell Lignins from oil empty fruits bunches. IOP Conf. Ser. Mater. Sci. Eng. 2018, 344, 012006. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.A.A.; Ho, L.H.; Bin Azahari, B.; Bhat, R.; Cheng, L.-H.; Ibrahim, M.N.M. Chemical and functional properties of the native banana (Musaacuminata × balbisiana Colla cv. Awak) pseudo-stem and pseudo-stem tender core flours. Food Chem. 2011, 128, 748–753. [Google Scholar] [CrossRef]
- Salehudin, M.H.; Salleh, E.; Mamat, S.N.H.; Muhamad, I.I. Starch based Active Packaging Film Reinforced with Empty Fruit Bunch (EFB) Cellulose Nanofiber. Procedia Chem. 2014, 9, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Kadirgama, K. Influence Pre-Treatment on the Properties of Lignocellulose Based Biocomposite. In National Conference on Postgraduate Research; University Malaysia Pahang: Pekan, Malaysia, 2009; pp. 67–78. [Google Scholar]
- Liping, T.; Yongcheng, Y.; Xuezhi, L.; Jian, Z.; Yinbo, Q.; Yuen, M.C.; Soh, K.L. Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process. Bioresour. Technol. 2013, 135, 275–282. [Google Scholar] [CrossRef]
- Griffith, O.M. Practical Techniques for Centrifugal Separations Application Guide; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2010; pp. 1–28. Available online: https://thermofisher.co.nz/Uploads/file/Scientific/Applications/Equipment-Furniture/Practical-Techniques-for-Centrifugal-Separations.pdf (accessed on 20 December 2021).
- Lani, N.S.; Ngadi, N.; Johari, A.; Jusoh, M. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites. J. Nanomater. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef]
- Mansor, A.M.; Lim, J.S.; Ani, F.N.; Hashim, H.; Ho, W.S. Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chem. Eng. Trans. 2019, 72, 79–84. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Hamzah, F.; Idris, A.; Shuan, T.K. Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 2011, 35, 1055–1059. [Google Scholar] [CrossRef]
- Meng, F.; Wang, G.; Du, X.; Wang, Z.; Xu, S.; Zhang, Y. Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos. Part B Eng. 2018, 160, 341–347. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustain. Chem. Eng. 2018, 6, 2807–2828. [Google Scholar] [CrossRef]
- Li, R.; Fei, J.; Cai, Y.; Li, Y.; Feng, J.; Yao, J. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydr. Polym. 2009, 76, 94–99. [Google Scholar] [CrossRef]
- Zope, G.; Goswami, A.; Kulkarni, S. Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem. BioNanoScience 2022, 1–9. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Campano, C.; Balea, A.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Blanco, A.; Negro, C. Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes. Int. J. Biol. Macromol. 2022, 205, 220–230. [Google Scholar] [CrossRef]
- Teixeira, E.D.M.; Bondancia, T.J.; Teodoro, K.B.R.; Corrêa, A.C.; Marconcini, J.M.; Mattoso, L.H.C. Sugarcane bagasse whiskers: Extraction and characterizations. Ind. Crop. Prod. 2011, 33, 63–66. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Olsson, R.T.; Lopez-Rubio, A.; Lagaron, J.M. Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose 2010, 18, 335–347. [Google Scholar] [CrossRef]
- Feldman, D. Wood—Chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J. Polym. Sci. Part C Polym. Lett. 1985, 23, 601–602. [Google Scholar] [CrossRef]
- Yano, S.; Hatakeyama, H.; Hatakeyama, T. Effect of hydrogen bond formation on dynamic mechanical properties of amorphous cellulose. J. Appl. Polym. Sci. 1976, 20, 3221–3231. [Google Scholar] [CrossRef]
- Jonoobi, M.; Khazaeian, A.; Tahir, P.M.; Azry, S.S.; Oksman, K. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 2011, 18, 1085–1095. [Google Scholar] [CrossRef]
- Khawas, P.; Das, A.J.; Deka, S.C. Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization. Ind. Crop. Prod. 2016, 86, 102–112. [Google Scholar] [CrossRef]
- Fahma, F.; Iwamoto, S.; Hori, N.; Iwata, T.; Takemura, A. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 2010, 18, 443–450. [Google Scholar] [CrossRef]
- Wang, X.; Sun, M.; Wang, R.; Jiao, L.; Bian, H.; Dai, H. Promoting h-BN dispersion in cellulose-based composite by lignosulfonate for regulatable effectual thermal management. Mater. Des. 2022, 214, 110379. [Google Scholar] [CrossRef]
- Bian, H.; Duan, S.; Wu, J.; Fu, Y.; Yang, W.; Yao, S.; Zhang, Z.; Xiao, H.; Dai, H.; Hu, C. Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Carbohydr. Polym. 2022, 278, 119011. [Google Scholar] [CrossRef]
- Sarala, R. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. Int. J. Biol. Macromol. 2020, 165, 2303–2313. [Google Scholar] [CrossRef]
- Prasanna, N.S.; Mitra, J. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr. Polym. 2020, 247, 116706. [Google Scholar] [CrossRef] [PubMed]
- Kanai, N.; Nishimura, K.; Umetani, S.; Saito, Y.; Saito, H.; Oyama, T.; Kawamura, I. Upcycling of Waste Hop Stems into Cellulose Nanofibers: Isolation and Structural Characterization. ACS Agric. Sci. Technol. 2021, 1, 347–354. [Google Scholar] [CrossRef]
Banana Pseudostem Sample | Process/Stage | Average Mass (%) |
---|---|---|
Musa acuminata | Initial Raw | 100 |
After Retting Process | 64.35 ± 0.72 | |
After Steam Explosion Process | 62.30 ± 1.52 | |
After Bleaching Process | 46.70 ± 0.69 | |
After Acid Hydrolysis Process | 40.50 ± 0.92 | |
Musa balbisiana | Initial Raw | 100 |
After Retting Process | 77.44 ± 0.64 | |
After Steam Explosion Process | 37.58 ± 0.47 | |
After Bleaching Process | 24.64 ± 1.07 | |
After Acid Hydrolysis Process | 21.80 ± 0.57 |
Stages of Fiber Composition | Extractives (%) | Hemicellulose (%) | Lignin (%) | Cellulose (%) | |
---|---|---|---|---|---|
Musa acuminata | Raw Fiber | 1.80 ± 0.52 | 39.02 ± 1.45 | 26.58 ± 0.76 | 32.60 ± 1.79 |
Fibre after pre-treatment and bleaching | 0.35 ± 0.07 | 5.76 ± 0.46 | 0.73 ± 0.06 | 93.16 ± 0.50 | |
Musa balbisiana | Raw Fiber | 1.70 ± 0.08 | 42.26 ± 3.38 | 27.32 ± 2.48 | 28.72 ± 2.47 |
Fiber after pre-treatment and bleaching | 1.02 ± 0.10 | 5.60 ± 0.70 | 1.08 ± 0.06 | 93.36 ± 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merais, M.S.; Khairuddin, N.; Salehudin, M.H.; Mobin Siddique, M.B.; Lepun, P.; Chuong, W.S. Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties. Membranes 2022, 12, 451. https://doi.org/10.3390/membranes12050451
Merais MS, Khairuddin N, Salehudin MH, Mobin Siddique MB, Lepun P, Chuong WS. Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties. Membranes. 2022; 12(5):451. https://doi.org/10.3390/membranes12050451
Chicago/Turabian StyleMerais, Mohammad Sobri, Nozieana Khairuddin, Mohd Harfiz Salehudin, Md. Bazlul Mobin Siddique, Philip Lepun, and Wong Sie Chuong. 2022. "Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties" Membranes 12, no. 5: 451. https://doi.org/10.3390/membranes12050451
APA StyleMerais, M. S., Khairuddin, N., Salehudin, M. H., Mobin Siddique, M. B., Lepun, P., & Chuong, W. S. (2022). Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties. Membranes, 12(5), 451. https://doi.org/10.3390/membranes12050451