The 1-Year Safety and Efficacy Outcomes of Magmaris, Novel Magnesium Bioresorbable Vascular Scaffolds in Diabetes Mellitus Patients with Acute Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Device and Procedures
2.3. Endpoints and Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, Z.; Song, Y.; Tang, X.; Xu, J.; Jiang, P.; Jiang, L.; Chen, J.; Gao, L.; Song, L.; et al. Impact of diabetes mellitus on percutaneous coronary intervention in Chinese patients: A large single-center data. Angiology 2018, 69, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, G.; Finn, A.V.; Virmani, R. Vascular pathology of drug-eluting stents. Herz Kardiovaskuläre Erkrankungen. 2007, 32, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Joner, M.; Finn, A.V.; Farb, A.; Mont, E.K.; Kolodgie, F.D.; Ladich, E.; Kutys, R.; Skorija, K.; Gold, H.K.; Virmani, R. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 2006, 48, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serruys, P.W.; Chevalier, B.; Sotomi, Y.; Cequier, A.; Carrié, D.; Piek, J.J.; Van Boven, A.J.; Dominici, M.; Dudek, D.; McClean, D.; et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016, 388, 2479–2491. [Google Scholar] [CrossRef]
- Wlodarczak, A.; Garcia, L.A.; Karjalainen, P.P.; Komócsi, A.; Pisano, F.; Richter, S.; Lanocha, M.; Rumoroso, J.R.; Leung, K.F. Magnesium 2000 postmarket evaluation: Guideline adherence and intraprocedural performance of a sirolimus-eluting resorbable magnesium scaffold. Cardiovasc. Revasc. Med. 2019, 20, 1140–1145. [Google Scholar] [CrossRef]
- Wlodarczak, A.; Lanocha, M.; Jastrzebski, A.; Pecherzewski, M.; Szudrowicz, M.; Jastrzebski, W.; Nawrot, J.; Lesiak, M. Early outcome of magnesium bioresorbable scaffold implantation in acute coronary syndrome—The initial report from the Magmaris-ACS registry. Catheter. Cardiovasc. Interv. 2019, 93, E287–E292. [Google Scholar] [CrossRef]
- Capranzano, P.; Capodanno, D.; Brugaletta, S.; Latib, A.; Mehilli, J.; Nef, H.; Gori, T.; Lesiak, M.; Geraci, S.; Pyxaras, S.; et al. Clinical outcomes of patients with diabetes mellitus treated with Absorb bioresorbable vascular scaffolds: A subanalysis of the E uropean M ulticentre GHOST-EU R egistry. Catheter. Cardiovasc. Interv. 2018, 91, 444–453. [Google Scholar] [CrossRef]
- Fajadet, J.; Haude, M.; Joner, M.; Koolen, J.; Lee, M.; Tölg, R.; Waksman, R. Magmaris preliminary recommendation upon commercial launch: A consensus from the expert panel on 14 April 2016. EuroIntervention 2016, 12, 828–833. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Valgimigli, M.; Bueno, H.; Byrne, R.A.; Collet, J.P.; Costa, F.; Jeppsson, A.; Jüni, P.; Kastrati, A.; Kolh, P.; Mauri, L.; et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur. J. Cardiothorac. Surg. 2018, 53, 34–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and Environment for Statistical Computing: R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 17 May 2021).
- Alabas, O.A.; Hall, M.; Dondo, T.B.; Rutherford, M.J.; Timmis, A.D.; Batin, P.D.; Deanfield, J.E.; Hemingway, H.; Gale, C.P. Long-term excess mortality associated with diabetes following acute myocardial infarction: A population-based cohort study. J. Epidemiol. Community Health 2017, 71, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Wang, X.; Dong, X.; Fan, Y.; Shao, W.; Lu, X.; Xiao, P. Efficacy and safety of drug-eluting stenting compared with bypass grafting in diabetic patients with multivessel and/or left main coronary artery disease. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Zhai, C.; Cong, H.; Hou, K.; Hu, Y.; Zhang, J.; Zhang, Y. Clinical outcome comparison of percutaneous coronary intervention and bypass surgery in diabetic patients with coronary artery disease: A meta-analysis of randomized controlled trials and observational studies. Diabetol. Metab. Syndr. 2019, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, X.; Zhang, C.; Feng, J.; Ouyang, S.; Niu, P.; Dai, Z. In-hospital, short-term and long-term adverse clinical outcomes observed in patients with type 2 diabetes mellitus vs non-diabetes mellitus following percutaneous coronary intervention: A meta-analysis including 139,774 patients. Medicine 2019, 98, e14669. [Google Scholar] [CrossRef]
- Ellis, S.G.; Kereiakes, D.J.; Metzger, D.C.; Caputo, R.P.; Rizik, D.G.; Teirstein, P.S.; Litt, M.R.; Kini, A.; Kabour, A.; Marx, S.O.; et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 2015, 373, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Hommels, T.M.; Hermanides, R.S.; Rasoul, S.; Berta, B.; IJsselmuiden, A.J.; Jessurun, G.A.; Benit, E.; Pereira, B.; De Luca, G.; Kedhi, E. The 1-year safety and efficacy outcomes of Absorb bioresorbable vascular scaffolds for coronary artery disease treatment in diabetes mellitus patients: The ABSORB DM Benelux study. Neth. Heart J. 2019, 27, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Tijssen, R.Y.; van der Schaaf, R.J.; Kraak, R.P.; Vink, M.A.; Hofma, S.H.; Arkenbout, E.K.; Weevers, A.P.; Kerkmeijer, L.S.; Onuma, Y.; Serruys, P.W.; et al. Clinical outcomes at 2 years of the Absorb bioresorbable vascular scaffold versus the Xience drug-eluting metallic stent in patients presenting with acute coronary syndrome versus stable coronary disease—AIDA trial substudy. Catheter. Cardiovasc. Interv. 2020, 95, 89–96. [Google Scholar] [CrossRef]
- Kereiakes, D.J.; Ellis, S.G.; Metzger, C.; Caputo, R.P.; Rizik, D.G.; Teirstein, P.S.; Litt, M.R.; Kini, A.; Kabour, A.; Marx, S.O.; et al. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: The ABSORB III trial. J. Am. Coll. Cardiol. 2017, 70, 2852–2862. [Google Scholar] [CrossRef]
- Puricel, S.; Cuculi, F.; Weissner, M.; Schmermund, A.; Jamshidi, P.; Nyffenegger, T.; Binder, H.; Eggebrecht, H.; Münzel, T.; Cook, S.; et al. Bioresorbable coronary scaffold thrombosis: Multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J. Am. Coll. Cardiol. 2016, 67, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Abizaid, A.; Onuma, Y.; Seth, A.; Gao, R.; Ormiston, J.; Kimura, T.; Chevalier, B.; Ben-Yehuda, O.; Dressler, O.; et al. Effect of technique on outcomes following bioresorbable vascular scaffold implantation: Analysis from the ABSORB trials. J. Am. Coll. Cardiol. 2017, 70, 2863–2874. [Google Scholar] [CrossRef] [PubMed]
- Hommels, T.M.; Hermanides, R.S.; Rasoul, S.; Berta, B.; IJsselmuiden, A.J.; Jessurun, G.A.; Benit, E.; Pereira, B.; De Luca, G.; Kedhi, E. Everolimus-eluting bioresorbable scaffolds for treatment of coronary artery disease in patients with diabetes mellitus: The midterm follow-up of the prospective ABSORB DM Benelux study. Cardiovasc. Diabetol. 2019, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Anadol, R.; Schnitzler, K.; Lorenz, L.; Weissner, M.; Ullrich, H.; Polimeni, A.; Münzel, T.; Gori, T. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovasc. Disord. 2018, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Kimura, T.; Gao, R.; Kereiakes, D.J.; Ellis, S.G.; Onuma, Y.; Chevalier, B.; Simonton, C.; Dressler, O.; Crowley, A.; et al. Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up: A systematic meta-analysis and individual patient data pooled study. JAMA Cardiol. 2019, 4, 1261–1269. [Google Scholar] [CrossRef]
- Kereiakes, D.J.; Ellis, S.G.; Kimura, T.; Abizaid, A.; Zhao, W.; Veldhof, S.; Vu, M.T.; Zhang, Z.; Onuma, Y.; Chevalier, B.; et al. Efficacy and safety of the absorb everolimus-eluting bioresorbable scaffold for treatment of patients with diabetes mellitus: Results of the absorb diabetic substudy. JACC Cardiovasc. Interv. 2017, 10, 424–429. [Google Scholar] [CrossRef]
- Waksman, R.; Lipinski, M.J.; Acampado, E.; Cheng, Q.; Adams, L.; Torii, S.; Gai, J.; Torguson, R.; Hellinga, D.M.; Westman, P.C.; et al. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: Magmaris versus absorb in a porcine arteriovenous shunt model. Circ. Cardiovasc. Interv. 2017, 10, e004762. [Google Scholar] [CrossRef]
- Kim, M.S.; Dean, L.S. In-stent restenosis. Cardiovasc. Ther. 2011, 29, 190–198. [Google Scholar] [CrossRef]
- Januszek, R.A.; Dziewierz, A.; Siudak, Z.; Rakowski, T.; Legutko, J.; Rzeszutko, Ł.; Kleczyński, P.; Dudek, D.; Bartuś, S. Diabetes and periprocedural outcomes in patients treated with rotablation during percutaneous coronary interventions. Cardiol. J. 2020, 27, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.C.; Chang, C.C.; Chevalier, B.; West, N.E.; Anadol, R.; Barbato, E.; Tarantini, G.; Kocka, V.; Achenbach, S.; Dudek, D.; et al. Bioresorbable Vascular Scaffold Versus Metallic Drug-Eluting Stent in Patients at High Risk of Restenosis: The COMPARE-ABSORB Randomized Clinical Trial. Randomized Control. Trial 2020, 16, 645–653. [Google Scholar] [CrossRef]
Diabetes Patients N = 72 | Non-Diabetes Patients N = 121 | p-Value | |
---|---|---|---|
Age | 65.3 ± 7.9 | 63.2 ± 9.5 | p = 0.127 |
Gander—male (ratio) | 58 (80.5%) | 92 (76.0%) | p = 0.592 |
Unstable angina | 14 (19.5%) | 16 (13.2%) | p = 0.305 |
NSTEMI | 58 (80.5%) | 105 (86.7%) | p = 0.305 |
Oral anti-diabetic Treatment | 58 (80.5%) | NA | - |
Insulin | 14 (19.5%) | NA | - |
Hypertension | 69 (95.8%) | 102 (84.2%) | p = 0.018 |
Hyperlipidemia | 58 (80.5%) | 94 (77.0%) | p = 0.718 |
Atrial Fibrillation | 2 (2.7%) | 7 (5.7%) | p = 0.488 |
Previously PCI | 36 (50%) | 42 (34.7%) | p = 0.048 |
Primary Diagnosis MI | 28 (38.8%) | 31 (25.6%) | p = 0.075 |
Current smoker | 22 (30.5%) | 35 (28.9%) | p = 0.871 |
LV-EF | 57.7% ± 10.7 | 59.4% ± 16.0 | p = 0.050 |
Total Cholesterol (mmol/L) | 4.3 ± 1.3 | 4.8 ± 1.3 | p = 0.008 |
LDL (mmol/L) | 2.1 ± 0.9 | 2.8 ± 1.2 | p < 0.001 |
Triglycerides (mmol/L) | 1.9 ± 1.1 | 1.8 ± 2.1 | p = 0.213 |
Creatine (µmol/L) | 82.3 ± 21.5 | 85.1 ± 22.5 | p = 0.431 |
Days of hospitalization | 2.9 ± 2.0 | 2.7 ± 1.6 | p = 0.866 |
Diabetes Patients N = 72 | Non-Diabetes Patients N = 121 | p-Value | |
---|---|---|---|
Treated vessel: | |||
LAD | 31 (43%) | 49 (40.5%) | p > 0.999 |
LCx | 18 (25%) | 31 (25.6%) | p > 0.999 |
RCA | 22 (30.6%) | 39 (32.2%) | p > 0.999 |
IM | 1 (1.4%) | 2 (1.7%) | p > 0.999 |
Predilatation balloon: | |||
Mean diameter (mm) | 3.20 ± 0.24 | 3.24 ± 0.27 | p = 0.273 |
Mean pressure (atm) | 17.75 ± 0.75 | 17.57 ± 0.91 | p = 0.209 |
Average scaffold number | 1.03 ± 0.17 | 1.07 ± 0.26 | p = 0.179 |
Scaffold diameter: | |||
3.0 (mm) | 35 (47.2%) | 53 (40.7%) | p = 0.552 |
3.5 (mm) | 39 (52.7%) | 77 (59.3%) | p = 0.225 |
Average scaffold length (mm) | 21.11 ± 3.27 | 20.62 ± 3.26 | p = 0.308 |
Post-dilatation balloon: | |||
-Mean diameter (mm) | 3.51 ± 0.31 | 3.55 ± 0.29 | p = 0.495 |
-Mean pressure (atm) | 17.69 ± 0.80 | 17.72 ± 0.83 | p = 0.924 |
-0.0 mm greater than scaffold | 12 (16.6%) | 19 (15.7%) | p = 0.843 |
-0.25 mm greater than scaffold | 47 (65.2%) | 83 (68.6%) | p = 0.638 |
-0.5 mm greater than scaffold | 13 (18.2%) | 19 (15.7%) | p = 0.692 |
Syntax Score | 7.7 ± 4.2 | 7.5 ± 4.5 | - |
AHA/ACC classification type: | |||
A/B1 | 56 (77.8%) | 98 (80.9%) | p = 0.871 |
B2/C | 16 (22.2%) | 23 (19.1%) | p = 0.866 |
Contrast Volume (mL) | 153.22 ± 76.76 | 150.21 ± 57.64 | p = 0.337 |
Dose of radiation (mGy) | 1120.18 ± 843.89 | 1014.70 ± 591.75 | p = 0.934 |
OCT-guided PCI | 13 (18%) | 28 (23.1%) | p = 0.469 |
Number of edge dissection: | 3 (4.1%) | 4 (3.3%) | p = 0.713 |
-treated with Magmaris | 0 (0%) | 3 (2.4%) | p = 0.295 |
-treated with DES | 3 (4.1%) | 1 (0.8%) | p = 0.147 |
Side branch occlusion | 0 (0%) | 2 (1.6%) | p = 0.530 |
Antiplatelet Drug: | |||
ASA | 72 (100%) | 121 (100%) | - |
Clopidogrel | 26 (36.1%) | 50 (41.3%) | p = 0.543 |
Ticagrelor | 46 (63.9%) | 71 (58.7%) | p = 0.543 |
Diabetes Patients N = 72 | Non-Diabetes Patients N = 121 | p-Value | |
---|---|---|---|
30-Day FU Primary outcome: cardiac death, myocardial infarction, stent thrombosis | 0 (0%) | 0 (0%) | - |
30-Day FU Principal secondary outcome: Target lesion failure (cardiac death, target vessel myocardial infract, target lesion-revascularization) | 0 (0%) | 0 (0%) | - |
30-Day FU Death: | |||
-Any death | 0 (0%) | 0 (0%) | - |
-Cardiac death | 0 (0%) | 0 (0%) | - |
30-Day FU Myocardial infraction: | |||
-Any MI | 0 (0%) | 0 (0%) | - |
-Target vessel myocardial infract | 0 (0%) | 0 (0%) | - |
30-Day FU Scaffold thrombosis | 0 (0%) | 0 (0%) | - |
Scaffold restenosis | 0 (0%) | 0 (0%) | - |
30-Day FU Stroke | 0 (0%) | 0 (0%) | - |
TIA | 0 (0%) | 0 (0%) | - |
30-Day FU Revascularization: | |||
-Target lesion revascularization | 0 (0%) | 0 (0%) | - |
-Target vessel revascularization | 0 (0%) | 0 (0%) | - |
-Any revascularization | 0 (0%) | 0 (0%) | - |
1-Year FU Primary outcome: cardiac death, myocardial infarction, stent thrombosis | 2 (2.7%) | 1 (0.8%) | p = 0.557 |
1-Year FU Principal secondary outcome: Target lesion failure (cardiac death, target vessel myocardial infract, target lesion-revascularization) | 3 (4.1%) | 0 (0%) | p = 0.051 |
1-Year FU Death | |||
-Any death | 2 (2.7%) | 0(0%) | p = 0.138 |
-Cardiac death | 0 (0%) | 0(0%) | - |
1-Year FU Myocardial infraction: | |||
-Any MI | 2 (2.7%) | 1 (0.8%) | p = 0.557 |
-Target vessel myocardial infract | 2 (1.3%) | 0 (0%) | p = 0.138 |
1-Year FU Scaffold thrombosis | 0 (0%) | 0 (0%) | - |
Scaffold restenosis | 2 (2.7%) | 0 (0%) | p = 0.138 |
1-Year FU Stroke | 2 (2.7%) | 0 (0%) | p = 0.138 |
TIA | 0 (0%) | 1 (0.8%) | p > 0.999 |
1-Year FU Revascularization: | |||
-Target lesion revascularization | 2 (2.7%) | 0 (0%) | p = 0.138 |
-Target vessel revascularization | 3 (2.7%) | 0 (0%) | p = 0.051 |
-Any revascularization | 10 (13.8%) | 8 (6.6%) | p = 0.124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczak, A.; Łanocha, M.; Szudrowicz, M.; Barycki, M.; Gosiewska, A.; Kulczycki, J.J.; Lesiak, M.; Doroszko, A.; Rola, P. The 1-Year Safety and Efficacy Outcomes of Magmaris, Novel Magnesium Bioresorbable Vascular Scaffolds in Diabetes Mellitus Patients with Acute Coronary Syndrome. J. Clin. Med. 2021, 10, 3166. https://doi.org/10.3390/jcm10143166
Włodarczak A, Łanocha M, Szudrowicz M, Barycki M, Gosiewska A, Kulczycki JJ, Lesiak M, Doroszko A, Rola P. The 1-Year Safety and Efficacy Outcomes of Magmaris, Novel Magnesium Bioresorbable Vascular Scaffolds in Diabetes Mellitus Patients with Acute Coronary Syndrome. Journal of Clinical Medicine. 2021; 10(14):3166. https://doi.org/10.3390/jcm10143166
Chicago/Turabian StyleWłodarczak, Adrian, Magdalena Łanocha, Marek Szudrowicz, Mateusz Barycki, Alicja Gosiewska, Jan Jakub Kulczycki, Maciej Lesiak, Adrian Doroszko, and Piotr Rola. 2021. "The 1-Year Safety and Efficacy Outcomes of Magmaris, Novel Magnesium Bioresorbable Vascular Scaffolds in Diabetes Mellitus Patients with Acute Coronary Syndrome" Journal of Clinical Medicine 10, no. 14: 3166. https://doi.org/10.3390/jcm10143166
APA StyleWłodarczak, A., Łanocha, M., Szudrowicz, M., Barycki, M., Gosiewska, A., Kulczycki, J. J., Lesiak, M., Doroszko, A., & Rola, P. (2021). The 1-Year Safety and Efficacy Outcomes of Magmaris, Novel Magnesium Bioresorbable Vascular Scaffolds in Diabetes Mellitus Patients with Acute Coronary Syndrome. Journal of Clinical Medicine, 10(14), 3166. https://doi.org/10.3390/jcm10143166