Hypothalamic–Pituitary Diseases and Erectile Dysfunction
Abstract
:1. Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction
2. Gonadal Axis (Luteinizing Hormone and Follicle-Stimulating Hormone)
2.1. Prolactin
2.2. Growth Hormone
2.2.1. Acromegaly
2.2.2. Growth Hormone Deficiency
2.3. Adrenocorticotropic Hormone
2.3.1. Cushing’s Disease
2.3.2. Adrenal Insufficiency
2.4. Thyroid-Stimulating Hormone
2.5. Vasopressin and Oxytocin
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Musicki, B.; Lagoda, G.; Goetz, T.; La Favor, J.D.; Burnett, A.L. Transnitrosylation: A Factor in Nitric Oxide–Mediated Penile Erection. J. Sex. Med. 2016, 13, 808–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, R.C.; Lue, T.F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. N. Am. 2005, 32, 379–395. [Google Scholar] [CrossRef]
- Rastrelli, G.; Corona, G.; Maggi, M. Testosterone and sexual function in men. Maturitas 2018, 112, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Morgentaler, A.; Sforza, A.; Mannucci, E.; Maggi, M. Meta-analysis of Results of Testosterone Therapy on Sexual Function Based on International Index of Erectile Function Scores [Figure presented]. Eur. Urol. 2017, 72, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Elshahid, A.R.M.; Shahein, I.M.; Mohammed, Y.F.; Ismail, N.F.; Zakarria, H.B.A.E.R.; GamalEl Din, S.F. Folic acid supplementation improves erectile function in patients with idiopathic vasculogenic erectile dysfunction by lowering peripheral and penile homocysteine plasma levels: A case-control study. Andrology 2020, 8, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.A.; Johannes, C.B.; Derby, C.A.; Kleinman, K.P.; Mohr, B.A.; Araujo, A.B.; McKinlay, J.B. Erectile dysfunction and coronary risk factors: Prospective results from the Massachusetts Male Aging Study. Prev. Med. 2000, 30, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Luan, Y.; Tang, Z.; Li, C.C.; Wang, T.; Wang, S.G.; Chen, Z.; Liu, J.H. Human tissue kallikrein-1 protects against the development of erectile dysfunction in a rat model of hyperhomocysteinemia (AGGIUSTARE). Asian J. Androl. 2019, 21, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Hackett, G.; Kirby, M. Erectile dysfunction and testosterone deficiency as cardiovascular risk factors? Int. J. Clin. Pract. 2018, 72. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Testosterone and Cardiovascular Risk: Meta-Analysis of Interventional Studies. J. Sex. Med. 2018, 15, 820–838. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J. Sex. Med. 2018, 15, 1260–1271. [Google Scholar] [CrossRef]
- Corona, G.; Torres, L.O.; Maggi, M. Testosterone Therapy: What We Have Learned From Trials. J. Sex. Med. 2020, 17, 447–460. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.; Arguello, M.; Macki, M.; Rao, S.D. Pituitary Dysfunction Among Men Presenting with Hypogonadism. Curr. Urol. Rep. 2019, 20. [Google Scholar] [CrossRef]
- Grossmann, M.; Matsumoto, A.M. A perspective on middle-aged and older men with functional hypogonadism: Focus on holistic management. J. Clin. Endocrinol. Metab. 2017, 102, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- González-Sales, M.; Barrière, O.; Tremblay, P.O.; Nekka, F.; Desrochers, J.; Tanguay, M. Modeling Testosterone Circadian Rhythm in Hypogonadal Males: Effect of Age and Circannual Variations. AAPS J. 2016, 18, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, A.; Kohn, T.P.; Santiago, J.E.; Sigalos, J.T.; Kirby, E.W.; Hockenberry, M.S.; Pickett, S.M.; Pastuszak, A.W.; Lipshultz, L.I. Increased Risk of Hypogonadal Symptoms in Shift Workers With Shift Work Sleep Disorder. Urology 2020, 138, 52–59. [Google Scholar] [CrossRef]
- Bozkurt, A.; Karabakan, M.; Aktas, B.K.; Gunay, M.; Keskin, E.; Hirik, E. Low serum melatonin levels are associated with erectile dysfunction. Int. Braz. J. Urol 2018, 44, 785–793. [Google Scholar] [CrossRef]
- Corona, G.; Goulis, D.G.; Huhtaniemi, I.; Zitzmann, M.; Toppari, J.; Forti, G.; Vanderschueren, D.; Wu, F.C. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: Endorsing organization: European Society of Endocrinology. Andrology 2020, 8, 970–987. [Google Scholar] [CrossRef]
- Rahnema, C.D.; Lipshultz, L.I.; Crosnoe, L.E.; Kovac, J.R.; Kim, E.D. Anabolic steroid-induced hypogonadism: Diagnosis and treatment. Fertil. Steril. 2014, 101, 1271–1279. [Google Scholar] [CrossRef]
- Alder, N.J.; Keihani, S.; Stoddard, G.J.; Myers, J.B.; Hotaling, J.M. Combination therapy with clomiphene citrate and anastrozole is a safe and effective alternative for hypoandrogenic subfertile men. BJU Int. 2018, 122, 688–694. [Google Scholar] [CrossRef]
- Molitch, M.E. Diagnosis and treatment of pituitary adenomas: A review. JAMA J. Am. Med. Assoc. 2017, 317, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Buvat, J.; Corona, G.; Guay, A.; Torres, L.O. Hormonal Causes of Male Sexual Dysfunctions and Their Management (Hyperprolactinemia, Thyroid Disorders, GH Disorders, and DHEA). J. Sex. Med. 2013, 10, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Tirabassi, G.; delli Muti, N.; Corona, G.; Maggi, M.; Balercia, G. Androgen receptor gene CAG repeat polymorphism independently influences recovery of male sexual function after testosterone replacement therapy in postsurgical hypogonadotropic hypogonadism. J. Sex. Med. 2014, 11, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Bilski, T.; Dieudonne, B.; Saeed, S. Hypopituitarism After Traumatic Brain Injury. Cureus 2019, 11, e4163. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Chien, W.C.; Chung, C.H.; Hong, K.T.; Yu, Y.L.; Hueng, D.Y.; Chen, Y.H.; Ma, H.I.; Chang, H.A.; Kao, Y.C.; et al. Risk of Erectile Dysfunction After Traumatic Brain Injury: A Nationwide Population-Based Cohort study in Taiwan. Am. J. Mens. Health 2018, 12, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Molitch, M.E. Drugs and prolactin. Pituitary 2008, 11, 209–218. [Google Scholar] [CrossRef]
- Bhasin, S.; Enzlin, P.; Coviello, A.; Basson, R. Sexual dysfunction in men and women with endocrine disorders. Lancet 2007, 369, 597–611. [Google Scholar] [CrossRef]
- Galdiero, M.; Pivonello, R.; Grasso, L.F.S.; Cozzolino, A.; Colao, A. Growth hormone, prolactin, and sexuality. J. Endocrinol. Investig. 2012, 35, 782–794. [Google Scholar] [CrossRef]
- Corona, G.; Mannucci, E.; Fisher, A.D.; Lotti, F.; Ricca, V.; Balercia, G.; Petrone, L.; Forti, G.; Maggi, M. Effect of hyperprolactinemia in male patients consulting for sexual dysfunction. J. Sex. Med. 2007, 4, 1485–1493. [Google Scholar] [CrossRef]
- Shimon, I.; Hirsch, D.; Tsvetov, G.; Robenshtok, E.; Akirov, A.; Fraenkel, M.; Eizenberg, Y.; Herzberg, D.; Barzilay-Yoseph, L.; Livner, A.; et al. Hyperprolactinemia diagnosis in elderly men: A cohort of 28 patients over 65 years. Endocr. 2019, 65, 656–661. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Ricca, V.; Jannini, E.A.; Vignozzi, L.; Monami, M.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Risk Factors Associated with Primary and Secondary Reduced Libido in Male Patients with Sexual Dysfunction. J. Sex. Med. 2013, 10, 1074–1089. [Google Scholar] [CrossRef]
- Corona, G.; Isidori, A.M.; Aversa, A.; Burnett, A.L.; Maggi, M. Endocrinologic Control of Men’s Sexual Desire and Arousal/Erection. J. Sex. Med. 2016, 13, 317–337. [Google Scholar] [CrossRef] [Green Version]
- Bonert, V. Do nothing but observe microprolactinomas: When and how to replace sex hormones? Pituitary 2020, 23, 307–313. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopień, B. Sexual Functioning in Hyperprolactinemic Patients Treated with Cabergoline or Bromocriptine. Am. J. Ther. 2019, 26, e433–e440. [Google Scholar] [CrossRef]
- Raghuthaman, G.; Venkateswaran, R.; Krishnadas, R. Adjunctive aripiprazole in risperidone-induced hyperprolactinaemia: Double-blind, randomised, placebo-controlled trial. BJPsych Open 2015, 1, 172–177. [Google Scholar] [CrossRef]
- Kalsi, A.K.; Halder, A.; Jain, M.; Chaturvedi, P.K.; Sharma, J.B. Prevalence and reproductive manifestations of macroprolactinemia. Endocrine 2019, 63, 332–340. [Google Scholar] [CrossRef]
- Corona, G.; Mannucci, E.; Jannini, E.A.; Lotti, F.; Ricca, V.; Monami, M.; Boddi, V.; Bandini, E.; Balercia, G.; Forti, G.; et al. Hypoprolactinemia: A new clinical syndrome in patients with sexual dysfunction. J. Sex. Med. 2009, 6, 1457–1466. [Google Scholar] [CrossRef]
- Maseroli, E.; Corona, G.; Rastrelli, G.; Lotti, F.; Cipriani, S.; Forti, G.; Mannucci, E.; Maggi, M. Prevalence of endocrine and metabolic disorders in subjects with erectile dysfunction: A comparative study. J. Sex. Med. 2015, 12, 956–965. [Google Scholar] [CrossRef]
- Meinhardt, U.J.; Ho, K.K.Y. Regulation of Growth Hormone Action by Gonadal Steroids. Endocrinol. Metab. Clin. N. Am. 2007, 36, 57–73. [Google Scholar] [CrossRef]
- Chandrashekar, V.; Zaczek, D.; Bartke, A. The consequences of altered somatotropic system on reproduction. Biol. Reprod. 2004, 71, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.J.; Ückert, S.; Stief, C.G.; Scheller, F.; Knapp, W.H.; Hartmann, U.; Brabant, G.; Jonas, U. Serum levels of human growth hormone during different penile conditions in the cavernous and systemic blood of healthy men and patients with erectile dysfunction. Urology 2002, 59, 609–614. [Google Scholar] [CrossRef]
- Jung, G.W.; Spencer, E.M.; Lue, T.F. Growth hormone enhances regeneration of nitric oxide synthase-containing penile nerves after cavernous nerve neurotomy in rats. J. Urol. 1998, 160, 1899–1904. [Google Scholar] [CrossRef]
- Böger, R.H.; Skamira, C.; Bode-Böger, S.M.; Brabant, G.; Von Zur Mühlen, A.; Frölich, J.C. Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency: A double-blind, placebo-controlled study. J. Clin. Investig. 1996, 98, 2706–2713. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, D.; Devesa, P.; Alvarez, C.V.; Devesa, J. Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020, 9, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Yu, Y.; He, M.; Shen, M.; Gong, W.; Wang, M.; Yang, Y.; Zhang, Y.; Shou, X.; Lu, Y.; et al. Higher growth hormone levels are associated with erectile dysfunction in male patients with acromegaly. Endocr. Pract. 2019, 25, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Rochira, V.; Pivonello, R.; Santi, D.; Galdiero, M.; Maseroli, E.; Balestrieri, A.; Faustini-Fustini, M.; Peri, A.; Sforza, A.; et al. Erectile Dysfunction Is Common among Men with Acromegaly and Is Associated with Morbidities Related to the Disease. J. Sex. Med. 2015, 12, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.S.; Giustina, A.; Melmed, S.; Chanson, P.; Pereira, A.M.; Pivonello, R. Acromegaly. Nat. Rev. Dis. Prim. 2019, 5, 1–17. [Google Scholar] [CrossRef]
- Ronconi, V.; Giacchetti, G.; Mariniello, B.; Camilletti, A.; Mantero, F.; Boscaro, M.; Vignini, A.; Mazzanti, L. Reduced nitric oxide levels in acromegaly: Cardiovascular implications. Blood Press. 2005, 14, 227–232. [Google Scholar] [CrossRef]
- Monzani, M.L.; Pederzoli, S.; Volpi, L.; Magnani, E.; Diazzi, C.; Rochira, V. Sexual Dysfunction: A Neglected and Overlooked Issue in Adult GH Deficiency: The Management of AGHD Study. J. Endocr. Soc. 2021, 5, bvab002. [Google Scholar] [CrossRef]
- Gratzke, C.; Angulo, J.; Chitaley, K.; Dai, Y.T.; Kim, N.N.; Paick, J.S.; Simonsen, U.; Ückert, S.; Wespes, E.; Andersson, K.E.; et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J. Sex. Med. 2010, 7, 445–475. [Google Scholar] [CrossRef]
- Argiolas, A.; Melis, M.R. Neuropeptides and central control of sexual behaviour from the past to the present: A review. Prog. Neurobiol. 2013, 108, 80–107. [Google Scholar] [CrossRef]
- Ückert, S.; Fuhlenriede, M.H.; Becker, A.J.; Stief, C.G.; Scheller, F.; Knapp, W.H.; Jonas, U. Is there an inhibitory role of cortisol in the mechanism of male sexual arousal and penile erection? Urol. Res. 2003, 31, 402–406. [Google Scholar] [CrossRef]
- Granata, A.; Bancroft, J.; Rio, G. Del Stress and the erectile response to intracavernosal prostaglandin e (1) in men with erectile dysfunction. Psychosom. Med. 1995, 57, 336–344. [Google Scholar] [CrossRef]
- Merayo-Chalico, J.; Barrera-Vargas, A.; Morales-Padilla, S.; Reyna-De La Garza, R.; Vázquez-Rodríguez, R.; Campos-Guzmán, J.; Alcocer-Varela, J.; Sotomayor, M.; Abud-Mendoza, C.; Martínez-Martínez, M.; et al. Epidemiologic profile of erectile dysfunction in patients with systemic lupus erythematosus: The Latin American landscape. J. Rheumatol. 2019, 46, 397–404. [Google Scholar] [CrossRef]
- Arnaldi, G.; Mancini, T.; Tirabassi, G.; Trementino, L.; Boscaro, M. Advances in the epidemiology, pathogenesis, and management of Cushing’s syndrome complications. J. Endocrinol. Investig. 2012, 35, 434–448. [Google Scholar] [CrossRef]
- Gabrilove, J.L.; Nicolis, G.L.; Sohval, A.R. The testis in Cushing’s syndrome. J. Urol. 1974, 112, 95–99. [Google Scholar] [CrossRef]
- Soffer, L.J.; Iannaccone, A.; Gabrilove, J.L. Cushing’s syndrome. A study of fifty patients. Am. J. Med. 1961, 30, 129–146. [Google Scholar] [CrossRef]
- Luton, J.P.; Thieblot, P.; Valcke, J.C.; Mahoudeau, J.A.; Bricaire, H. Reversible gonadotropin deficiency in male cushing’s disease. J. Clin. Endocrinol. Metab. 1977, 45, 488–495. [Google Scholar] [CrossRef]
- Kobori, Y.; Koh, E.; Sugimoto, K.; Izumi, K.; Narimoto, K.; Maeda, Y.; Konaka, H.; Mizokami, A.; Matsushita, T.; Iwamoto, T.; et al. The relationship of serum and salivary cortisol levels to male sexual dysfunction as measured by the international index of erectile function. Int. J. Impot. Res. 2009, 21, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Steiger, A.; von Bardeleben, U.; Wiedemann, K.; Holsboer, F. Sleep EEG and nocturnal secretion of testosterone and cortisol in patients with major endogenous depression during acute phase and after remission. J. Psychiatr. Res. 1991, 25, 169–177. [Google Scholar] [CrossRef]
- Tirabassi, G.; Boscaro, M.; Arnaldi, G. Harmful effects of functional hypercortisolism: A working hypothesis. Endocrine 2014, 46, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzidou, I.; Venetikou, M.S.; Konstadinidis, K.; Artemiadis, A.K.; Chrousos, G.; Darviri, C. Stress management and erectile dysfunction: A pilot comparative study. Andrologia 2014, 46, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Rupprecht, R.; Noder, M.; Jecht, E.; Schwarz, W.; Rupprecht, C.; Rupprecht, M.; Diepgen, T. Pre- and postdexamethasone cortisol and prolactin levels in sexual dysfunction and normal controls. Biol. Psychiatry 1988, 23, 527–530. [Google Scholar] [CrossRef]
- Tirabassi, G.; Corona, G.; Lamonica, G.R.; Lenzi, A.; Maggi, M.; Balercia, G. Diabetes Mellitus-Associated Functional Hypercortisolism Impairs Sexual Function in Male Late-Onset Hypogonadism. Horm. Metab. Res. 2015, 48, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, F.; Bernkopf, E.; Scaroni, C. Sleep apnea syndrome in endocrine clinics. J. Endocrinol. Investig. 2015, 38, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.M.; Graziadio, C.; Paragliola, R.M.; Cozzolino, A.; Ambrogio, A.G.; Colao, A.; Corsello, S.M.; Pivonello, R. The hypertension of Cushing’s syndrome: Controversies in the pathophysiology and focus on cardiovascular complications. J. Hypertens. 2015, 33, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Penson, D.F.; Ng, C.; Rajfer, J.; Gonzalez-Cadavid, N.F. Adrenal Control of Erectile Function and Nitric Oxide Synthase in the Rat Penis. Endocrinology 1997, 138, 3925–3932. [Google Scholar] [CrossRef]
- Granata, A.; Tirabassi, G.; Pugni, V.; Arnaldi, G.; Boscaro, M.; Carani, C.; Balercia, G. Sexual dysfunctions in men affected by autoimmune addison’s disease before and after short-term gluco- and mineralocorticoid replacement therapy. J. Sex. Med. 2013, 10, 2036–2043. [Google Scholar] [CrossRef]
- Bates, J.N.; Kohn, T.P.; Pastuszak, A.W. Effect of Thyroid Hormone Derangements on Sexual Function in Men and Women. Sex. Med. Rev. 2020, 8, 217–230. [Google Scholar] [CrossRef]
- Kjaergaard, A.D.; Marouli, E.; Papadopoulou, A.; Deloukas, P.; Kuś, A.; Sterenborg, R.; Teumer, A.; Burgess, S.; Åsvold, B.O.; Chasman, D.I.; et al. Thyroid function, sex hormones and sexual function: A Mendelian randomization study. Eur. J. Epidemiol. 2021, 36, 335–344. [Google Scholar] [CrossRef]
- Gabrielson, A.T.; Sartor, R.A.; Hellstrom, W.J.G. The Impact of Thyroid Disease on Sexual Dysfunction in Men and Women. Sex. Med. Rev. 2019, 7, 57–70. [Google Scholar] [CrossRef]
- Oti, T.; Satoh, K.; Uta, D.; Nagafuchi, J.; Tateishi, S.; Ueda, R.; Takanami, K.; Young, L.J.; Galione, A.; Morris, J.F.; et al. Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Curr. Biol. 2021, 31, 103–114. [Google Scholar] [CrossRef]
Dysfunction | Causes | Mechanisms |
---|---|---|
Pituitary Hormones Excess | ||
Hyperprolactinemia | Pituitary adenoma (prolactinoma) Sellar/parasellar masses Drugs Stalk effect | - Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion - Reduced libido due to direct effect on the central nervous system |
Hypercortisolism | Corticotroph adenoma (Cushing’s disease) Functional hypercortisolism | - Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion - Primary hypogonadism due to decreased number of Leydig cells in the testes - Endothelial dysfunction due to metabolic comorbidities |
Acromegaly | Pituitary adenoma | - Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion. - Endothelial dysfunction due to metabolic comorbidities. |
Hypopituitarism | ||
Hypogonadotropic hypogonadism | Pituitary adenoma Sellar/parasellar masses Drugs Functional hypogonadism TBI TNS Radiotherapy | - Reduced libido and dysregulation of sexual behavior - Endothelial dysfunction due to metabolic comorbidities - Reduced NO production in penile tissue due to reduced eNOS and nNOS activity |
GHD | TBI TNS Radiotherapy | - Reduced NO production in penile tissue due to reduced nNOS activity |
Hypocortisolism | TBI TNS Radiotherapy | - Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvio, G.; Martino, M.; Giancola, G.; Arnaldi, G.; Balercia, G. Hypothalamic–Pituitary Diseases and Erectile Dysfunction. J. Clin. Med. 2021, 10, 2551. https://doi.org/10.3390/jcm10122551
Salvio G, Martino M, Giancola G, Arnaldi G, Balercia G. Hypothalamic–Pituitary Diseases and Erectile Dysfunction. Journal of Clinical Medicine. 2021; 10(12):2551. https://doi.org/10.3390/jcm10122551
Chicago/Turabian StyleSalvio, Gianmaria, Marianna Martino, Giulia Giancola, Giorgio Arnaldi, and Giancarlo Balercia. 2021. "Hypothalamic–Pituitary Diseases and Erectile Dysfunction" Journal of Clinical Medicine 10, no. 12: 2551. https://doi.org/10.3390/jcm10122551
APA StyleSalvio, G., Martino, M., Giancola, G., Arnaldi, G., & Balercia, G. (2021). Hypothalamic–Pituitary Diseases and Erectile Dysfunction. Journal of Clinical Medicine, 10(12), 2551. https://doi.org/10.3390/jcm10122551