Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Outcome Measurements
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Poordad, F.F. Presentation and complications associated with cirrhosis of the liver. Curr. Med. Res. Opin. 2015, 31, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.C.; Williams, R. Antimicrobial resistance in chronic liver disease. Hepatol. Int. 2019, 14, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, M.T.; Manoria, P. Immune Dysfunction in Cirrhosis. J. Clin. Transl. Hepatol. 2017, 5, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiest, R.; Lawson, M.; Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 2014, 60, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodland, H.; Hudson, B.; Forbes, K.; McCune, A.; Wright, M.; British Association for the Study of the Liver (BASL) End of Life Special Interest Group. Palliative care in liver disease: What does good look like? Frontline Gastroenterol. 2019, 11, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Iredale, J.P.; Campana, L. Regression of Liver Fibrosis. Semin. Liver Dis. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Villanueva, C.; Albillos, A.; Genescà, J.; Garcia-Pagan, J.C.; Calleja, J.L.; Aracil, C.; Bañares, R.; Morillas, R.M.; Poca, M.; Peñas, B.; et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2019, 393, 1597–1608. [Google Scholar] [CrossRef]
- Turco, L.; Villanueva, C.; La Mura, V.; García-Pagán, J.C.; Reiberger, T.; Genescà, J.; Groszmann, R.J.; Sharma, B.C.; Merkel, C.; Bureau, C.; et al. Lowering Portal Pressure Improves Outcomes of Patients with Cirrhosis, with or without Ascites: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Thiele, M.; Albillos, A.; Abazi, R.; Wiest, R.; Gluud, L.L.; Krag, A. Non-selective beta-blockers may reduce risk of hepatocellular carcinoma: A meta-analysis of randomized trials. Liver Int. 2015, 35, 2009–2016. [Google Scholar] [CrossRef]
- Li, T.H.; Tsai, Y.L.; Hsu, C.F.; Liu, C.W.; Huang, C.C.; Yang, Y.Y.; Tsai, H.C.; Huang, S.F.; Hsieh, Y.C.; Liu, H.M.; et al. Propranolol Is Associated with Lower Risk of Incidence of Hepatocellular Carcinoma in Patients with Alcoholic Cirrhosis: A Tertiary-Center Study and Indirect Comparison with Meta-Analysis. Gastroenterol. Res. Pract. 2020, 2020, 1892584. [Google Scholar] [CrossRef]
- Sinha, R.; Lockman, K.A.; Mallawaarachchi, N.; Robertson, M.; Plevris, J.N.; Hayes, P.C. Carvedilol use is associated with improved survival in patients with liver cirrhosis and ascites. J. Hepatol. 2017, 67, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Ngwa, T.; Orman, E.; Gomez, E.V.; Bluff, D.; Hoskin, B.; Bargo, D.; Ghabril, M. Non-selective beta blocker use is associated with improved short-term survival in patients with cirrhosis referred for liver transplantation. BMC Gastroenterol. 2020, 20, 4. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.; Reddy, K.R.; O’Leary, J.G.; Tandon, P.; Biggins, S.W.; Garcia-Tsao, G.; Maliakkal, B.J.; Lai, J.C.; Fallon, M.B.; Vargas, H.E.; et al. Impact of Chronic Kidney Disease on Outcomes in Cirrhosis. Liver Transplant. 2019, 25, 870–880. [Google Scholar] [CrossRef]
- Møller, S.; Bendtsen, F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018, 38, 570–580. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-C.; Hsu, C.-F.; Huang, C.-C.; Huang, S.-F.; Li, T.-H.; Yang, Y.-Y.; Lin, M.-W.; Lee, T.-Y.; Liu, C.-W.; Huang, Y.-H.; et al. Propranolol Suppresses the T-Helper Cell Depletion-Related Immune Dysfunction in Cirrhotic Mice. Cells 2020, 9, 604. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.J.; Braunschweig, C.A. Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutr. Clin. Pract. 2016, 31, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Kang, S.H.; Kim, M.Y.; Baik, S.K. Prognostic value of sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0186990. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.C.; Herndon, D.N.; Porter, C.; Sidossis, L.S.; Suman, O.E.; Børsheim, E. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns 2015, 41, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.J.; Böttcher, J.; Selberg, O.; Weselmann, S.; Böker, K.H.; Schwarze, M.; Mühlen, A.V.Z.; Manns, M.P. Hypermetabolism in clinically stable patients with liver cirrhosis. Am. J. Clin. Nutr. 1999, 69, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- Gearing, R.E.; Mian, I.A.; Barber, J.; Ickowicz, A. A methodology for conducting retrospective chart review research in child and adolescent psychiatry. J. Can. Acad. Child. Adolesc. Psychiatry 2006, 15, 126–134. [Google Scholar] [PubMed]
- Valdez-Ortiz, R.; Sifuentes-Osornio, J.; Morales-Buenrostro, L.E.; Ayala-Palma, H.; Dehesa-López, E.; Alberú, J.; Correa-Rotter, R. Risk factors for infections requiring hospitalization in renal transplant recipients: A cohort study. Int. J. Infect. Dis. 2011, 15, e188–e196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitch, W.E.; Walser, M.; Buffington, G.A.; Lemann, J., Jr. A simple method of estimating progression of chronic renal failure. Lancet 1976, 2, 1326–1328. [Google Scholar] [CrossRef]
- Sergi, G.; Trevisan, C.; Veronese, N.; Lucato, P.; Manzato, E. Imaging of sarcopenia. Eur. J. Radiol. 2016, 85, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, P.; Vilstrup, H.; Andersen, P.K.; Lash, T.L.; Sørensen, H.T. Comorbidity and survival of Danish cirrhosis patients: A nationwide population-based cohort study. Hepatology 2008, 48, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Xu, B. The importance of beta-adrenergic receptors in immune regulation: A link between neuroendocrine and immune system. Med. Hypotheses 2001, 56, 273–276. [Google Scholar] [CrossRef]
- Emeny, R.T.; Gao, D.; Lawrence, D.A. Beta1-adrenergic receptors on immune cells impair innate defenses against Listeria. J. Immunol. 2007, 178, 4876–4884. [Google Scholar] [CrossRef] [Green Version]
- Grailer, J.J.; Haggadone, M.D.; Sarma, J.V.; Zetoune, F.S.; Ward, P.A. Induction of M2 regulatory macrophages through the β2-adrenergic receptor with protection during endotoxemia and acute lung injury. J. Innate Immun. 2014, 6, 607–618. [Google Scholar] [CrossRef]
- Gu, C.; Ma, Y.C.; Benjamin, J.; Littman, D.; Chao, M.V.; Huang, X.Y. Apoptotic signaling through the beta -adrenergic receptor. A new Gs effector pathway. J. Biol. Chem. 2000, 275, 20726–20733. [Google Scholar] [CrossRef] [Green Version]
- Mazloomi, E.; Jazani, N.H.; Shahabi, S. A novel adjuvant, mixture of alum and the beta-adrenergic receptor antagonist propranolol, elicits both humoral and cellular immune responses for heat-killed Salmonella typhimurium vaccine. Vaccine 2012, 30, 2640–2646. [Google Scholar] [CrossRef]
- Lee, Y.R.; Seth, M.S.; Soney, D.; Dai, H. Benefits of Beta-Blockade in Sepsis and Septic Shock: A Systematic Review. Clin. Drug Investig. 2019, 39, 429–440. [Google Scholar] [CrossRef]
- Sykora, M.; Siarnik, P.; Diedler, J.; VISTA Acute Collaborators. β-Blockers, Pneumonia, and Outcome After Ischemic Stroke: Evidence from Virtual International Stroke Trials Archive. Stroke 2015, 46, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Maier, I.L.; Karch, A.; Mikolajczyk, R.; Bähr, M.; Liman, J. Effect of beta-blocker therapy on the risk of infections and death after acute stroke—A historical cohort study. PLoS ONE 2015, 10, e0116836. [Google Scholar] [CrossRef]
- Fukui, H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J. Hepatol. 2015, 7, 425–442. [Google Scholar] [CrossRef]
- MacNeil, B.J.; Jansen, A.H.; Greenberg, A.H.; Nance, D.M. Activation and selectivity of splenic sympathetic nerve electrical activity response to bacterial endotoxin. Am. J. Physiol. 1996, 270, R264–R270. [Google Scholar] [CrossRef]
- Senzolo, M.; Fries, W.; Buda, A.; Pizzuti, D.; Nadal, E.; Sturniolo, G.C.; Burroughs, A.K.; D’incà, R. Oral propranolol decreases intestinal permeability in patients with cirrhosis: Another protective mechanism against bleeding? Am. J. Gastroenterol. 2009, 104, 3115–3116. [Google Scholar] [CrossRef]
- Gimenez, P.; Garcia-Martinez, I.; Francés, R.; Gonzalez-Navajas, J.M.; Mauri, M.; Alfayate, R.; Almenara, S.; Miralles, C.; Palazon, J.M.; Carnicer, F.; et al. Treatment with non-selective beta-blockers affects the systemic inflammatory response to bacterial DNA in patients with cirrhosis. Liver Int. 2018, 38, 2219–2227. [Google Scholar] [CrossRef] [Green Version]
- Merli, M.; Lucidi, C.; Di Gregorio, V.; Giannelli, V.; Giusto, M.; Ceccarelli, G.; Riggio, O.; Venditti, M. The chronic use of beta-blockers and proton pump inhibitors may affect the rate of bacterial infections in cirrhosis. Liver Int. 2014, 35, 362–369. [Google Scholar] [CrossRef]
- Sasso, R.; Rockey, D.C. Non-selective beta-blocker use in cirrhotic patients is associated with a reduced likelihood of hospitalisation for infection. Aliment. Pharmacol. Ther. 2020, 53, 418–425. [Google Scholar]
- Senzolo, M.; Cholongitas, E.; Burra, P.; Leandro, G.; Thalheimer, U.; Patch, D.; Burroughs, A.K. Beta-Blockers protect against spontaneous bacterial peritonitis in cirrhotic patients: A meta-analysis. Liver Int. 2009, 29, 1189–1193. [Google Scholar] [CrossRef]
- John, S.; Thuluvath, P.J. Hyponatremia in cirrhosis: Pathophysiology and management. World J. Gastroenterol. 2015, 21, 3197–3205. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhang, Z.; Wang, B.; Chen, P.; Jing, X. Effect of low sodium intake and β-blockade on renin synthesis and secretion in mice with unilateral ureteral ligation. Hypertens. Res. 2010, 33, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, H.; Aytaç, S.K.; Yağmurlu, B.; Erten, A. Effect of propranolol on renal hemodynamics in patients with cirrhosis: Assessment with Doppler US. Tani Girisim. Radyol. 2004, 10, 230–233. [Google Scholar]
- Mandorfer, M.; Bota, S.; Schwabl, P.; Bucsics, T.; Pfisterer, N.; Kruzik, M.; Hagmann, M.; Blacky, A.; Ferlitsch, A.; Sieghart, W.; et al. Nonselective β Blockers Increase Risk for Hepatorenal Syndrome and Death in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. Gastroenterology 2014, 146, 1680–1690.e1. [Google Scholar] [CrossRef] [Green Version]
- Bataille, C.; Bercoff, E.; Pariente, E.A.; Valla, D.; Lebrec, D. Effects of propranolol on renal blood flow and renal function in patients with cirrhosis. Gastroenterology 1984, 86, 129–133. [Google Scholar] [CrossRef]
- Scheiner, B.; Parada-Rodriguez, D.; Bucsics, T.; Schwabl, P.; Mandorfer, M.; Pfisterer, N.; Riedl, F.; Sieghart, W.; Ferlitsch, A.; Trauner, M.; et al. Non-selective beta-blocker treatment does not impact on kidney function in cirrhotic patients with varices. Scand. J. Gastroenterol. 2017, 52, 1–8. [Google Scholar] [CrossRef]
- Lin, S.Y.; Wang, Y.Y.; Chuang, Y.H.; Chen, C.J. Skeletal muscle proteolysis is associated with sympathetic activation and TNF-α-ubiquitin-proteasome pathway in liver cirrhotic rats. J. Gastroenterol. Hepatol. 2016, 31, 890–896. [Google Scholar] [CrossRef]
- Rivas, E.; Herndon, D.N.; Porter, C.; Meyer, W.; Suman, O.E. Short-term metformin and exercise training effects on strength, aerobic capacity, glycemic control, and mitochondrial function in children with burn injury. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E232–E240. [Google Scholar] [CrossRef]
- Cheema, S.A.; Ahmed, U.T.; Nasir, H.; Dogar, S.R.; Mustafa, Z. Effects of Propranolol in Accelerating Wound Healing and Attenuation of Hypermetabolism in Adult Burn Patients. J. Coll. Physicians Surg. Pak. 2020, 30, 46–50. [Google Scholar] [CrossRef]
- Chang, K.V.; Chen, J.D.; Wu, W.T.; Huang, K.C.; Han, D.S. Association of loss of muscle mass with mortality in liver cirrhosis without or before liver transplantation: A systematic review and meta-analysis. Medicine 2019, 98, e14373. [Google Scholar] [CrossRef]
- Krell, R.; Kaul, D.R.; Martin, A.R.; Englesbe, M.; Sonnenday, C.J.; Cai, S.; Malani, P.N. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transplant. 2013, 19, 1396–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NSBB (n = 83) | Non-NSBB (n = 83) | p-Value | |
---|---|---|---|
Age (years) | 57.9 ± 12.4 | 56.5 ± 12.1 | 0.468 |
Male (n) | 49 (59.0%) | 54 (65.0%) | 0.511 |
CCI | 2.71 ± 0.97 | 2.62 ± 0.79 | 0.683 |
CCI with deduction of points from liver disease | 0.51 ± 0.632 | 0.47 ± 0.549 | 0.693 |
Child-Pugh score | 6.90 ± 1.62 | 6.77 ± 1.56 | 0.598 |
Etiologies | |||
HBV | 29 (34.9%) | 30 (36.1%) | 0.946 |
HCV | 26 (31.3%) | 25 (30.1%) | 0.950 |
ALD | 23 (27.7%) | 28 (33.7%) | 0.424 |
Autoimmune | 5 (6.0%) | 3 (3.6%) | 0.625 |
Others | 6 (7.2%) | 6 (7.2%) | 0.966 |
Presence of ascites | 40 (48.2%) | 46 (55.4%) | 0.351 |
MELD-Na score | 12.96 ± 3.86 | 13.22 ± 3.49 | 0.644 |
Serum sodium level (mmol/L) | 119.39 ± 15.2 | 122.05 ± 13.25 | 0.162 |
Systolic blood pressure (mmHg) | 138.01 ± 3.84 | 137.12 ± 4.33 | 0.233 |
Serum creatinine level (mg/dL) | 1.01 ± 0.99 | 0.99 ± 0.56 | 0.883 |
Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|
Age | 1.006 | 0.978–1.034 | 0.698 |
Female | 0.984 | 0.556–1.742 | 0.955 |
CCI | 1.467 | 1.019–2.114 | 0.04 * |
Child-Pugh score | 1.175 | 1.051–1.313 | 0.005 * |
Non-NSBB | 1.666 | 1.036–2.679 | 0.035 * |
NSBB | Reference | - | - |
Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|
Age | 1.004 | 0.971–1.038 | 0.825 |
Female | 1.590 | 0.868–2.913 | 0.133 |
CCI | 0.865 | 0.493–1.520 | 0.814 |
Child-Pugh score | 1.043 | 0.868–1.255 | 0.651 |
Non-NSBB | 2.070 | 1.000–4.287 | 0.05 |
NSBB | Reference | - | - |
Coefficient | 95% Confidence Interval | p-Value | |
---|---|---|---|
Age | −0.043 | −0.233–1.417 | 0.507 |
Female | 0.259 | −4.374–4.891 | 0.909 |
CCI | −1.194 | −4.663–2.275 | 0.486 |
Child-Pugh score | 0.508 | −4.663–2.275 | 0.446 |
Non-NSBB | −4.108 | −8.204–−0.012 | 0.049 * |
NSBB | Reference | - | - |
Infection episode | 1.839 | −0.716–4.394 | 0.150 |
AKI episode | −0.407 | −7.202–6.387 | 0.902 |
Slope of creatinine reciprocal | −8.107 | −36.284–20.071 | 0.554 |
MELD-Na score | −0.235 | −1.049–0.58 | 0.559 |
Serum creatinine level | −3.399 | −12.03–5.231 | 0.427 |
Serum sodium level | −0.191 | −0.871–0.488 | 0.568 |
Presence of ascites | −1.645 | −22.62–19.332 | 0.873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.-H.; Liu, C.-W.; Huang, C.-C.; Tsai, Y.-L.; Huang, S.-F.; Yang, Y.-Y.; Tsai, C.-Y.; Hou, M.-C.; Lin, H.-C. Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study. J. Clin. Med. 2021, 10, 2244. https://doi.org/10.3390/jcm10112244
Li T-H, Liu C-W, Huang C-C, Tsai Y-L, Huang S-F, Yang Y-Y, Tsai C-Y, Hou M-C, Lin H-C. Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study. Journal of Clinical Medicine. 2021; 10(11):2244. https://doi.org/10.3390/jcm10112244
Chicago/Turabian StyleLi, Tzu-Hao, Chih-Wei Liu, Chia-Chang Huang, Yu-Lien Tsai, Shiang-Fen Huang, Ying-Ying Yang, Chang-Youh Tsai, Ming-Chih Hou, and Han-Chieh Lin. 2021. "Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study" Journal of Clinical Medicine 10, no. 11: 2244. https://doi.org/10.3390/jcm10112244
APA StyleLi, T.-H., Liu, C.-W., Huang, C.-C., Tsai, Y.-L., Huang, S.-F., Yang, Y.-Y., Tsai, C.-Y., Hou, M.-C., & Lin, H.-C. (2021). Non-Selective Beta-Blockers Decrease Infection, Acute Kidney Injury Episodes, and Ameliorate Sarcopenic Changes in Patients with Cirrhosis: A Propensity-Score Matching Tertiary-Center Cohort Study. Journal of Clinical Medicine, 10(11), 2244. https://doi.org/10.3390/jcm10112244