Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Selection
2.2. Histological Evaluation Criteria
2.3. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Correlation Analysis between Histological Features and Clinicopathological Characteristics in SCC
3.3. Assessment of Histological Features in Relation to SCC Type: OSCC Versus CSCC
3.4. Clinicopathological and Histological Correlations with Patient Outcome
3.5. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasser, N.; Filho, N.N.; Lehmkuhl, R.L. Squamous Cell Cancer—31-Year Epidemiological Study in a City of South Brazil. An. Bras. Dermatol. 2015, 90, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilyoma, J.M.; Rambau, P.F.; Masalu, N.; Kayange, N.M.; Chalya, P.L. Head and Neck Cancers: A Clinico-Pathological Profile and Management Challenges in a Resource-Limited Setting. BMC Res. Notes 2015, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottomley, M.J.; Thomson, J.; Harwood, C.; Leigh, I. The Role of the Immune System in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscolo-Rizzo, P.; Zorzi, M.; Mistro, A.D.; Da Mosto, M.C.; Tirelli, G.; Buzzoni, C.; Rugge, M.; Polesel, J.; Guzzinati, S. The Evolution of the Epidemiological Landscape of Head and Neck Cancer in Italy: Is There Evidence for an Increase in the Incidence of Potentially HPV-Related Carcinomas? PLoS ONE 2018, 13, e0192621. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.Q.; Yang, B.; Wen, L.L.; Mu, W.X.; Wang, Z.; Cheng, B. Prognostic Value of Immune Checkpoint Molecules in Head and Neck Cancer: A Meta-Analysis. Aging 2019, 11, 501–522. [Google Scholar] [CrossRef]
- Troiano, G.; Caponio, V.C.A.; Adipietro, I.; Tepedino, M.; Santoro, R.; Laino, L.; Lo Russo, L.; Cirillo, N.; Lo Muzio, L. Prognostic Significance of CD68+ and CD163+ Tumor Associated Macrophages in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Oral Oncol. 2019, 93, 66–75. [Google Scholar] [CrossRef]
- Li, G.; Ren, S.; Su, Z.; Liu, C.; Deng, T.; Huang, D.; Tian, Y.; Qiu, Y.; Liu, Y. Increased Expression of MiR-93 Is Associated with Poor Prognosis in Head and Neck Squamous Cell Carcinoma. Tumor Biol. 2015, 36, 3949–3956. [Google Scholar] [CrossRef] [Green Version]
- Azzimonti, B.; Zavattaro, E.; Provasi, M.; Vidali, M.; Conca, A.; Catalano, E.; Rimondini, L.; Colombo, E.; Valente, G. Intense Foxp3+ CD25+ Regulatory T-Cell Infiltration Is Associated with High-Grade Cutaneous Squamous Cell Carcinoma and Counterbalanced by CD8+/Foxp3+ CD25+ Ratio. Br. J. Dermatol. 2015, 172, 64–73. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Detty, S.Q.; Agrawal, D.K. Clinical Implications of High-Mobility Group Box-1 (HMGB1) and the Receptor for Advanced Glycation End-Products (RAGE) in Cutaneous Malignancy: A Systematic Review. Anticancer Res. 2017, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mazzaschi, G.; Madeddu, D.; Falco, A.; Bocchialini, G.; Goldoni, M.; Sogni, F.; Armani, G.; Lagrasta, C.A.; Lorusso, B.; Mangiaracina, C.; et al. Low PD-1 Expression in Cytotoxic CD8 þ Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clin. Cancer Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Salama, P.; Phillips, M.; Grieu, F.; Morris, M.; Zeps, N.; Joseph, D.; Platell, C.; Iacopetta, B. Tumor-Infiltrating FOXP3+ T Regulatory Cells Show Strong Prognostic Significance in Colorectal Cancer. J. Clin. Oncol. 2009. [Google Scholar] [CrossRef]
- Neagu, M.; Constantin, C.; Zurac, S. Immune Parameters in the Prognosis and Therapy Monitoring of Cutaneous Melanoma Patients: Experience, Role, and Limitations. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofler, L.; Kofler, K.; Schulz, C.; Breuninger, H.; Häfner, H.M. Sentinel Lymph Node Biopsy for High-Thickness Cutaneous Squamous Cell Carcinoma. Arch. Dermatol. Res. 2021, 313, 119–126. [Google Scholar] [CrossRef]
- Caruntu, A.; Moraru, L.; Lupu, M.; Vasilescu, F.; Dumitrescu, M.; Cioplea, M.; Popp, C.; Dragusin, A.; Caruntu, C.; Zurac, S. Prognostic Potential of Tumor-Infiltrating Immune Cells in Resectable Oral Squamous Cell Carcinoma. Cancers 2021, 13, 2268. [Google Scholar] [CrossRef]
- Brantsch, K.D.; Meisner, C.; Schönfisch, B.; Trilling, B.; Wehner-Caroli, J.; Röcken, M.; Breuninger, H. Analysis of Risk Factors Determining Prognosis of Cutaneous Squamous-Cell Carcinoma: A Prospective Study. Lancet. Oncol. 2008, 9, 713–720. [Google Scholar] [CrossRef]
- Frydenlund, N.; Leone, D.A.; Mitchell, B.; Abbas, O.; Dhingra, J.; Mahalingam, M. Perineural Invasion in Cutaneous Squamous Cell Carcinoma: Role of Immunohistochemistry, Anatomical Site, and the High-Affinity Nerve Growth Factor Receptor TrkA. Hum. Pathol. 2015, 46, 1209–1216. [Google Scholar] [CrossRef]
- Jakubowska, K.; Kisielewski, W.; Kańczuga-Koda, L.; Koda, M.; Famulski, W. Diagnostic Value of Inflammatory Cell Infiltrates, Tumor Stroma Percentage and Disease-Free Survival in Patients with Colorectal Cancer. Oncol. Lett. 2017, 14, 3869–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemi, N.; Eskuri, M.; Kauppila, J.H. Tumour-Stroma Ratio and 5-Year Mortality in Gastric Adenocarcinoma: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, A.; Schenker, C.; Dawson, H.; Beldi, G.; Zlobec, I.; Lugli, A. Evaluation of Tumor Budding in Primary Colorectal Cancer and Corresponding Liver Metastases Based on H&E and Pancytokeratin Staining. Front. Med. 2019, 6, 247. [Google Scholar] [CrossRef]
- Ling, Y.H.; Chen, J.W.; Wen, S.H.; Huang, C.Y.; Li, P.; Lu, L.H.; Mei, J.; Li, S.H.; Wei, W.; Cai, M.Y.; et al. Tumor Necrosis as a Poor Prognostic Predictor on Postoperative Survival of Patients with Solitary Small Hepatocellular Carcinoma. BMC Cancer 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Souza da Silva, R.M.; Queiroga, E.M.; Paz, A.R.; Neves, F.F.P.; Cunha, K.S.; Dias, E.P. Standardized Assessment of the Tumor-Stroma Ratio in Colorectal Cancer: Interobserver Validation and Reproducibility of a Potential Prognostic Factor. Clin. Pathol. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The Evaluation of Tumor-Infiltrating Lymphocytes (TILS) in Breast Cancer: Recommendations by an International TILS Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Zlobec, I.; Lugli, A. Tumor Budding in Colorectal Cancer—Ready for Diagnostic Practice? Hum. Pathol. 2016, 47, 4–19. [Google Scholar] [CrossRef]
- Louault, K.; Li, R.-R.; Declerck, Y.A. Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers 2020, 12, 3108. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Tampa, M.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Caruntu, A.; Lupu, M.; Matei, C.; Constantin, C.; Neagu, M. Tumor Microenvironment in Skin Carcinogenesis. In Tumor Microenvironments in Organs; Birbrair, A., Ed.; Springer: Cham, Switzerland; Berlin, Germany, 2020; Volume 1226, pp. 123–142. [Google Scholar] [CrossRef]
- Caruntu, A.; Scheau, C.; Tampa, M.; Georgescu, S.R.; Caruntu, C.; Tanase, C. Complex Interaction Among Immune, Inflammatory, and Carcinogenic Mechanisms in the Head and Neck Squamous Cell Carcinoma. Adv. Exp. Med. Biol. Clin. Exp. Biomed. 2021. [Google Scholar] [CrossRef]
- de Kruijf, E.M.; van Nes, J.G.H.; van de Velde, C.J.H.; Putter, H.; Smit, V.T.H.B.M.; Liefers, G.J.; Kuppen, P.J.K.; Tollenaar, R.A.E.M.; Mesker, W.E. Tumor-Stroma Ratio in the Primary Tumor Is a Prognostic Factor in Early Breast Cancer Patients, Especially in Triple-Negative Carcinoma Patients. Breast Cancer Res. Treat. 2011, 125, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Liu, W.; Liu, X. Prognostic Significance of the Tumor-Stroma Ratio in Epithelial Ovarian Cancer. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Xi, K.X.; Wen, Y.S.; Zhu, C.M.; Yu, X.Y.; Qin, R.Q.; Zhang, X.W.; Lin, Y.B.; Rong, T.H.; Wang, W.D.; Chen, Y.Q.; et al. Tumor-Stroma Ratio (TSR) in Non-Small Cell Lung Cancer (NSCLC) Patients after Lung Resection Is a Prognostic Factor for Survival. J. Thorac. Dis. 2017, 9, 4017–4026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xu, J.; Shen, H.; Dong, W.; Ni, Y.; Du, J. Tumor-Stroma Ratio Is an Independent Predictor for Survival in NSCLC. Int. J. Clin. Exp. Pathol. 2015, 8, 11348–11355. [Google Scholar]
- van Pelt, G.W.; Kjær-Frifeldt, S.; van Krieken, J.H.J.M.; Al Dieri, R.; Morreau, H.; Tollenaar, R.A.E.M.; Sørensen, F.B.; Mesker, W.E. Scoring the Tumor-Stroma Ratio in Colon Cancer: Procedure and Recommendations. Virchows Arch. 2018, 473, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Karpathiou, G.; Vieville, M.; Gavid, M.; Camy, F.; Dumollard, J.M.; Magné, N.; Froudarakis, M.; Prades, J.M.; Peoc’h, M. Prognostic Significance of Tumor Budding, Tumor-Stroma Ratio, Cell Nests Size, and Stroma Type in Laryngeal and Pharyngeal Squamous Cell Carcinomas. Head Neck 2019, 41, 1918–1927. [Google Scholar] [CrossRef]
- Almangush, A.; Heikkinen, I.; Bakhti, N.; Mäkinen, L.K.; Kauppila, J.H.; Pukkila, M.; Hagström, J.; Laranne, J.; Soini, Y.; Kowalski, L.P.; et al. Prognostic Impact of Tumour–Stroma Ratio in Early-Stage Oral Tongue Cancers. Histopathology 2018, 72, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Breuninger, H.; Schaumburg-Lever, G.; Holzschuh, J.; Horny, H.P. Desmoplastic Squamous Cell Carcinoma of Skin and Vermilion Surface: A Highly Malignant Subtype of Skin Cancer. Cancer 1997, 79, 915–919. [Google Scholar] [CrossRef]
- Schober, M.; Jesenofsky, R.; Faissner, R.; Weidenauer, C.; Hagmann, W.; Michl, P.; Heuchel, R.L.; Haas, S.L.; Löhr, J.-M. Desmoplasia and Chemoresistance in Pancreatic Cancer. Cancers 2014, 6, 2137–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liang, C.; Chen, M.; Su, W. Association between Tumor-Stroma Ratio and Prognosis in Solid Tumor Patients: A Systematic Review and Meta-Analysis. Oncotarget 2016, 7, 68954–68965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapani, J.A.; Darcy, P.K. Immunotherapy of Cancer. Aust. Fam. Phys. 2017. [Google Scholar] [CrossRef]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.e14. [Google Scholar] [CrossRef] [Green Version]
- Dobosz, P.; Dzieciątkowski, T. The Intriguing History of Cancer Immunotherapy. Front. Immunol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, S.; Hiratsuka, H.; Koike, K.; Tsuchihashi, K.; Sonoda, T.; Ogi, K.; Miyakawa, A.; Kobayashi, J.; Kaneko, T.; Igarashi, T.; et al. Tumor-Infiltrating CD8(+) T-Cell Density Is an Independent Prognostic Marker for Oral Squamous Cell Carcinoma. Cancer Med. 2019, 8, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Bisheshar, S.K.; De Ruiter, E.J.; Devriese, L.A.; Willems, S.M. The Prognostic Role of NK Cells and Their Ligands in Squamous Cell Carcinoma of the Head and Neck: A Systematic Review and Meta-Analysis. Oncoimmunology 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Higgins, C.; Ward, F.J.; Eid, R.A. Deciphering the Role of Regulatory CD4 T Cells in Oral and Oropharyngeal Cancer: A Systematic Review. Front. Oncol. 2018, 8. [Google Scholar] [CrossRef]
- Hladíková, K.; Koucký, V.; Bouček, J.; Laco, J.; Grega, M.; Hodek, M.; Zábrodský, M.; Vošmik, M.; Rozkošová, K.; Vošmiková, H.; et al. Tumor-Infiltrating B Cells Affect the Progression of Oropharyngeal Squamous Cell Carcinoma via Cell-to-Cell Interactions with CD8+ T Cells. J. Immunother. Cancer 2019, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Alsibai, K.D.; Meseure, D. Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes. Histopathol. Updat. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ostroumov, D.; Fekete-Drimusz, N.; Saborowski, M.; Kühnel, F.; Woller, N. CD4 and CD8 T Lymphocyte Interplay in Controlling Tumor Growth. Cell. Mol. Life Sci. 2018, 75, 689–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fancello, L.; Gandini, S.; Pelicci, P.G.; Mazzarella, L. Tumor Mutational Burden Quantification from Targeted Gene Panels: Major Advancements and Challenges. J. Immunother. Cancer 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risk Factors and Pathogenesis of Squamous Cell Tumours. Available online: https://oncologypro.esmo.org/education-library/essentials-for-clinicians/head-neck-cancers/1-epidemiology-risk-factors-squamous-cell-tumours (accessed on 25 April 2021).
- Spector, M.E.; Bellile, E.; Amlani, L.; Zarins, K.; Smith, J.; Brenner, J.C.; Rozek, L.; Nguyen, A.; Thomas, D.; McHugh, J.B.; et al. Prognostic Value of Tumor-Infiltrating Lymphocytes in Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngol. Head Neck Surg. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Distel, L.V.; Fickenscher, R.; Dietel, K.; Hung, A.; Iro, H.; Zenk, J.; Nkenke, E.; Büttner, M.; Niedobitek, G.; Grabenbauer, G.G. Tumour Infiltrating Lymphocytes in Squamous Cell Carcinoma of the Oro- and Hypopharynx: Prognostic Impact May Depend on Type of Treatment and Stage of Disease. Oral Oncol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Haeffner, A.C.; Zepter, K.; Elmets, C.A.; Wood, G.S. Analysis of Tumor-Infiltrating Lymphocytes in Cutaneous Squamous Cell Carcinoma. Arch. Dermatol. 1997, 133, 585–590. [Google Scholar] [CrossRef]
- Almangush, A.; Pirinen, M.; Heikkinen, I.; Mä Kitie, A.A.; Salo, T.; Leivo, I. Tumour Budding in Oral Squamous Cell Carcinoma: A Meta-Analysis. Nat. Publ. Gr. 2017, 118, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Kulasinghe, A.; Tran, T.H.P.; Blick, T.; O’Byrne, K.; Thompson, E.W.; Warkiani, M.E.; Nelson, C.; Kenny, L.; Punyadeera, C. Enrichment of Circulating Head and Neck Tumour Cells Using Spiral Microfluidic Technology. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Tu, Q.; Faure, G.; Gallet, P.; Kohler, C.; Bittencourt, M.D.C. Diagnostic and Prognostic Value of Circulating Tumor Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Proskuryakov, S.; Gabai, V. Mechanisms of Tumor Cell Necrosis. Curr. Pharm. Des. 2009, 16, 56–68. [Google Scholar] [CrossRef]
- Sellers, W.R.; Fisher, D.E. Apoptosis and Cancer Drug Targeting. J. Clin. Investig. 1999, 104, 1655–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, M.; Lombardo, Y.; Francipane, M.; Perez Alea, M.; Cammareri, P.; Iovino, F.; Di Stefano, A.; Di Bernardo, C.; Agrusa, A.; Condorelli, G.; et al. Apoptosis Resistance in Epithelial Tumors Is Mediated by Tumor-Cell-Derived Interleukin-4. Cell Death Differ. 2008. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lin, Y. Tumor Necrosis Factor and Cancer, Buddies or Foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercuri, S.R.; Rizzo, N.; Bellinzona, F.; Pampena, R.; Brianti, P.; Moffa, G.; Colombo Flink, L.; Bearzi, P.; Longo, C.; Paolino, G. Digital Ex-Vivo Confocal Imaging for Fast Mohs Surgery in Nonmelanoma Skin Cancers: An Emerging Technique in Dermatologic Surgery. Dermatol. Ther. 2019, 32, e13127. [Google Scholar] [CrossRef] [PubMed]
- Fania, L.; Didona, D.; Di Pietro, F.R.; Verkhovskaia, S.; Morese, R.; Paolino, G.; Donati, M.; Ricci, F.; Coco, V.; Ricci, F.; et al. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 171. [Google Scholar] [CrossRef]
- Lupu, M.; Caruntu, A.; Boda, D.; Caruntu, C. In Vivo Reflectance Confocal Microscopy-Diagnostic Criteria for Actinic Cheilitis and Squamous Cell Carcinoma of the Lip. J. Clin. Med. 2020, 9, 1987. [Google Scholar] [CrossRef]
Variable | No (%) | |
---|---|---|
Age (Mean ± SD), range, years | 64.92 ± 12.78 (28–92) | |
Gender | ||
Male | 73% | |
Female | 27% | |
Smoking | ||
Smokers | 57% | |
Nonsmokers | 39% | |
Missing | 4% | |
Alcohol consumption | ||
Drinkers | 43% | |
Nondrinkers | 53% | |
Missing | 4% | |
T stage | ||
T1 | 28% | |
T2 | 40% | |
T3 | 16% | |
T4 | 16% | |
Nodal status * | ||
pN0 | 17% | |
pN+ | 18% | |
TNM stage | ||
I | 27% | |
II | 33% | |
III | 14% | |
IVA | 26% | |
Location | ||
Oral SCC | 79% | |
Cutaneous SCC | 21% | |
Histological differentiation | ||
High | 26% | |
Intermediate | 55% | |
Low | 19% | |
Perineural invasion | ||
Confirmed | 10% | |
Not confirmed | 90% | |
Resection margins | ||
Positive | 11% | |
Negative | 89% | |
Locoregional recurrence | ||
Present | 29% | |
Absent | 71% | |
Tumor/stroma ratio | ||
Low (≤1) | 21% | |
High (>1) | 79% | |
Immune infiltrate | ||
Low | 33% | |
High | 67% | |
Tumor budding | ||
Low (≤5) | 52% | |
High (>5) | 48% | |
Necrosis | ||
Low (≤10%) | 84% | |
High (>10%) | 16% |
Variable | Tumor Stroma Ratio | Tumor Immune Response | Tumor Budding | Tumor Necrosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤50% | >50% | p | Low | High | p | Low | High | p | High | Low | p | |
Gender | 0.999 | 0.999 | 0.822 | 0.999 | ||||||||
Male | 15 | 58 | 24 | 49 | 37 | 36 | 12 | 61 | ||||
Female | 6 | 21 | 9 | 18 | 15 | 12 | 4 | 23 | ||||
T stage | 0.1358 | 0.0722 | 0.0077 | 0.0004 | ||||||||
T1 | 5 | 23 | 8 | 20 | 22 | 6 | 1 | 27 | ||||
T2 | 5 | 35 | 9 | 31 | 18 | 22 | 5 | 35 | ||||
T3 | 5 | 11 | 7 | 9 | 7 | 9 | 1 | 12 | ||||
T4A | 6 | 10 | 9 | 7 | 5 | 11 | 9 | 10 | ||||
Nodal status (n = 35) * | 0.0275 | 0.002 | 0.3175 | 0.1774 | ||||||||
pN0 | 2 | 15 | 3 | 14 | 10 | 7 | 1 | 16 | ||||
pN+ | 9 | 9 | 13 | 5 | 7 | 11 | 5 | 13 | ||||
TNM stage | 0.0116 | 0.0043 | 0.0039 | 0.0143 | ||||||||
I | 3 | 24 | 7 | 20 | 22 | 5 | 1 | 26 | ||||
II | 3 | 30 | 5 | 28 | 15 | 18 | 5 | 28 | ||||
III | 5 | 9 | 6 | 8 | 5 | 9 | 1 | 13 | ||||
IVA | 10 | 16 | 15 | 11 | 10 | 16 | 9 | 17 | ||||
Histological differentiation | 0.2211 | 0.2306 | 0.328 | 0.7481 | ||||||||
High | 3 | 23 | 6 | 20 | 15 | 11 | 3 | 23 | ||||
Intermediate | 15 | 40 | 18 | 37 | 25 | 30 | 10 | 45 | ||||
Low | 3 | 16 | 9 | 10 | 12 | 7 | 3 | 16 | ||||
Keratinization status | 0.9319 | 0.6147 | 0.2909 | 0.708 | ||||||||
Keratinizing | 15 | 59 | 24 | 50 | 36 | 38 | 13 | 61 | ||||
Non-keratinizing | 3 | 11 | 6 | 8 | 10 | 4 | 2 | 12 | ||||
Unknown | 3 | 9 | 3 | 9 | 6 | 6 | 1 | 11 | ||||
Perineural invasion | 0.0006 | 0.0138 | 0.0454 | 0.999 | ||||||||
Confirmed | 7 | 3 | 7 | 3 | 2 | 8 | 1 | 9 | ||||
Not confirmed | 14 | 76 | 26 | 64 | 50 | 40 | 15 | 75 | ||||
Locoregional reccurence | 0.0026 | 0.0596 | 0.0292 | 0.5481 | ||||||||
Present | 12 | 17 | 14 | 15 | 10 | 19 | 6 | 23 | ||||
Absent | 9 | 62 | 19 | 52 | 42 | 29 | 10 | 61 |
Histological Features | OSCC | CSCC | p Value | |
---|---|---|---|---|
Tumor stroma ratio | 0.5508 | |||
Low | 18 | 3 | ||
High | 62 | 17 | ||
Tumor immune infiltrate | 0.6077 | |||
Low | 25 | 8 | ||
High | 54 | 13 | ||
Tumor budding | 0.3364 | |||
Low | 39 | 13 | ||
High | 40 | 8 | ||
Tumor necrosis | 0.7392 | |||
High | 12 | 4 | ||
Low | 67 | 17 |
Variable | No | Survivors | Deceased | p | |
---|---|---|---|---|---|
Tumor/stroma ratio | 0.0159 | ||||
Low (≤50%) | 18 | 50% | 50% | ||
High (>50%) | 61 | 80% | 20% | ||
Immune infiltrate | 0.0274 | ||||
Low | 25 | 56% | 44% | ||
High | 54 | 81% | 19% | ||
Tumor budding | 0.1263 | ||||
Low (≤5) | 39 | 82% | 18% | ||
High (>5) | 40 | 65% | 35% | ||
Tumor necrosis | 0.2854 | ||||
Low (≤10%) | 67 | 76% | 24% | ||
High (>10%) | 12 | 58% | 42% | ||
Sex | 0.1305 | ||||
Male | 61 | 69% | 31% | ||
Female | 18 | 89% | 11% | ||
Smoking | 0.0269 | ||||
Smokers | 53 | 64% | 36% | ||
Nonsmokers | 22 | 91% | 9% | ||
Missing | 4 | 100% | 0% | ||
Alcohol consumption | 0.0092 | ||||
Drinkers | 38 | 58% | 42% | ||
Nondrinkers | 37 | 86% | 14% | ||
Missing | 4 | 100% | 0% | ||
T stage | 0.0035 | ||||
T1 | 16 | 94% | 6% | ||
T2 | 36 | 78% | 22% | ||
T3 | 15 | 73% | 27% | ||
T4 | 12 | 33% | 67% | ||
Nodal status * | 0.0570 | ||||
pN0 | 17 | 88% | 12% | ||
pN+ | 16 | 56% | 44% | ||
TNM stage | 0.0001 | ||||
I | 15 | 100% | 0% | ||
II | 29 | 90% | 10% | ||
III | 13 | 62% | 38% | ||
IVA | 22 | 41% | 59% | ||
Histological differentiation | 0.1116 | ||||
High | 17 | 88% | 12% | ||
Intermediate | 47 | 74% | 26% | ||
Low | 16 | 56% | 44% | ||
Perineural invasion | 0.4430 | ||||
Confirmed | 10 | 60% | 40% | ||
Not confirmed | 69 | 75% | 25% | ||
Resection margins | 0.0091 | ||||
Positive | 9 | 33% | 67% | ||
Negative | 70 | 79% | 21% | ||
Locoregional recurrence | <0.0001 | ||||
Present | 27 | 22% | 78% | ||
Absent | 52 | 100% | 0% |
Variable | Parameter | OSCC | Total SCC (OSCC and CSCC) |
---|---|---|---|
Tumor/stroma ratio | Log-rank test | 6.064 | 5.588 |
95% CI logrank | 1.311 to 10.86 | 1.238 to 9.802 | |
p value | 0.0138 | 0.0181 | |
Immune infiltration | Log-rank test | 5.76 | 4.495 |
95% CI logrank | 1.238 to 8.321 | 1.143 to 6.817 | |
p value | 0.0164 | 0.034 | |
Tumor budding | Log-rank test | 1.926 | 2.707 |
95% CI logrank | 0.1160 to 1.445 | 0.2201 to 1.141 | |
p value | 0.1433 | 0.0999 | |
Tumor necrosis | Log-rank test | 2.142 | 1.087 |
95% CI logrank | 0.2217 to 1.244 | 0.1631 to 1.741 | |
p value | 0.1652 | 0.2972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruntu, A.; Moraru, L.; Lupu, M.; Ciubotaru, D.A.; Dumitrescu, M.; Eftimie, L.; Hertzog, R.; Zurac, S.; Caruntu, C.; Voinea, O.C. Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa. J. Clin. Med. 2021, 10, 2343. https://doi.org/10.3390/jcm10112343
Caruntu A, Moraru L, Lupu M, Ciubotaru DA, Dumitrescu M, Eftimie L, Hertzog R, Zurac S, Caruntu C, Voinea OC. Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa. Journal of Clinical Medicine. 2021; 10(11):2343. https://doi.org/10.3390/jcm10112343
Chicago/Turabian StyleCaruntu, Ana, Liliana Moraru, Mihai Lupu, Diana Alina Ciubotaru, Marius Dumitrescu, Lucian Eftimie, Radu Hertzog, Sabina Zurac, Constantin Caruntu, and Oana Cristina Voinea. 2021. "Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa" Journal of Clinical Medicine 10, no. 11: 2343. https://doi.org/10.3390/jcm10112343
APA StyleCaruntu, A., Moraru, L., Lupu, M., Ciubotaru, D. A., Dumitrescu, M., Eftimie, L., Hertzog, R., Zurac, S., Caruntu, C., & Voinea, O. C. (2021). Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa. Journal of Clinical Medicine, 10(11), 2343. https://doi.org/10.3390/jcm10112343