Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics
2.2. Study Protocol
2.2.1. Anesthesia, Animal Preparation, and Induction of Lung Injury
2.2.2. Baseline Ventilatory Setting
2.2.3. Lung Recruitment and Decremental PEEP Titration
2.3. Measurements and Data Analysis
2.3.1. Cardiovascular Measurements and Lung Mechanics
2.3.2. Electrical Impedance Tomography
2.3.3. Quantification of the Time Disparity of the Regional Ventilation Curves
2.3.4. Calculation of PEI from Reduced Slow Inflation Volumes
2.3.5. Selection of EIT-Based PEEP Levels from RVDI Values
2.4. Statistical Analysis
3. Results
3.1. Availability of Data
3.2. Cardiorespiratory Effects of Lung Injury Induction and Decremental PEEP Trial
3.3. Temporal Heterogeneity Measured with EIT
3.4. Individualized PEEP Levels Estimated from EIT
3.5. PEI Resulting from Different Slow Inflation Volumes during PEEP Titration
4. Discussion
4.1. Influence of Slow Inflation Volume on RVDI, PEI, and Derived PEEP Levels during Decremental PEEP Trial
4.2. Individualized PEEP Titration Based on Global and Regional Information about Lung Mechanics
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, T.W. International Consensus Conferences in Intensive Care Medicine: Ventilator-Associated Lung Injury in ARDS. Am. J. Respir. Crit. Care Med. 1999, 160, 2118–2124. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.M.; Suter, P.M.; Tortorella, C.; De Tullio, R.; Dayer, J.M.; Brienza, A.; Bruno, F.; Slutsky, A.S. Effect of Mechanical Ventilation on Inflammatory Mediators in Patients with Acute Respiratory Distress Syndrome: A Randomized Controlled Trial. JAMA 1999, 282, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Slutsky, A.S. Lung Injury Caused by Mechanical Ventilation. Chest 1999, 116, 9S–15S. [Google Scholar] [CrossRef]
- Uhlig, S. Ventilation-Induced Lung Injury and Mechanotransduction: Stretching It Too Far? Am. J. Physiol. Cell. Mol. Physiol. 2002, 282, L892–L896. [Google Scholar] [CrossRef] [Green Version]
- Acute Respiratory Distress Syndrome Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Briel, M.; Meade, M.; Mercat, A.; Brower, R.G.; Talmor, D.; Walter, S.D.; Slutsky, A.S.; Pullenayegum, E.; Zhou, Q.; Cook, D.; et al. Higher vs Lower Positive End-Expiratory Pressure in Patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis. JAMA 2010, 303, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Putensen, C.; Theuerkauf, N.; Zinserling, J.; Wrigge, H.; Pelosi, P. Meta-Analysis: Ventilation Strategies and Outcomes of the Acute Respiratory Distress Syndrome and Acute Lung Injury. Ann. Intern. Med. 2009, 151, 566–576. [Google Scholar] [CrossRef]
- Nieman, G.F.; Satalin, J.; Andrews, P.; Aiash, H.; Habashi, N.M.; Gatto, L.A. Personalizing Mechanical Ventilation According to Physiologic Parameters to Stabilize Alveoli and Minimize Ventilator Induced Lung Injury (VILI). Intensive Care Med. Exp. 2017, 5, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, L.; Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, V.M.; Quintel, M.; Russo, S.; Patroniti, N.; Cornejo, R.; Bugedo, G. Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2006, 354, 1775–1786. [Google Scholar] [CrossRef]
- Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, M.; Quintel, M.; Russo, S.G.; Cornejo, R.; Bugedo, G.; Carlesso, E.; Russo, R.; et al. Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2010, 181, 578–586. [Google Scholar] [CrossRef]
- Hickling, K.G. The Pressure–Volume Curve Is Greatly Modified by Recruitment: A Mathematical Model of ARDS Lungs. Am. J. Respir. Crit. Care Med. 1998, 158, 194–202. [Google Scholar] [CrossRef]
- Muders, T.; Luepschen, H.; Putensen, C. Impedance Tomography as a New Monitoring Technique. Curr. Opin. Crit. Care 2010, 16, 269–275. [Google Scholar] [CrossRef]
- Frerichs, I.; Amato, M.B.P.; van Kaam, A.H.; Tingay, D.G.; Zhao, Z.; Grychtol, B.; Bodenstein, M.; Gagnon, H.; Böhm, S.H.; Teschner, E.; et al. Chest Electrical Impedance Tomography Examination, Data Analysis, Terminology, Clinical Use and Recommendations: Consensus Statement of the TRanslational EIT DevelopmeNt StuDy Group. Thorax 2017, 72, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putensen, C.; Hentze, B.; Muenster, S.; Muders, T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. JCM 2019, 8, 1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrigge, H.; Zinserling, J.; Muders, T.; Varelmann, D.; Günther, U.; von der Groeben, C.; Magnusson, A.; Hedenstierna, G.; Putensen, C. Electrical Impedance Tomography Compared with Thoracic Computed Tomography during a Slow Inflation Maneuver in Experimental Models of Lung Injury. Crit. Care Med. 2008, 36, 903–909. [Google Scholar] [CrossRef]
- Muders, T.; Luepschen, H.; Zinserling, J.; Greschus, S.; Fimmers, R.; Guenther, U.; Buchwald, M.; Grigutsch, D.; Leonhardt, S.; Putensen, C.; et al. Tidal Recruitment Assessed by Electrical Impedance Tomography and Computed Tomography in a Porcine Model of Lung Injury*. Crit. Care Med. 2012, 40, 903–911. [Google Scholar] [CrossRef]
- Muders, T.; Luepschen, H.; Meier, T.; Reske, A.W.; Zinserling, J.; Kreyer, S.; Pikkemaat, R.; Maripu, E.; Leonhardt, S.; Hedenstierna, G.; et al. Individualized Positive End-Expiratory Pressure and Regional Gas Exchange in Porcine Lung Injury. Anesthesiology 2020, 132, 808–824. [Google Scholar] [CrossRef]
- Muders, T.; Hentze, B.; Simon, P.; Girrbach, F.; Doebler, M.R.G.; Leonhardt, S.; Wrigge, H.; Putensen, C. A Modified Method to Assess Tidal Recruitment by Electrical Impedance Tomography. J. Clin. Med. 2019, 8, 1161. [Google Scholar] [CrossRef] [Green Version]
- Institute of Laboratory Animal Resources; National Research Council (Eds.) Guide for the Care and Use of Laboratory Animals; 6. print.; National Acad. Press: Washington, DC, USA, 1996; ISBN 978-0-309-05377-8. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Borges, J.B.; Okamoto, V.N.; Matos, G.F.J.; Caramez, M.P.R.; Arantes, P.R.; Barros, F.; Souza, C.E.; Victorino, J.A.; Kacmarek, R.M.; Barbas, C.S.V.; et al. Reversibility of Lung Collapse and Hypoxemia in Early Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2006, 174, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Plesinger, F.; Jurco, J.; Halamek, J.; Jurak, P. SignalPlant: An Open Signal Processing Software Platform. Physiol. Meas. 2016, 37, N38–N48. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. The ARDS Definition Task Force* Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Gattinoni, L.; Eleonora, C.; Caironi, P. Monitoring of Pulmonary Mechanics in Acute Respiratory Distress Syndrome to Titrate Therapy. Curr. Opin. Crit. Care 2005, 11, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Hata, J.S.; Togashi, K.; Kumar, A.B.; Hodges, L.D.; Kaiser, E.F.; Tessmann, P.B.; Faust, C.A.; Sessler, D.I. The Effect of the Pressure–Volume Curve for Positive End-Expiratory Pressure Titration on Clinical Outcomes in Acute Respiratory Distress Syndrome: A Systematic Review. J. Intensive Care Med. 2014, 29, 348–356. [Google Scholar] [CrossRef]
- Haase, J.; Buchloh, D.C.; Hammermüller, S.; Salz, P.; Mrongowius, J.; Carvalho, N.C.; Beda, A.; Rau, A.; Starke, H.; Spieth, P.M.; et al. Mechanical Ventilation Strategies Targeting Different Magnitudes of Collapse and Tidal Recruitment in Porcine Acid Aspiration-Induced Lung Injury. JCM 2019, 8, 1250. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.B.P.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.V.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Beitler, J.R.; Sarge, T.; Banner-Goodspeed, V.M.; Gong, M.N.; Cook, D.; Novack, V.; Loring, S.H.; Talmor, D. For the EPVent-2 Study Group. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure–Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2019, 321, 846. [Google Scholar] [CrossRef] [Green Version]
- Beda, A.; Carvalho, A.R.; Carvalho, N.C.; Hammermüller, S.; Amato, M.B.P.; Muders, T.; Gittel, C.; Noreikat, K.; Wrigge, H.; Reske, A.W. Mapping Regional Differences of Local Pressure-Volume Curves With Electrical Impedance Tomography. Crit. Care Med. 2017, 45, 679–686. [Google Scholar] [CrossRef]
- Becher, T.; Buchholz, V.; Hassel, D.; Meinel, T.; Schädler, D.; Frerichs, I.; Weiler, N. Individualization of PEEP and Tidal Volume in ARDS Patients with Electrical Impedance Tomography: A Pilot Feasibility Study. Ann. Intensive Care 2021, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Nestler, C.; Simon, P.; Petroff, D.; Hammermüller, S.; Kamrath, D.; Wolf, S.; Dietrich, A.; Camilo, L.M.; Beda, A.; Carvalho, A.R.; et al. Individualized Positive End-Expiratory Pressure in Obese Patients during General Anaesthesia: A Randomized Controlled Clinical Trial Using Electrical Impedance Tomography. Br. J. Anaesth. 2017, 119, 1194–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varelmann, D.; Muders, T.; Zinserling, J.; Guenther, U.; Magnusson, A.; Hedenstierna, G.; Putensen, C.; Wrigge, H. Cardiorespiratory Effects of Spontaneous Breathing in Two Different Models of Experimental Lung Injury: A Randomized Controlled Trial. Crit. Care 2008, 12, R135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal Models of Acute Lung Injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L379–L399. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves-de-Albuquerque, C.F.; Silva, A.R.; Burth, P.; Castro-Faria, M.V.; Castro-Faria-Neto, H.C. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediat. Inflamm. 2015, 2015, 260465. [Google Scholar] [CrossRef] [Green Version]
- Ballard-Croft, C.; Wang, D.; Sumpter, L.R.; Zhou, X.; Zwischenberger, J.B. Large-Animal Models of Acute Respiratory Distress Syndrome. Ann. Thorac. Surg. 2012, 93, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Bodenstein, M.; Markstaller, K. Overview of the Pathology of Three Widely Used Animal Models of Acute Lung Injury. Eur. Surg. Res. 2008, 40, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Regli, A.; Pelosi, P.; Malbrain, M.L.N.G. Ventilation in Patients with Intra-Abdominal Hypertension: What Every Critical Care Physician Needs to Know. Ann. Intensive Care 2019, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattinoni, L.; Pelosi, P.; Suter, P.M.; Pedoto, A.; Vercesi, P.; Lissoni, A. Acute Respiratory Distress Syndrome Caused by Pulmonary and Extrapulmonary Disease: Different Syndromes? Am. J. Respir. Crit. Care Med. 1998, 158, 3–11. [Google Scholar] [CrossRef] [Green Version]
Measure | [Unit] | Baseline | after ALI | PEEP Titration | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PEEP | [cm H2O] | 5 | 9 ± 2 | 30 | 28 | 26 | 24 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 0 |
dPaw | [cm H2O] | 14 ± 3 | 27 ± 7 | 16 ± 5 | 15 ± 3 | 14 ± 3 | 13 ± 4 | 13 ± 4 | 13 ± 4 | 13 ± 5 | 14 ± 4 | 15 ± 5 | 17 ± 6 | 19 ± 7 | 20 ± 8 | 22 ± 7 | 25 ± 9 | 27 ± 7 | 30 ± 10 |
RR | [L/min] | 27 ± 3 | 33 ± 4 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 35 ± 1 | 36 ± 1 | 36 ± 2 | 36 ± 2 | 36 ± 2 | 35 ± 0 | 35 ± 0 | 35 ± 0 |
VT | [ml/kg BW] | 8.1 ± 0.8 | 8.1 ± 0.7 | 8.1 ± 0.8 | 8.0 ± 0.8 | 8.1 ± 0.7 | 7.9 ± 0.8 | 8.1 ± 0.7 | 8.0 ± 0.7 | 7.9 ± 0.9 | 7.9 ± 0.8 | 8.0 ± 0.8 | 8.1 ± 0.8 | 8.0 ± 0.8 | 7.9 ± 0.9 | 8.0 ± 0.8 | 8.1 ± 0.8 | 8.1 ± 0.8 | 8.0 ± 0.7 |
HR | [L/min] | 112 ± 17 | 117 ± 11 | 126 ± 35 | 122 ± 33 | 119 ± 31 | 116 ± 28 | 114 ± 27 | 112 ± 25 | 112 ± 24 | 111 ± 23 | 112 ± 23 | 112 ± 22 | 114 ± 23 | 112 ± 19 | 116 ± 22 | 109 ± 12 | 108 ± 6 | 110 ± 6 |
MAP | [mm Hg] | 93 ± 10 | 107 ± 16 | 97 ± 18 | 98 ± 17 | 99 ± 16 | 100 ± 18 | 102 ± 15 | 103 ± 15 | 104 ± 15 | 104 ± 14 | 103 ± 14 | 104 ± 14 | 104 ± 14 | 106 ± 13 | 111 ± 14 | 111 ± 12 | 111 ± 11 | 109 ± 14 |
CVP | [mm Hg] | 9 ± 3 | 13 ± 3 | 22 ± 3 | 21 ± 4 | 21 ± 3 | 20 ± 3 | 19 ± 3 | 18 ± 3 | 17 ± 3 | 17 ± 3 | 16 ± 3 | 15 ± 3 | 15 ± 3 | 14 ± 3 | 14 ± 3 | 12 ± 6 | 11 ± 6 | 10 ± 7 |
CO | [L/min] | 4.7 ± 0.8 | 5.3 ± 1.3 | 5.0 ± 1.4 | 4.9 ± 1.4 | 4.9 ± 1.5 | 4.9 ± 1.4 | 5.1 ± 1.5 | 5.2 ± 1.6 | 5.3 ± 1.5 | 5.3 ± 1.5 | 5.4 ± 1.6 | 5.5 ± 1.6 | 5.5 ± 1.6 | 5.5 ± 1.5 | 5.7 ± 1.5 | 6.3 ± 1.9 | 6.3 ± 2.3 | 5.2 ± 2.3 |
FiO2 | 0.5 + 0 | 0.5 + 0.1 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | 1.0 + 0 | |
PaO2 | [mm Hg] | 215 ± 37 | 92 ± 18 | 465 ± 128 | 437 ± 170 | 467 ± 143 | 445 ± 150 | 434 ± 149 | 409 ± 151 | 365 ± 152 | 309 ± 144 | 262 ± 141 | 210 ± 137 | 165 ± 127 | 151 ± 103 | 129 ± 82 | 135 ± 71 | 118 ± 56 | 115 ± 54 |
n | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 13 | 11 | 10 | 6 | 5 | 3 |
Slow Inflation Volume [mL/kg BW] | Linear Correlation, R2, p < 0.001, Respectively | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pig Number | |||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
9 vs. 12 | 0.95 | NA | 0.42 | 0.89 | 0.96 | 0.98 | 0.96 | 0.95 | 0.93 | 0.95 | 0.29 | 0.76 | 0.90 | 0.91 | 0.92 |
7.5 vs. 12 | 0.91 | NA | 0.22 | 0.84 | 0.92 | 0.98 | 0.91 | 0.89 | 0.76 | 0.82 | 0.11 | 0.43 | 0.66 | 0.45 | 0.86 |
6 vs. 12 | 0.91 | NA | 0.27 | 0.59 | 0.77 | 0.97 | 0.74 | 0.84 | 0.63 | 0.62 | 0.30 | 0.07 | 0.01 | 0.04 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muders, T.; Hentze, B.; Kreyer, S.; Wodack, K.H.; Leonhardt, S.; Hedenstierna, G.; Wrigge, H.; Putensen, C. Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure. J. Clin. Med. 2021, 10, 2933. https://doi.org/10.3390/jcm10132933
Muders T, Hentze B, Kreyer S, Wodack KH, Leonhardt S, Hedenstierna G, Wrigge H, Putensen C. Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure. Journal of Clinical Medicine. 2021; 10(13):2933. https://doi.org/10.3390/jcm10132933
Chicago/Turabian StyleMuders, Thomas, Benjamin Hentze, Stefan Kreyer, Karin Henriette Wodack, Steffen Leonhardt, Göran Hedenstierna, Hermann Wrigge, and Christian Putensen. 2021. "Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure" Journal of Clinical Medicine 10, no. 13: 2933. https://doi.org/10.3390/jcm10132933
APA StyleMuders, T., Hentze, B., Kreyer, S., Wodack, K. H., Leonhardt, S., Hedenstierna, G., Wrigge, H., & Putensen, C. (2021). Measurement of Electrical Impedance Tomography-Based Regional Ventilation Delay for Individualized Titration of End-Expiratory Pressure. Journal of Clinical Medicine, 10(13), 2933. https://doi.org/10.3390/jcm10132933