Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. AKI and eGFR Variation during Hospitalization
3.2. eGFR Decay 1 Year after Radical Nephrectomy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, W.H.; Shin, K.W.; Ji, S.-H.; Jang, Y.-E.; Lee, J.-H.; Jeong, C.W.; Kwak, C.; Lim, Y.-J. Robust Association between Acute Kidney Injury after Radical Nephrectomy and Long-term Renal Function. J. Clin. Med. 2020, 9, 619. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.; Lee, J.E.; Kwon, G.Y.; Huh, W.; Lee, H.M.; Kim, Y.G.; Kim, D.J.; Oh, H.Y.; Choi, H.Y. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol. Dial. Transplant. 2011, 26, 3496–3501. [Google Scholar] [CrossRef] [Green Version]
- Bravi, C.A.; Vertosick, E.; Benfante, N.; Tin, A.; Sjoberg, D.; Hakimi, A.A.; Touijer, K.; Montorsi, F.; Eastham, J.; Russo, P.; et al. Impact of Acute Kidney Injury and Its Duration on Long-term Renal Function After Partial Nephrectomy. Eur. Urol. 2019, 76, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Terrone, C.; Antonelli, A.; Minervini, A.; Volpe, A.; Furlan, M.; Matloob, R.; Regis, F.; Fiori, C.; Porpiglia, F.; et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a–T1b renal mass and normal preoperative renal function. Eur. Urol. 2015, 67, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Vergho, D.; Burger, M.; Schrammel, M.; Brookman-May, S.; Gierth, M.; Hoschke, B.; Lopau, K.; Gilfrich, C.; Riedmiller, H.; Wolff, I.; et al. Matched-pair analysis of renal function in the immediate postoperative period: A comparison of living kidney donors versus patients nephrectomized for renal cell cancer. World J. Urol. 2015, 33, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Hew, M.N.; Opondo, D.; Cordeiro, E.R.; Van Donselaar-Van Der Pant, K.A.M.I.; Bemelman, F.J.; Idu, M.M.; De La Rosette, J.J.M.C.H.; Laguna, M.P. The 1-year decline in estimated glomerular filtration rate (eGFR) after radical nephrectomy in patients with renal masses and matched living kidney donors is the same. BJU Int. 2014, 113, E49–E55. [Google Scholar] [CrossRef]
- Timsit, M.O.; Nguyen, K.N.; Rouach, Y.; Elie, C.; Loupy, A.; Fournier, C.; Legendre, C.; Mejean, A. Kidney function following nephrectomy: Similitude and discrepancies between kidney cancer and living donation. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Leppert, J.T.; Lamberts, R.W.; Thomas, I.C.; Chung, B.I.; Sonn, G.A.; Skinner, E.C.; Wagner, T.H.; Chertow, G.M.; Brooks, J.D. Incident CKD after radical or partial nephrectomy. J. Am. Soc. Nephrol. 2018, 29, 207–216. [Google Scholar] [CrossRef]
- Nisula, S.; Kaukonen, K.M.; Vaara, S.T.; Korhonen, A.M.; Poukkanen, M.; Karlsson, S.; Haapio, M.; Inkinen, O.; Parviainen, I.; Suojaranta-Ylinen, R.; et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: The FINNAKI study. Intensive Care Med. 2013, 39, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Pickkers, P.; Ostermann, M.; Joannidis, M.; Zarbock, A.; Hoste, E.; Bellomo, R.; Prowle, J.; Darmon, M.; Bonventre, J.V.; Forni, L.; et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. 2017, 43, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Kidney Disease Improving Global Outcomes. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [CrossRef] [PubMed] [Green Version]
- Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [CrossRef] [PubMed] [Green Version]
- Froissart, M.; Rossert, J.; Jacquot, C.; Paillard, M.; Houillier, P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J. Am. Soc. Nephrol. 2005, 16, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Poggio, E.D.; Wang, X.; Greene, T.; Van Lente, F.; Hall, P.M. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Levey, A.S. Clinical implications of estimating equations for glomerular filtration rate. Ann. Intern. Med. 2004, 141, 959–961. [Google Scholar] [CrossRef]
- Remuzzi, G.; Grinyò, J.; Ruggenenti, P.; Beatini, M.; Cole, E.H.; Milford, E.L.; Brenner, B.M. Early experience with dual kidney transplantation in adults using expanded donor criteria. J. Am. Soc. Nephrol. 1999, 10, 2591–2598. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2019; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- R Core Team. Integrated Development Environment for R 2019; R Core Team: Boston, MA, USA, 2019. [Google Scholar]
- Martini, A.; Sfakianos, J.P.; Paulucci, D.J.; Abaza, R.; Eun, D.D.; Bhandari, A.; Hemal, A.K.; Badani, K.K. Predicting acute kidney injury after robot-assisted partial nephrectomy: Implications for patient selection and postoperative management. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 445–451. [Google Scholar] [CrossRef]
- Bachrach, L.; Negron, E.; Liu, J.S.; Su, Y.-K.; Paparello, J.J.; Eggener, S.; Kundu, S.D. Preoperative Nuclear Renal Scan Underestimates Renal Function After Radical Nephrectomy. Urology 2014, 84, 1402–1407. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Tsushima, T.; Saika, T.; Nasu, Y.; Kumon, H. Kidney function after nephrectomy for renal cell carcinoma. Urology 2004, 64, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Larcher, A.; Fallara, G.; Trevisani, F.; Porrini, E.; Di Marco, F.; Baiamonte, G.; Re, C.; Bettiga, A.; Dell’Antonio, G.; et al. Parenchymal biopsy in the management of patients with renal cancer. World J. Urol. 2021, 1–8. [Google Scholar] [CrossRef]
- Trevisani, F.; Di Marco, F.; Capitanio, U.; Dell’Antonio, G.; Cinque, A.; Larcher, A.; Lucianò, R.; Bettiga, A.; Vago, R.; Briganti, A.; et al. Renal histology across the stages of chronic kidney disease. J. Nephrol. 2021, 34, 699–707. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Shaw, A.D.; Haase, M.; Bouchard, J.; Waikar, S.S.; Siew, E.D.; Murray, P.T.; Mehta, R.L.; Ronco, C. Diagnosis of acute kidney injury using functional and injury biomarkers: Workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib. Nephrol. 2013, 182, 13–29. [Google Scholar]
- Ostermann, M.; Joannidis, M. Biomarkers for AKI improve clinical practice: No. Intensive Care Med. 2015, 41, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Vanmassenhove, J.; Vanholder, R.; Nagler, E.; Van Biesen, W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature. Nephrol. Dial. Transplant. 2013, 28, 254–273. [Google Scholar] [CrossRef] [Green Version]
- Trevisani, F.; Di Marco, F.; Capitanio, U.; Larcher, A.; Bettiga, A.; Dosio, F.; Ghidini, M.; Del Conte, G.; Vago, R.; Cinque, A.; et al. Renal Function Assessment Gap in Clinical Practice: An Awkward Truth. Kidney Blood Press. Res. 2020, 45, 166–179. [Google Scholar] [CrossRef]
- Bhindi, B.; Lohse, C.M.; Schulte, P.J.; Mason, R.J.; Cheville, J.C.; Boorjian, S.A.; Leibovich, B.C.; Thompson, R.H. Predicting Renal Function Outcomes After Partial and Radical Nephrectomy (Figure presented). Eur. Urol. 2019, 75, 766–772. [Google Scholar] [CrossRef]
Overall | G1 | G2 | G3a | G3b-4 | |
---|---|---|---|---|---|
Patients | 144 | 35 | 61 | 31 | 17 |
Age—years (median, IQR) | 68, 62–75 | 62, 52–66.5 | 68, 63–75 | 74, 65.5–77 | 78, 75–85 |
Male/Female ratio | 2.4 | 2.2 | 2.1 | 4.1 | 2.4 |
BMI (median, IQR) | 26, 24–28 | 26, 24–28 | 26, 24–29 | 26, 24–28 | 25, 23–28 |
Serum Creatinine t0—mg/dL (median, IQR) | 1.0, 0.8–1.2 | 0.8, 0.6–0.8 | 0.9, 0.8–1.1 | 1.3, 1.2–1.4 | 1.7, 1.4–2.0 |
eGFR CKD-EPI t0—mL/min/1.73 m2 (median, IQR) | 73, 57–90 | 97, 93–101 | 78, 67–82 | 55, 51–58 | 37, 30–41 |
Hypertension | 63% | 46% | 66% | 71% | 71% |
ACEi | 16% | 12.5% | 17.5% | 14% | 17% |
Beta-Blockers | 22% | 6.25% | 22.5% | 27% | 33% |
Calcium Antagonists | 16% | 12.5% | 10% | 18% | 33% |
Diuretics | 13% | 6.25% | 12.5% | 14% | 25% |
ARBs | 17% | / | 20% | 14% | 33% |
Diabetes type II | 22% | 20% | 23% | 19% | 29% |
Intraoperative Blood Loss (median, IQR) | 300, 100–700 | 200, 100–675 | 325, 100–613 | 400, 125–925 | 500, 200–1700 |
T (pTNM) | |||||
1 (%) | 42% | 46% | 47% | 26% | 47% |
2 (%) | 8% | 11% | 8% | 7% | / |
3 (%) | 47% | 43% | 43% | 61% | 47% |
4 (%) | 3% | / | 2% | 6% | 6% |
Histopathology | |||||
Clear Cell (%) | 73% | 79% | 73% | 72% | 64% |
Papillary (%) | 9% | 9% | 5 | 16% | 7% |
Cromophobe Cell (%) | 8% | 9% | 8% | 9% | 6% |
Oncocytoma (%) | 10% | 3% | 14% | 3% | 23% |
Fuhrman grade | |||||
1 (%) | 2% | / | 3% | 3% | / |
2 (%) | 48% | 48% | 52% | 42% | 41% |
3 (%) | 33% | 43% | 28% | 39% | 24% |
4 (%) | 7% | 6% | 3% | 13% | 12% |
Benign (%) | 10% | 3% | 14% | 3% | 23% |
AKI (KDIGO) | |||||
1 (%) | 58% | 71% | 57% | 52% | 41% |
2 (%) | 8% | 11% | 11% | 3% | / |
3 (%) | 3% | 6% | 3% | 3% | / |
Chronicity Score | |||||
0 (%) | 21% | 34% | 25% | 6% | 6% |
1 (%) | 35% | 49% | 36% | 32% | 6% |
2 (%) | 26% | 9% | 30% | 36% | 29% |
≥3 (%) | 18% | 8% | 9% | 26% | 59% |
Variable | Univariate Logistic Regression p Value | Odds Ratio (95% Confidence Interval) |
---|---|---|
S-creatinine t0 (per decimal units) | <0.001 | 0.81 (0.71–0.89) |
eGFR CKD-EPI t0 | <0.001 | 1.04 (1.02–1.06) |
Age | 1 | |
BMI | 0.5 | |
Intraoperative Blood Loss | 0.8 | |
Hypertension | 0.09 | |
Diabetes | 0.7 | |
Fuhrman Grade | 0.4 | |
TNM Stage | 0.8 | |
Histopathology | 0.4 |
Univariable Regression p Value | β (95% Confidence Interval) | R2 | |
24 h Decay | |||
eGFR CKD-EPI t0 | <0.001 | −0.52 (−0.61, −0.43) | 0.49 |
48 h Decay | |||
eGFR CKD-EPI t0 | <0.001 | −0.45 (−0.55, −0.35) | 0.36 |
72 h Decay | |||
eGFR CKD-EPI t0 | <0.001 | −0.44 (−0.53, −0.34) | 0.35 |
1-year Decay | |||
eGFR CKD-EPI t0 | <0.001 | −0.42 (−0.52, −0.33) | 0.35 |
1-year Decay | |||
eGFR CKD-EPI tf | 0.3 | ||
Multivariable Linear Regression p Value | β (95% Confidence Interval) | R2 | |
1-year Decay CKD-EPI | |||
AKI Onset | <0.001 | 15 (11, 20) | 0.28 |
Arterial Narrowing | 0.002 | −8 (−3, −12) | |
Hypertension | 0.1 | −3 (−8, 1) |
Acute Decay | Median Decay (IQR) mL/min/1.73 m2 | Median Decay (IQR) % |
G1 | 37 (27–43) | 36 (26–45) |
G2 | 29 (19–35) | 37 (28–46) |
G3a | 17 (1–24) | 33 (2–42.5) |
G3b-4 | 7 (2–14) | 26 (4–36) |
Chronic Decay | Median Decay (IQR) mL/min/1.73 m2 | Median Decay (IQR) % |
G1 | 31 (26–43.5) | 31 (41–26.5) |
G2 | 27 (18–33) | 36 (42–27) |
G3a | 14 (6–19.5) | 24 (34.5–11.5) |
G3b-4 | 8 (1–20) | 24 (50–4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Marco, F.; Pani, A.; Floris, M.; Martini, A.; Dell’Antonio, G.; Capitanio, U.; Bettiga, A.; Larcher, A.; Cinque, A.; Bertini, R.; et al. Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects. J. Clin. Med. 2021, 10, 3322. https://doi.org/10.3390/jcm10153322
Di Marco F, Pani A, Floris M, Martini A, Dell’Antonio G, Capitanio U, Bettiga A, Larcher A, Cinque A, Bertini R, et al. Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects. Journal of Clinical Medicine. 2021; 10(15):3322. https://doi.org/10.3390/jcm10153322
Chicago/Turabian StyleDi Marco, Federico, Antonello Pani, Matteo Floris, Alberto Martini, Giacomo Dell’Antonio, Umberto Capitanio, Arianna Bettiga, Alessandro Larcher, Alessandra Cinque, Roberto Bertini, and et al. 2021. "Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects" Journal of Clinical Medicine 10, no. 15: 3322. https://doi.org/10.3390/jcm10153322
APA StyleDi Marco, F., Pani, A., Floris, M., Martini, A., Dell’Antonio, G., Capitanio, U., Bettiga, A., Larcher, A., Cinque, A., Bertini, R., Briganti, A., Salonia, A., Montorsi, F., & Trevisani, F. (2021). Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects. Journal of Clinical Medicine, 10(15), 3322. https://doi.org/10.3390/jcm10153322