Differential Diagnosis of Azoospermia in Men with Infertility
Abstract
:1. Introduction
2. Azoospermia Differential Diagnosis: An Overview
- Potentially correctable forms of azoospermia (e.g., by surgery or medication).
- Irreversible types of azoospermia suitable for sperm retrieval and intracytoplasmic sperm injection (ICSI), using own sperm.
- Types of azoospermia in which donor insemination or adoption are the only possibilities.
- Health-threatening illness associated with azoospermia requiring medical attention.
- Genetic causes of azoospermia that may affect the patient or offspring’s health, mainly if assisted reproductive technology is used.
2.1. Medical History
- Infertility history
- Sexual history
- Childhood and development history
- Personal medical history
- Previous surgery/treatments
- Gonadotoxic exposure
- Family history
- Current health status and lifestyle
2.2. Physical Examination
2.3. Semen Analysis
2.4. Hormonal Evaluation
2.5. Genetic Analysis
2.6. Imaging Studies
3. Differential Diagnosis in Cases of Doubt: Testis Biopsy
4. Clinical Cases: Difficult Differential Diagnosis
4.1. Case 1
4.2. Case 2
4.3. Case 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, N. The importance of semen analysis in the context of azoospermia. Clinics 2013, 6 (Suppl. 1), 35–38. [Google Scholar] [CrossRef]
- Cocuzza, M.; Alvarenga, C.; Pagani, R. The epidemiology and etiology of azoospermia. Clinics 2013, 68 (Suppl. 1), 15–26. [Google Scholar] [CrossRef]
- Tüttelmann, F.; Werny, F.; Cooper, T.G.; Kliesch, S.; Simoni, M.; Nieschlag, E. Clinical experience with azoospermia: Aetiology and chances for spermatozoa detection upon biopsy. Int. J. Androl. 2011, 34, 291–298. [Google Scholar] [CrossRef]
- Olesen, I.A.; Andersson, A.M.; Aksglaede, L.; Skakkebaek, N.E.; Rajpert-de Meyts, E.; Joergensen, N.; Juul, A. Clinical, genetic, biochemical, and testicular biopsy findings among 1213 men evaluated for infertility. Fertil. Steril. 2017, 107, 74–82.e7. [Google Scholar] [CrossRef] [Green Version]
- Esteves, S.C. Clinical management of infertile men with nonobstructive azoospermia. Asian J. Androl. 2015, 17, 459–470. [Google Scholar] [CrossRef]
- Fraietta, R.; Zylberstejn, D.S.; Esteves, S.C. Hypogonadotropic hypogonadism revisited. Clinics 2013, 68 (Suppl. 1), 81–88. [Google Scholar] [CrossRef]
- Miyaoka, R.; Esteves, S.C. Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: Do etiology, retrieval techniques and gamete source play a role? Clinics 2013, 68 (Suppl. 1), 111–119. [Google Scholar] [CrossRef]
- Esteves, S.C.; Lee, W.; Benjamin, D.J.; Seol, B.; Verza, S., Jr.; Agarwal, A. Reproductive potential of men with obstructive azoospermia undergoing percutaneous sperm retrieval and intracytoplasmic sperm injection according to the cause of obstruction. J. Urol. 2013, 189, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Miyaoka, R.; Agarwal, A. Surgical treatment of male infertility in the era of intracytoplasmic sperm injection—New insights. Clinics 2011, 66, 1463–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyaoka, R.; Orosz, J.E.; Achermann, A.P.; Esteves, S.C. Methods of surgical sperm extraction and implications for assisted reproductive technology success. Panminerva Med. 2019, 61, 164–177. [Google Scholar] [CrossRef]
- Esteves, S.C.; Miyaoka, R.; Agarwal, A. An update on the clinical assessment of the infertile male. Clinics 2011, 66, 691–700, Erratum in Clinics 2012, 67, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, A.J.; Esteves, S.C.; Agarwal, A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics 2013, 68 (Suppl. 1), 39–60. [Google Scholar] [CrossRef]
- Thakker, S.; Persily, J.; Najari, B.B. Kallman syndrome and central non-obstructive azoospermia. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101475. [Google Scholar] [CrossRef]
- Patel, A.S.; Leong, J.Y.; Ramos, L.; Ramasamy, R. Testosterone Is a Contraceptive and Should Not Be Used in Men Who Desire Fertility. World J. Men’s Health 2019, 37, 45–54. [Google Scholar] [CrossRef]
- Boeri, L.; Capogrosso, P.; Ventimiglia, E.; Cazzaniga, W.; Pozzi, E.; Belladelli, F.; Pederzoli, F.; Alfano, M.; Abbate, C.; Montanari, E.; et al. Testicular volume in infertile versus fertile white-European men: A case-control investigation in the real-life setting. Asian J. Androl. 2021. [Google Scholar] [CrossRef]
- Schoor, R.A.; Elhanbly, S.; Niederberger, C.S.; Ross, L.S. The role of testicular biopsy in the modern management of male infertility. J Urol. 2002, 167, 197–200. [Google Scholar] [CrossRef]
- Majzoub, A.; Arafa, M.; Khalafalla, K.; AlSaid, S.; Burjaq, H.; Albader, M.; Al-Marzooqi, T.; Esteves, S.C.; Elbardisi, H. Predictive model to estimate the chances of successful sperm retrieval by testicular sperm aspiration in patients with nonobstructive azoospermia. Fertil. Steril. 2021, 115, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.J.; King, P.; Schlegel, P.N. Uniform testicular maturation arrest: A unique subset of men with nonobstructive azoospermia. J. Urol. 2007, 178, 608–612, discussion 612. [Google Scholar] [CrossRef] [PubMed]
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G.; Krausz, C. European Association of Urology Working Group on Male Infertility. European Association of Urology guidelines on Male Infertility: The 2012 update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef]
- Mieusset, R.; Bieth, E.; Daudin, M.; Isus, F.; Delaunay, B.; Bujan, L.; Monteil, L.; Fauquet, I.; Huyghe, E.; Hamdi, S.M. Male partners of infertile couples with congenital unilateral absence of the vas deferens are mainly non-azoospermic. Andrology 2020, 8, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Cocuzza, M.S.; Tiseo, B.C.; Srougi, V.; Wood, G.J.A.; Cardoso, J.P.G.F.; Esteves, S.C.; Srougi, M. Diagnostic accuracy of physical examination compared with color Doppler ultrasound in the determination of varicocele diagnosis and grading: Impact of urologists’ experience. Andrology 2020, 8, 1160–1166. [Google Scholar] [CrossRef]
- Miyaoka, R.; Esteves, S.C. A critical appraisal on the role of varicocele in male infertility. Adv. Urol. 2012, 2012, 597495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lira Neto, F.T.; Roque, M.; Esteves, S.C. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: A systematic review and meta-analysis. Fertil. Steril. 2021. [Google Scholar] [CrossRef]
- Esteves, S.C.; Miyaoka, R.; Roque, M.; Agarwal, A. Outcome of varicocele repair in men with nonobstructive azoospermia: Systematic review and meta-analysis. Asian J. Androl. 2016, 18, 246–253. [Google Scholar] [CrossRef]
- Esteves, S.C. Pro: Should Varicocele Be Repaired in Azoospermic Infertile Men? In Varicocele and Male Infertility, 1st ed.; Esteves, S., Cho, C.L., Majzoub, A., Agarwal, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Dabaja, A.A.; Goldstein, M. When is a varicocele repair indicated: The dilemma of hypogonadism and erectile dysfunction? Asian J. Androl. 2016, 18, 213–216. [Google Scholar] [CrossRef]
- Hamada, A.; Esteves, S.C.; Agarwal, A. Varicocele Classification. In Varicocele and Male Infertility: Current Concepts, Controversies and Consensus; Hamada, A., Esteves, S.C., Agarwal, A., Eds.; SpringerBriefs in Reproductive Biology, Springer International Publishing: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; London, UK, 2016; pp. 37–43. [Google Scholar]
- Esteves, S.C.; Roque, M.; Bedoschi, G.; Haahr, T.; Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 2018, 15, 535–562. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; WHO Press: Geneva, Switzerland, 2010. [Google Scholar]
- Salonia, A.; Bettocchi, C.; Carvalho, J.; Corona, G.; Jones, T.H.; Kadioğlu, A.; Martinez-Salamanca, J.I.; Minhas, S.; Serefoğlu, E.C.; Verze, P. European Association of Urology Guidelines on Sexual and Reproductive Health; European Association of Urology, 2020. Available online: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Sexual-and-Reproductive-Health-2020.pdf (accessed on 15 May 2021).
- Esteves, S.C. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int. Braz. J. Urol. 2014, 40, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 2021, 115, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C. Percutaneous epididymal sperm aspiration as a method for sperm retrieval in men with obstructive azoospermia seeking fertility: Operative and laboratory aspects. Int. Braz. J. Urol. 2015, 41, 817–818. [Google Scholar] [CrossRef] [Green Version]
- Achermann, A.P.P.; Esteves, S.C. Diagnosis and management of infertility due to ejaculatory duct obstruction: Summary evidence. Int. Braz. J. Urol. 2021, 47, 868–881. [Google Scholar] [CrossRef]
- Shiraishi, K.; Ohmi, C.; Shimabukuro, T.; Matsuyama, H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum. Reprod. 2012, 27, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Oduwole, O.O.; Peltoketo, H.; Huhtaniemi, I.T. Role of Follicle-Stimulating Hormone in Spermatogenesis. Front. Endocrinol. 2018, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Fujioka, H.; Fujisawa, M. Clinical and hormonal findings in testicular maturation arrest. BJU Int. 2004, 94, 1314–1316. [Google Scholar] [CrossRef]
- Martin-du-Pan, R.C.; Bischof, P. Increased follicle stimulating hormone in infertile men. Is increased plasma FSH always due to damaged germinal epithelium? Hum. Reprod. 1995, 10, 1940–1945. [Google Scholar] [CrossRef]
- Bergmann, M.; Behre, H.M.; Nieschlag, E. Serum FSH and testicular morphology in male infertility. Clin. Endocrinol. 1994, 40, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.A.; Majzoub, A.; Esteves, S.C. Predictors of surgical sperm retrieval in non-obstructive azoospermia: Summary of current literature. Int. Urol. Nephrol. 2020, 52, 2015–2038. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C. Microdissection testicular sperm extraction (micro-TESE) as a sperm acquisition method for men with nonobstructive azoospermia seeking fertility: Operative and laboratory aspects. Int. Braz. J. Urol. 2013, 39, 440–441. [Google Scholar] [CrossRef] [Green Version]
- Esteves, S.C.; Agarwal, A. Reproductive outcomes, including neonatal data, following sperm injection in men with obstructive and nonobstructive azoospermia: Case series and systematic review. Clinics 2013, 68 (Suppl. 1), 141–150. [Google Scholar] [CrossRef]
- Esteves, S.C.; Ramasamy, R.; Colpi, G.M.; Carvalho, J.F.; Schlegel, P.N. Sperm retrieval rates by micro-TESE versus conventional TESE in men with non-obstructive azoospermia-the assumption of independence in effect sizes might lead to misleading conclusions. Hum. Reprod. Update 2020, 26, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Behre, H.M. Clinical Use of FSH in Male Infertility. Front. Endocrinol. 2019, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, D.A.; Koukkou, E.G. ‘Value of FSH and inhibin-B measurements in the diagnosis of azoospermia’—A clinician’s overview. Int. J. Androl. 2010, 33, e109–e113. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Kohn, T.P.; Kohn, J.R.; Owen, R.C.; Coward, R.M. The Prevalence of Y-chromosome Microdeletions in Oligozoospermic Men: A Systematic Review and Meta-analysis of European and North American Studies. Eur. Urol. 2019, 76, 626–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, V.N.; Kohn, T.P.; Herati, A.S. Genetic mutations contributing to non-obstructive azoospermia. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101479. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Peña, V.; Fletcher, S.A.; Kohn, T.P. Genetic testing in male infertility—Reassessing screening thresholds. Curr. Opin. Urol. 2020, 30, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Minhas, S.; Giwercman, A.; Bettocchi, C.; Dinkelman-Smit, M.; Dohle, G.; Fusco, F.; Kadioglou, A.; Kliesch, S.; Kopa, Z.; et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 733–757. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Hoefsloot, L.; Simoni, M.; Tüttelmann, F. European Academy of Andrology; European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State-of-the-art 2013. Andrology 2014, 2, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Kleiman, S.E.; Yogev, L.; Lehavi, O.; Hauser, R.; Botchan, A.; Paz, G.; Yavetz, H.; Gamzu, R. The likelihood of finding mature sperm cells in men with AZFb or AZFb-c deletions: Six new cases and a review of the literature (1994–2010). Fertil. Steril. 2011, 95, 2005–2012.e4. [Google Scholar] [CrossRef]
- Stouffs, K.; Vloeberghs, V.; Gheldof, A.; Tournaye, H.; Seneca, S. Are AZFb deletions always incompatible with sperm production? Andrology 2017, 5, 691–694. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Tuüttelmann, F.; Gromoll, J.; Nieschlag, E. Clinical consequences of microdeletions of the Y chromosome: The extended Muünster experience. Reprod. Biomed. Online 2008, 16, 289–303. [Google Scholar] [CrossRef]
- Bieniek, J.M.; Lapin, C.D.; Jarvi, K.A. Genetics of CFTR and male infertility. Transl. Androl. Urol. 2021, 10, 1391–1400. [Google Scholar] [CrossRef]
- Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. Int. J. Mol. Sci. 2021, 22, 3264. [Google Scholar] [CrossRef] [PubMed]
- Dequeker, E.; Stuhrmann, M.; Morris, M.A.; Casals, T.; Castellani, C.; Claustres, M.; Cuppens, H.; des Georges, M.; Ferec, C.; Macek, M.; et al. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders--updated European recommendations. Eur. J. Hum. Genet. 2009, 17, 51–65. [Google Scholar] [CrossRef]
- Fakhro, K.A.; Elbardisi, H.; Arafa, M.; Robay, A.; Rodriguez-Flores, J.L.; Al-Shakaki, A.; Syed, N.; Mezey, J.G.; Abi Khalil, C.; Malek, J.A.; et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet. Med. 2018, 20, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Frizza, F.; Balercia, G.; Barbonetti, A.; Behre, H.M.; Calogero, A.E.; Cremers, J.F.; Francavilla, F.; Isidori, A.M.; Kliesch, S.; et al. The European Academy of Andrology (EAA) ultrasound study on healthy, fertile men: Scrotal ultrasound reference ranges and associations with clinical, seminal, and biochemical characteristics. Andrology 2021, 9, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Update 2015, 21, 56–83. [Google Scholar] [CrossRef] [Green Version]
- Netto, N.R., Jr.; Esteves, S.C.; Neves, P.A. Transurethral resection of partially obstructed ejaculatory ducts: Seminal parameters and pregnancy outcomes according to the etiology of obstruction. J. Urol. 1998, 159, 2048–2053. [Google Scholar] [CrossRef]
- Kim, B.; Kawashima, A.; Ryu, J.A.; Takahashi, N.; Hartman, R.P.; King, B.F., Jr. Imaging of the seminal vesicle and vas deferens. Radiographics 2009, 29, 1105–1121. [Google Scholar] [CrossRef]
- Danaci, M.; Akpolat, T.; Baştemir, M.; Sarikaya, S.; Akan, H.; Selçuk, M.B.; Cengiz, K. The prevalence of seminal vesicle cysts in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 1998, 13, 2825–2828. [Google Scholar] [CrossRef] [Green Version]
- Kolettis, P.N.; Sandlow, J.I. Clinical and genetic features of patients with congenital unilateral absence of the vas deferens. Urology 2002, 60, 1073–1076. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, Y.; Cui, W.; Zhang, Z.; Gao, B.; Song, W.; Xin, Z. Causes of suspected epididymal obstruction in Chinese men. Urology 2012, 80, 1258–1261. [Google Scholar] [CrossRef] [PubMed]
- Font, M.D.; Pastuszak, A.W.; Case, J.R.; Lipshultz, L.I. An infertile male with dilated seminal vesicles due to functional obstruction. Asian J. Androl. 2017, 19, 256–257. [Google Scholar]
- Caroppo, E.; Colpi, E.M.; D’Amato, G.; Gazzano, G.; Colpi, G.M. Prediction model for testis histology in men with non-obstructive azoospermia: Evidence for a limited predictive role of serum follicle-stimulating hormone. J. Assist. Reprod. Genet. 2019, 36, 2575–2582. [Google Scholar] [CrossRef]
- Esteves, S.C.; Prudencio, C.; Seol, B.; Verza, S.; Knoedler, C.; Agarwal, A. Comparison of sperm retrieval and reproductive outcome in azoospermic men with testicular failure and obstructive azoospermia treated for infertility. Asian J. Androl. 2014, 16, 602–606. [Google Scholar] [CrossRef]
- Esteves, S.C.; Agarwal, A. Re: Sperm retrieval rates and intracytoplasmic sperm injection outcomes for men with non-obstructive azoospermia and the health of resulting offspring. Asian J. Androl. 2014, 16, 642. [Google Scholar] [CrossRef]
- Barbonetti, A.; Martorella, A.; Minaldi, E.; D’Andrea, S.; Bardhi, D.; Castellini, C.; Francavilla, F.; Francavilla, S. Testicular Cancer in Infertile Men With and Without Testicular Microlithiasis: A Systematic Review and Meta-Analysis of Case-Control Studies. Front. Endocrinol. 2019, 10, 164. [Google Scholar] [CrossRef]
- van Casteren, N.J.; Looijenga, L.H.; Dohle, G.R. Testicular microlithiasis and carcinoma in situ overview and proposed clinical guideline. Int. J. Androl. 2009, 32, 279–287. [Google Scholar] [CrossRef]
- Montironi, R. Intratubular germ cell neoplasia of the testis: Testicular intraepithelial neoplasia. Eur. Urol. 2002, 41, 651–654. [Google Scholar] [CrossRef]
- Esteves, S.C.; Varghese, A.C. Laboratory handling of epididymal and testicular spermatozoa: What can be done to improve sperm injections outcome. J. Hum. Reprod. Sci. 2012, 5, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C. Novel concepts in male factor infertility: Clinical and laboratory perspectives. J. Assist. Reprod. Genet. 2016, 33, 1319–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yovich, J.L.; Esteves, S.C. Storage of sperm samples from males with azoospermia. Reprod. Biomed. Online 2018, 37, 509–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, S.C.; Lombardo, F.; Garrido, N.; Alvarez, J.; Zini, A.; Colpi, G.M.; Kirkman-Brown, J.; Lewis, S.E.M.; Björndahl, L.; Majzoub, A.; et al. SARS-CoV-2 pandemic and repercussions for male infertility patients: A proposal for the individualized provision of andrological services. Andrology 2021, 9, 10–18. [Google Scholar] [CrossRef]
- Salzbrunn, A.; Benson, D.M.; Holstein, A.F.; Schulze, W. A new concept for the extraction of testicular spermatozoa as a tool for assisted fertilization (ICSI). Hum. Reprod. 1996, 11, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, J.A.; Kohn, T.P.; Mazur, D.J.; Lipshultz, L.I.; Coward, R.M. Sperm retrieval and intracytoplasmic sperm injection outcomes in men with cystic fibrosis disease versus congenital bilateral absence of the vas deferens. Asian J. Androl. 2021, 23, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Hayon, S.; Moustafa, S.; Boylan, C.; Kohn, T.P.; Peavey, M.; Coward, R.M. Surgically Extracted Epididymal Sperm from Men with Obstructive Azoospermia Results in Similar In Vitro Fertilization/Intracytoplasmic Sperm Injection Outcomes Compared with Normal Ejaculated Sperm. J. Urol. 2021, 205, 561–567. [Google Scholar] [CrossRef]
- Sussman, E.M.; Chudnovsky, A.; Niederberger, C.S. Hormonal evaluation of the infertile male: Has it evolved? Urol. Clin. N. Am. 2008, 35, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Bobjer, J.; Naumovska, M.; Giwercman, Y.L.; Giwercman, A. High prevalence of androgen deficiency and abnormal lipid profile in infertile men with non-obstructive azoospermia. Int. J. Androl. 2012, 35, 688–694. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Weinbauer, G.F. Endocrine control of spermatogenesis: Role of FSH and LH/testosterone. Spermatogenesis 2015, 4, e996025. [Google Scholar] [CrossRef]
- Shiraishi, K.; Matsuyama, H. Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders. Endocr. J. 2017, 64, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Laursen, R.J.; Elbaek, H.O.; Povlsen, B.B.; Lykkegaard, J.; Jensen, K.B.S.; Esteves, S.C.; Humaidan, P. Hormonal stimulation of spermatogenesis: A new way to treat the infertile male with non-obstructive azoospermia? Int. Urol. Nephrol. 2019, 51, 453–456. [Google Scholar] [CrossRef]
- Caroppo, E.; Colpi, G.M. Hormonal Treatment of Men with Nonobstructive Azoospermia: What Does the Evidence Suggest? J. Clin. Med. 2021, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Reifsnyder, J.E.; Ramasamy, R.; Husseini, J.; Schlegel, P.N. Role of optimizing testosterone before microdissection testicular sperm extraction in men with nonobstructive azoospermia. J. Urol. 2012, 188, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Ricci, J.A.; Palermo, G.D.; Gosden, L.V.; Rosenwaks, Z.; Schlegel, P.N. Successful fertility treatment for Klinefelter’s syndrome. J. Urol. 2009, 182, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.; Ozgok, Y.; Ross, L.; Rao, P.; Niederberger, C. Optimization of spermatogenesis-regulating hormones in patients with non-obstructive azoospermia and its impact on sperm retrieval: A multicentre study. BJU Int. 2013, 111, E110–E114. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, E.; Shiraishi, K.; Matsuyama, H. The effect of human chorionic gonadotropin-based hormonal therapy on intratesticular testosterone levels and spermatogonial DNA synthesis in men with non-obstructive azoospermia. Andrology 2013, 1, 929–935. [Google Scholar] [CrossRef]
- Foresta, C.; Bettella, A.; Spolaore, D.; Merico, M.; Rossato, M.; Ferlin, A. Suppression of the high endogenous levels of plasma FSH in infertile men are associated with improved Sertoli cell function as reflected by elevated levels of plasma inhibin B. Hum. Reprod. 2004, 19, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Themmen, A.P.; Blok, L.J.; Post, M.; Baarends, W.M.; Hoogerbrugge, J.W.; Parmentier, M.; Vassart, G.; Grootegoed, J.A. Follitropin receptor down-regulation involves a cAMP-dependent post-transcriptional decrease of receptor mRNA expression. Mol. Cell Endocrinol. 1991, 78, R7–R13. [Google Scholar] [CrossRef] [Green Version]
- Gnanaprakasam, M.S.; Chen, C.J.; Sutherland, J.G.; Bhalla, V.K. Receptor depletion and replenishment processes: In vivo regulation of gonadotropin receptors by luteinizing hormone, follicle stimulating hormone and ethanol in rat testis. Biol. Reprod. 1979, 20, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Namiki, M.; Nakamura, M.; Okuyama, A.; Sonoda, T.; Itatani, H.; Sugao, H.; Sakurai, T.; Nishimune, Y.; Matsumoto, K. Reduction of human and rat testicular follicle stimulating hormone receptors by human menopausal gonadotrophin in vivo and in vitro. Clin. Endocrinol. 1987, 26, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Namiki, M.; Okuyama, A.; Sonoda, T.; Miyake, A.; Aono, T.; Matsumoto, K. Down-regulation of testicular follicle-stimulating hormone receptors by human menopausal gonadotropin in infertile men. Fertil. Steril. 1985, 44, 710–712. [Google Scholar] [CrossRef]
- Zhang, S.; Li, W.; Zhu, C.; Wang, X.; Li, Z.; Zhang, J.; Zhao, J.; Hu, J.; Li, T.; Zhang, Y. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. J. Biol. Chem. 2012, 287, 40471–40483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Elements | Components |
---|---|
(1) Infertility History |
|
(2) Sexual History |
|
(3) Childhood and Development |
|
(4) Personal History |
|
(5) Previous Surgery/Treatment |
|
(6) Gonadotoxin Exposure |
|
(7) Family History |
|
(8) Current Health Status/Lifestyle |
|
Clinical Management Step | Intervention | Action | Interpretation |
---|---|---|---|
Differential diagnosis | Medical history, physical examination, endocrine profile (FSH and testosterone levels at a minimum; LH, prolactin, thyroid hormones, 17-hydroxiprogesterone and estradiol are added as needed), and examination of pelleted semen on multiple occasions. Testicular biopsy could be considered in selected cases in which the differential diagnosis could not be determined. | Confirm that azoospermia is due to spermatogenic failure, and identify men with severely impaired spermatogenesis having few sperm in the ejaculate (cryptozoospermia). | A differential diagnosis between obstructive azoospermia, hypogonadotropic hypogonadism, and spermatogenic failure should be established as management varies according to the type of azoospermia. |
Determination of proper candidates for sperm retrieval | Y chromosome microdeletion screening using multiplex PCR blood test. The basic set of PCR primers recommended by the EAA/EMQN for the diagnosis of Yq microdeletion includes: sY14 (SRY), ZFX/ZFY, sY84 and sY86 (AZFa), sY127 and sY134 (AZFb), sY254, and sY255 (AZFc). | Deselect men with microdeletions involving subregions AZFa, AZFb, and AZFb+c. | Approximately 10% of men with NOA-STF harbor microdeletions within the AZF region. SR success in men with YCMD involving the subregions AZFa, AZFb, and AZFb+c are virtually nil, and such patients should be counseled accordingly. SR success in men with AZFc deletions range from 50% to 70%. Genetic counseling should be offered to men with AZFc deletions because testicular spermatozoa used for ICSI will invariably transmit the deletion from father to son. |
Identification of patients who could benefit from medical therapy or varicocele repair before sperm retrieval | Serum levels of FSH, total testosterone and estradiol. | Consider medical treatment with gonadotropins, aromatase inhibitors, or selective estrogen receptor modulators for NOA-STF patients with hypogonadism (TT < 300 ng/dL) or T/E ratio < 10. FSH therapy might be needed if FSH drop to below 1.5 mIU/mL during hCG treatment. | Patients should be informed that the evidence of a positive effect of medical treatment remains equivocal. |
Physical examination to identify the presence of clinical varicocele and analysis of testicular biopsy results (if available) | Consider microsurgical repair of clinical varicocele. | Microsurgical varicocele repair is associated with better outcomes concerning recurrence and postoperative complications. Patients with testicular histopathology indicating Sertoli cell-only are unlikely to benefit from varicocele repair. Evidence of a positive effect of varicocele repair is limited, and patients should be counseled accordingly. | |
Selection of the most effective surgical method for testicular sperm acquisition | Analysis of testicular biopsy results (if available) and of whether sperm have been obtained in previous treatment and by which method. | Microdissection testicular sperm extraction. Conventional testicular sperm extraction may be considered in cases of previous success with TESE, particularly when testicular histopathology indicates hypospermatogenesis. | Micro-TESE in NOA-STF is associated with higher SR success than conventional TESE. The lower tissue removal facilitates sperm processing and lessens testicular damage. |
State-of-the-art laboratory techniques to handle surgically extracted testicular spermatozoa | Extraction of a minimum volume of tissue by micro-TESE facilitates tissue processing and search for sperm. Testicular tissue preparation techniques include mechanical and enzymatic mincing and erythrocyte lysis. | Sterile techniques, stable pH and temperature, and high laboratory air quality conditions are helpful to optimize micromanipulation efficiency and safety assurance. Excess sperm not used for ICSI should be cryopreserved for future attempts. | Spermatozoa collected from NOA-STF men are often compromised in quality and are more fragile than ejaculated counterparts. The reproductive potential of such gametes used for ICSI is differentially affected by NOA-STF. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, D.L.; Viana, M.C.; Esteves, S.C. Differential Diagnosis of Azoospermia in Men with Infertility. J. Clin. Med. 2021, 10, 3144. https://doi.org/10.3390/jcm10143144
Andrade DL, Viana MC, Esteves SC. Differential Diagnosis of Azoospermia in Men with Infertility. Journal of Clinical Medicine. 2021; 10(14):3144. https://doi.org/10.3390/jcm10143144
Chicago/Turabian StyleAndrade, Danilo L., Marina C. Viana, and Sandro C. Esteves. 2021. "Differential Diagnosis of Azoospermia in Men with Infertility" Journal of Clinical Medicine 10, no. 14: 3144. https://doi.org/10.3390/jcm10143144
APA StyleAndrade, D. L., Viana, M. C., & Esteves, S. C. (2021). Differential Diagnosis of Azoospermia in Men with Infertility. Journal of Clinical Medicine, 10(14), 3144. https://doi.org/10.3390/jcm10143144