Do All Integrase Strand Transfer Inhibitors Have the Same Lipid Profile? Review of Randomised Controlled Trials in Naïve and Switch Scenarios in HIV-Infected Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparison of INSTIs with Other ART Families in Treatment-Naïve Patients
3.1.1. Raltegravir
3.1.2. Elvitegravir
3.1.3. Dolutegravir
Trial, Year [Ref] Design of the Study |
Treatment Arm n (Participants); Age; % Men | Study Period | Total Cholesterol | LDL-c | HDL-c | Triglycerides | HDL-c/TC or TC/HDL-c | % on Lipid-Lowering Therapy |
---|---|---|---|---|---|---|---|---|
STARTMRK trial 2009 [12] 2010 [13] Double-blind | Raltegravir, TDF, FTC, n = 281;37.6; 81% | Baseline 1 | 342 (75.7) | 208.1 (67.6) | 82.2 (27) | 613.3 (361.1) | 0.25 (0.08) a | |
Week 48 2 | 21.2 (62.5) | 12.7 (52.9) | 8.9 (18.1) | −14.2 (400) | −0.02 (0.06) a | |||
Week 96 3 | 10 | 7 | 3 | −4 | 7% | |||
Efavirenz, TDF, FTC, n = 282; 36.9; 82% | Baseline 1 | 333.9 (82.2) | 198.5 (65.6) | 81.1 (23.9) | 669.9 (606.2) | 0.24 (0.08) a −0.01 (0.08) a | ||
Week 48 2 | 70.3 (72.2) * | 34.4 (62.2) * | 21.6 (23.5) * | 184.1 (633.6) * | ||||
Week 96 3 | 38 * | 21 * | 10 * | 40 * | 9% | |||
ACTG A5257 2015 [14] Open-label | Raltegravir, TDF, FTC, n = 600; 37; 76% | Baseline 4 | 158.3 (155,161) | 94.9 (92,97) | 39.5 (38,41) | 123.4 (117,130) | 6% | |
Week 48 5 | 159.5 (156,162) [1.2] | 92.2(90,95) [−2.9] | 44.5 (43,46) | 115.3 (109,122) [−7.1] | ||||
Week 96 5 | 163.4 (160,166) [5.2] | 92 (90,94) [0.1] | 45.4 (44,47) | 116.3 (110,123) [−7.1] | 9% | |||
DRV/r, TDF, FTC, n = 595; 37.5; 76% | Baseline 4 | 157 (154,160) | 93 (90,95) | 40.4 (39,41) | 124.3 (117,131) | 6% | ||
Week 48 5 | 172 (169,176) [15.3] * | 99.1 (96,102) [6.1] * | 46 (45,47) | 137.3 (130,145) [16.8] * | ||||
Week 96 5 | 172 (169,176) [15.4] * | 99.9 (97,103) [5.1] * | 46 (44,47) | 141.1 (131,151) [16.8] * | 14% | |||
ATZ/r, TDF, FTC, n = 602; 37.6; 76% | Baseline 4 | 156.7 (154,159) | 93.7 (91, 96) | 38.8 (38,40) | 123.8 (117,130) | 5% | ||
Week 48 5 | 169.8 (166,173) [13.1] * | 97.4 (94,100) [3.7] * | 45.1 (44,46) | 139.7 (132,147) [17.1] * | 11% | |||
Week 96 5 | 172.3 (169,176) [15.3] * | 99.4 (96,102) [6.4] * | 45.2 (44,46) | 140.9 (133,149) [17.1] * | ||||
SINGLE 2013 [19] Double-blind | DTG, ABC, 3TC; n = 414; 35; 84% | Baseline 1 Week 48 2 | 158.9 (34) 17.1 (26) | 93.1 (29) 8.5 (21) | 43.4 (13) 5.2 (9) | 115 (78) 17.7 (94) | 3.9 (1) −0.1 (1) | |
Efavirenz, TDF, FTC n = 414; 35; 84% | Baseline 1 Week 48 2 | 158.2 (37) 24.1 (34) * | 92.7 (22) 13.1 (30) * | 43.6 (13) 8 (11) | 111.2 (67) 18.6 (92) | 3.9 (1) −0.1 (1) | ||
FLAMINGO 2014 [22] Open-label | DTG, TDF, FTC or ABC, 3TC n = 242; 34; 87% | Baseline 1 Week 48 2 | 157.6 (33) 4.3 (24) | 91.1 (29) 3.1 (20) | 43.9 (13) 2 (9) | 114 (66) −5.5 (53) | 3.9 (1) 0 (1) | |
DRV/r, TDF, FTC or ABC, 3TC n = 242; 34; 83% | Baseline 1 Week 48 2 | 162.5 (35) 22.5 (33) | 95.5 (29) 14.1 (25) | 43.5 (13) 2.2 (10) | 117.9 (67) 33.1 (73) | 4.1 (2) 0.4 (1) | ||
ADVANCE 2019 [24] Open-label | DTG, TAF, FTC n = 351; 33; 39% | Baseline 6 Week 48 7 | 146.7 (69,297) 3.9 (−162,212) † | 88.8 (15,185) 3.9 (−96,66) † | 42.5 (4,100) 3.9 (−50,89) | 79.6 (26,433) 0 (−221,956) † | ||
DTG, TDF, FTC; n = 351; 32; 41% | Baseline 6 Week 48 7 | 142.9 (69,251) −3.9 (−127,73) | 88.8 (27,224) 0 (−116,69) | 42.5 (12,100) 3.9 (−31,58) | 70.8 (26,372) −8.8 (−230,487) | |||
Efavirenz, TDF, FTC; n = 351; 32; 43% | Baseline 6 Week 48 7 | 142.9 (54,259) 11.6 (−120,127) †† | 99.7(27,235) 3.9 (−131,85) †† | 42.5 (8135) 11.3 (−31,85) †† | 79.6 (26,451) 0 (−319,354) †† |
3.1.4. Summary of Studies Comparing INSTI-Based Regimens with Other ART Families in Treatment-Naïve Patients
3.2. Comparison of Different INSTIs Strategies in Treatment-Naïve Patients
3.2.1. Elvitegravir
3.2.2. Dolutegravir and Bictegravir
3.2.3. Dolutegravir and Raltegravir
3.2.4. Summary of Studies Comparing INSTs in Treatment-Naïve Patients
3.3. Switch Studies from a PI or NNRTI-Based Regimen to a Regimen That Includes an INSTI in Virologically Suppressed HIV-Infected Patients
3.3.1. Raltegravir
3.3.2. Elvitegravir
3.3.3. Dolutegravir
3.3.4. Bictegravir
3.3.5. Summary of Switching Studies from a PI or NNRTI-Based Regimen to a Regimen That Includes an INSTI in Virologically Suppressed HIV-Infected Patients
3.4. Switch Studies on INSTIs in Virologically Suppressed HIV-Infected Patients
3.5. Studies Comparing Triple Therapy and Dual Therapy That Include an INSTI in Naïve and in Virologically Suppressed HIV-Infected Patients
3.6. Assessment of Other Lipoprotein-Related Atherogenic Biomarkers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trickey, A.; May, M.T.; Vehreschild, J.-J.; Obel, N.; Gill, M.J.; Crane, H.M.; Boesecke, C.; Patterson, S.; Grabar, S.; Cazanave, C.; et al. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: A collaborative analysis of cohort studies. Lancet HIV 2017, 4, e349–e356. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.S.; Stelzle, D.; Lee, K.K.; Beck, E.J.; Alam, S.; Clifford, S.; Longenecker, C.T.; Strachan, F.; Bagchi, S.; Whiteley, W.; et al. Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV. Circulation 2018, 138, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Triant, V.A. HIV Infection and Coronary Heart Disease: An Intersection of Epidemics. J. Infect. Dis. 2012, 205, S355–S361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, J.E.; Currier, J.S. Metabolic disease in HIV infection. Lancet Infect. Dis. 2013, 13, 964–975. [Google Scholar] [CrossRef]
- Riddler, S.A.; Smit, E.; Cole, S.R.; Li, R.; Chmiel, J.S.; Dobs, A.; Palella, F.; Visscher, B.; Evans, R.; Kingsley, L.A. Impact of HIV Infection and HAART on Serum Lipids in Men. JAMA 2003, 289, 2978–2982. [Google Scholar] [CrossRef] [Green Version]
- El-Sadr, W.M.; Mullin, C.M.; Carr, A.; Gibert, C.; Rappoport, C.; Visnegarwala, F.; Grunfeld, C.; Raghavan, S.S. Effects of HIV disease on lipid, glucose and insulin levels: Results from a large antiretroviral-naive cohort. HIV Med. 2005, 6, 114–121. [Google Scholar] [CrossRef]
- Funderburg, N.T.; Mehta, N.N. Lipid Abnormalities and Inflammation in HIV Inflection. Curr. HIV AIDS Rep. 2016, 13, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Di Yacovo, S.; Saumoy, M.; Sánchez-Quesada, J.L.; Navarro, A.; Sviridov, D.; Javaloyas, M.; Vila, R.; Vernet, A.; Low, H.; Peñafiel, J.; et al. Lipids, biomarkers, and subclinical atherosclerosis in treatment-naive HIV patients starting or not starting antiretroviral therapy: Comparison with a healthy control group in a 2-year prospective study. PLoS ONE 2020, 15, e0237739. [Google Scholar] [CrossRef]
- Department of Health and Human Services. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Available online: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/AdultandAdolescentGL.pdf (accessed on 30 July 2021).
- European AIDS Clinical Society. Guidelines Version 10.1 October 2020. Available online: https://www.eacsociety.org/files/guidelines-10.1_finaljan2021_1.pdf (accessed on 30 July 2021).
- Myerson, M. Lipid Management in Human Immunodeficiency Virus. Endocrinol. Metab. Clin. N. Am. 2016, 45, 141–169. [Google Scholar] [CrossRef]
- Lennox, J.L.; DeJesus, E.; Lazzarin, A.; Pollard, R.B.; Madruga, J.V.R.; Berger, D.S.; Zhao, J.; Xu, X.; Williams-Diaz, A.; Rodgers, A.J.; et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: A multicentre, double-blind randomised controlled trial. Lancet 2009, 374, 796–806. [Google Scholar] [CrossRef]
- Lennox, J.L.; DeJesus, E.; Berger, D.S.; Lazzarin, A.; Pollard, R.B.; Madruga, J.V.R.; Zhao, J.; Wan, H.; Gilbert, C.L.; Teppler, H.; et al. Raltegravir Versus Efavirenz Regimens in Treatment-Naive HIV-1–Infected Patients: 96-Week Efficacy, Durability, Subgroup, Safety, and Metabolic Analyses. JAIDS J. Acquir. Immune Defic. Syndr. 2010, 55, 39–48. [Google Scholar] [CrossRef]
- Ofotokun, I.; Na, L.H.; Landovitz, R.J.; Ribaudo, H.J.; McComsey, G.A.; Godfrey, C.; Aweeka, F.; Cohn, S.E.; Sagar, M.; Kuritzkes, D.R.; et al. Comparison of the Metabolic Effects of Ritonavir-Boosted Darunavir or Atazanavir Versus Raltegravir, and the Impact of Ritonavir Plasma Exposure: ACTG 5257. Clin. Infect. Dis. 2015, 60, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Sax, P.E.; DeJesus, E.; White, K.; Kearney, B.P.; Szwarcberg, J.; Quirk, E.; Cheng, A.K.; Mills, A.; Zolopa, A.; Cohen, C.; et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 2012, 379, 2439–2448. [Google Scholar] [CrossRef]
- DeJesus, E.; Rockstroh, J.K.; Henry, K.; Molina, J.-M.; Gathe, J.; Ramanathan, S.; Wei, X.; Yale, K.; Szwarcberg, J.; White, K.; et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3, non-inferiority trial. Lancet 2012, 379, 2429–2438. [Google Scholar] [CrossRef]
- Rockstroh, J.K.; DeJesus, E.; Henry, K.; Molina, J.-M.; Gathe, J.; Ramanathan, S.; Wei, X.; Plummer, A.; Abram, M.; Cheng, A.K.; et al. A Randomized, Double-Blind Comparison of Coformulated Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF vs Ritonavir-Boosted Atazanavir Plus Coformulated Emtricitabine and Tenofovir DF for Initial Treatment of HIV-1 Infection. J. Acquir. Immune Defic. Syndr. 2013, 62, 483–486. [Google Scholar] [CrossRef]
- Squires, K.; Kityo, C.; Hodder, S.; Johnson, M.; Voronin, E.; Hagins, D.; Avihingsanon, A.; Koenig, E.; Jiang, S.; White, K.; et al. Integrase inhibitor versus protease inhibitor based regimen for HIV-1 infected women (WAVES): A randomised, controlled, double-blind, phase 3 study. Lancet HIV 2016, 3, e410–e420. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, S.L.; Antela, A.A.; Clumeck, N.; Duiculescu, D.; Eberhard, A.A.; Gutiérrez, F.; Hocqueloux, L.L.; Maggiolo, F.F.; Sandkovsky, U.U.; Granier, C.C.; et al. Dolutegravir plus Abacavir–Lamivudine for the Treatment of HIV-1 Infection. N. Engl. J. Med. 2013, 369, 1807–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quercia, R.; Roberts, J.; Martin-Carpenter, L.; Zala, C. Comparative changes of lipid levels in treatment-naive, HIV-1-infected adults treated with dolutegravir vs. efavirenz, raltegravir, and ritonavir-boosted darunavir-based regimens over 48 weeks. Clin. Drug Investig. 2015, 35, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walmsley, S.; Baumgarten, A.; Berenguer, J.; Felizarta, F.; Florence, E.; Khuong-Josses, M.-A.; Kilby, J.M.; Lutz, T.; Podzamczer, D.; Portilla, J.; et al. Dolutegravir plus abacavir/lamivudine for the treatment of HIV-1 infection in antiretrvorial therapy-naive patients: Week 96 and week 144 results from the SINGLE randomized clinical trial. J. Acquir. Immune Defic. Syndr. 2015, 70, 515–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clotet, B.; Feinberg, J.; van Lunzen, J.; Khuong-Josses, M.-A.; Antinori, A.; Dumitru, I.; Pokrovskiy, V.; Fehr, J.; Ortiz, R.; Saag, M.; et al. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet 2014, 383, 2222–2231. [Google Scholar] [CrossRef]
- Orrell, C.; Hagins, D.P.; Belonosova, E.; Porteiro, N.; Walmsley, S.; Falcó, V.; Man, C.Y.; Aylott, A.; Buchanan, A.M.; Wynne, B.; et al. Fixed-dose combination dolutegravir, abacavir, and lamivudine versus ritonavir-boosted atazanavir plus tenofovir disoproxil fumarate and emtricitabine in previously untreated women with HIV-1 infection (ARIA): Week 48 results from a randomised, open-label, non-inferiority, phase 3b study. Lancet HIV 2017, 4, e536–e546. [Google Scholar] [CrossRef]
- Venter, W.D.; Moorhouse, M.; Sokhela, S.; Fairlie, L.; Mashabane, N.; Masenya, M.; Serenata, C.; Akpomiemie, G.; Qavi, A.; Chandiwana, N.; et al. Dolutegravir plus Two Different Prodrugs of Tenofovir to Treat HIV. N. Engl. J. Med. 2019, 381, 803–815. [Google Scholar] [CrossRef]
- Xu, L.; Liu, H.; Murray, B.P.; Callebaut, C.; Lee, M.S.; Hong, A.; Strickley, R.G.; Tsai, L.K.; Stray, K.M.; Wang, Y.; et al. Cobicistat (GS-9350): A Potent and Selective Inhibitor of Human CYP3A as a Novel Pharmacoenhancer. ACS Med. Chem. Lett. 2010, 1, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Sax, P.E.; Wohl, D.; Yin, M.T.; Post, F.; DeJesus, E.; Saag, M.; Pozniak, A.; Thompson, M.; Podzamczer, D.; Molina, J.M.; et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: Two randomised, double-blind, phase 3, non-inferiority trials. Lancet 2015, 385, 2606–2615. [Google Scholar] [CrossRef]
- Sax, P.E.; Pozniak, A.; Montes, M.L.; Koenig, E.; DeJesus, E.; Stellbrink, H.-J.; Antinori, A.; Workowski, K.; Slim, J.; Reynes, J.; et al. Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380–1490): A randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet 2017, 390, 2073–2082. [Google Scholar] [CrossRef] [PubMed]
- Stellbrink, H.-J.; Arribas, J.R.; Stephens, J.L.; Albrecht, H.; Sax, P.E.; Maggiolo, F.; Creticos, C.; Martorell, C.T.; Wei, X.; Acosta, R.; et al. Co-formulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e364–e372. [Google Scholar] [CrossRef] [PubMed]
- Gallant, J.; Lazzarin, A.; Mills, A.; Orkin, C.; Podzamczer, D.; Tebas, P.; Girard, P.-M.; Brar, I.; Daar, E.S.; Wohl, D.; et al. Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): A double-blind, multicentre, phase 3, randomised controlled non-inferiority trial. Lancet 2017, 390, 2063–2072. [Google Scholar] [CrossRef]
- Wohl, D.A.; Yazdanpanah, Y.; Baumgarten, A.; Clarke, A.; Thompson, M.A.; Brinson, C.; Hagins, D.; Ramgopal, M.N.; Antinori, A.; Wei, X.; et al. Bictegravir combined with emtricitabine and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e355–e363. [Google Scholar] [CrossRef]
- Raffi, F.; Rachlis, A.; Stellbrink, H.-J.; Hardy, W.D.; Torti, C.; Orkin, C.; Bloch, M.; Podzamczer, D.; Pokrovsky, V.; Pulido, F.; et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 2013, 381, 735–743. [Google Scholar] [CrossRef]
- Ricós, V.A.C. Current databases on biological variation: Pros, cons and progress. Scand. J. Clin. Lab. Investig. 1999, 59, 491–500. [Google Scholar] [CrossRef]
- Santos, J.R.; Saumoy, M.; Curran, A.; Bravo, I.; Llibre, J.M.; Navarro, J.; Estany, C.; Podzamczer, D.; Ribera, E.; Negredo, E.; et al. The Lipid-Lowering Effect of Tenofovir/Emtricitabine: A Randomized, Crossover, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2015, 61, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Martinez, E.; Larrousse, M.; Llibre, J.M.; Gutiérrez, F.; Saumoy, M.; Antela, A.; Knobel, H.; Murillas, J.; Berenguer, J.; Pich, J.; et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: The SPIRAL study. AIDS 2010, 24, 1697–1707. [Google Scholar] [CrossRef]
- Arribas, J.R.; Pialoux, G.; Gathe, J.; Di Perri, G.; Reynes, J.; Tebas, P.; Nguyen, T.; Ebrahimi, R.; White, K.; Piontkowsky, D. Simplification to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of ritonavir-boosted protease inhibitor with emtricitabine and tenofovir in adults with virologically suppressed HIV (STRATEGY-PI): 48 week results of a randomised, open-label, phase 3b, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Pozniak, A.; Markowitz, M.; Mills, A.; Stellbrink, H.-J.; Antela, A.; Domingo, P.; Girard, P.-M.; Henry, K.; Nguyen, T.; Piontkowsky, D.; et al. Switching to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of non-nucleoside reverse transcriptase inhibitor with emtricitabine and tenofovir in virologically suppressed adults with HIV (STRATEGY-NNRTI): 48 week results of a randomised, open-label, phase 3b non-inferiority trial. Lancet Infect. Dis. 2014, 14, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Hodder, S.; Squires, K.; Kityo, C.; Hagins, D.; Avihingsanon, A.; Kido, A.; Jiang, S.; Kulkarni, R.; Cheng, A.; Cao, H. Brief Report: Efficacy and Safety of Switching to Coformulated Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Alafenamide (E/C/F/TAF) in Virologically Suppressed Women. J. Acquir. Immune Defic. Syndr. 2018, 78, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Gatell, J.M.; Assoumou, L.; Moyle, G.; Waters, L.; Johnson, M.; Domingo, P.; Fox, J.; Martinez, E.; Stellbrink, H.-J.; Guaraldi, G.; et al. Immediate Versus Deferred Switching From a Boosted Protease Inhibitor–based Regimen to a Dolutegravir-based Regimen in Virologically Suppressed Patients With High Cardiovascular Risk or Age ≥50 Years: Final 96-Week Results of the NEAT022 Study. Clin. Infect. Dis. 2019, 68, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Daar, E.S.; DeJesus, E.; Ruane, P.; Crofoot, G.; Oguchi, G.; Creticos, C.; Rockstroh, J.K.; Molina, J.-M.; Koenig, E.; Liu, Y.-P.; et al. Efficacy and safety of switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from boosted protease inhibitor-based regimens in virologically suppressed adults with HIV-1: 48 week results of a randomised, open-label, multicentre, phase 3, non-inferiority trial. Lancet HIV 2018, 5, e347–e356. [Google Scholar] [CrossRef]
- Kityo, C.; Hagins, D.; Koenig, E.; Avihingsanon, A.; Chetchotisakd, P.; Supparatpinyo, K.; Gankina, N.; Pokrovsky, V.; Voronin, E.; Stephens, J.L.; et al. Switching to Fixed-Dose Bictegravir, Emtricitabine, and Tenofovir Alafenamide (B/F/TAF) in Virologically Suppressed HIV-1 Infected Women: A Randomized, Open-Label, Multicenter, Active-Controlled, Phase 3, Noninferiority Trial. J. Acquir. Immune Defic. Syndr. 2019, 82, 321–328. [Google Scholar] [CrossRef]
- Molina, J.-M.; Ward, D.; Brar, I.; Mills, A.; Stellbrink, H.-J.; Lopez.Cortes, L.F.; Ruane, P.; Podzamczer, D.; Brinson, C.; Custodio, J.; et al. Switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from dolutegravir plus abacavir and lamivudine in virologically suppressed adults with HIV-1: 48 week results of a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial. Lancet HIV 2018, 5, e357–e365. [Google Scholar] [CrossRef]
- Sax, P.; Rockstroh, J.K.; Luetkemeyer, A.F.; Yazdanpanah, Y.; Ward, D.; Trottier, B.; Rieger, A.; Liu, H.; Acosta, R.; Collins, S.E.; et al. Switching to Bictegravir, Emtricitabine, and Tenofovir Alafenamide in Virologically Suppressed Adults With Human Immunodeficiency Virus. Clin. Infect. Dis. 2020, 73, e485–e493. [Google Scholar] [CrossRef] [PubMed]
- Cahn, P.; Sierra Madero, J.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (GEMINI-1 and GEMINI-2): Week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. Lancet. 2019, 393, 143–155. [Google Scholar] [CrossRef]
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Durable Efficacy of Dolutegravir Plus Lamivudine in Antiretroviral Treatment–Naive Adults With HIV-1 Infection: 96-Week Results From the GEMINI-1 and GEMINI-2 Randomized Clinical Trials. J. Acquir. Immune Defic. Syndr. 2020, 83, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, J.; Ajana, F.; Bisshop, F.; de Wit, S.; Osiyemi, O.; Sogorb, J.P.; Routy, J.-P.; Wyen, C.; Ait-Khaled, M.; Nascimento, M.C.; et al. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Fixed-Dose 2-Drug Regimen vs Continuing a Tenofovir Alafenamide–Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Phase 3, Randomized, Noninferiority TANGO Study. Clin. Infect. Dis. 2020, 71, 1920–1929. [Google Scholar] [CrossRef] [Green Version]
- Sculier, D.; Wandeler, G.; Yerly, S.; Marinosci, A.; Stoeckle, M.; Bernasconi, E.; Braun, D.L.; Vernazza, P.; Cavassini, M.; Buzzi, M.; et al. Efficacy and safety of dolutegravir plus emtricitabine versus standard ART for the maintenance of HIV-1 suppression: 48-week results of the factorial, randomized, non-inferiority SIMPL’HIV trial. PLoS Med. 2020, 17, e1003421. [Google Scholar] [CrossRef]
- Llibre, J.M.; Hung, C.-C.; Brinson, C.; Castelli, F.; Girard, P.-M.; Kahl, L.P.; Blair, E.A.; Angelis, K.; Wynne, B.; Vandermeulen, K.; et al. Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: Phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. Lancet 2018, 391, 839–849. [Google Scholar] [CrossRef]
- Gerber, P.; Nikolic, D.; Rizzo, M. Small, dense LDL: An update. Curr. Opin. Cardiol. 2017, 32, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Ikezaki, H.; Lim, E.; Cupples, L.A.; Liu, C.; Asztalos, B.F.; Schaefer, E.J. Small Dense Low-Density Lipoprotein Cholesterol Is the Most Atherogenic Lipoprotein Parameter in the Prospective Framingham Offspring Study. J. Am. Heart Assoc. 2021, 10, e019140. [Google Scholar] [CrossRef]
- Liou, L.; Kaptoge, S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241993. [Google Scholar] [CrossRef]
- Tsimikas, S.; Miller, Y.I. Oxidative Modification of Lipoproteins: Mechanisms, Role in Inflammation and Potential Clinical Applications in Cardiovascular Disease. Curr. Pharm. Des. 2011, 17, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Tran, T.T.T.; Brown, T.T.; Moser, C.; Ribaudo, H.J.; Dube, M.P.; Yang, O.O.; Mccomsey, G.A.; Stein, J.; Currier, J.S. Changes in plasma levels of oxidized lipoproteins and lipoprotein subfractions with atazanavir-, raltegravir-, darunavir-based initial antiviral therapy and associations with common carotid artery intima-media thickness: ACTG 5260s. Antivir. Ther. 2016, 22, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Saumoy, M.; Sanchez-Quesada, J.L.; Martínez, E.; Llibre, J.M.; Ribera, E.; Knobel, H.; Gatell, J.M.; Clotet, B.; Curran, A.; Curto, J.; et al. LDL subclasses and lipoprotein-phospholipase A2 activity in suppressed HIV-infected patients switching to raltegravir: Spiral substudy. Atherosclerosis 2012, 225, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Saumoy, M.; Sánchez-Quesada, J.L.; Assoumou, L.; Acereta, L.; Gatell, J.M.; González-Cordón, A.; Guaraldi, G.; Domingo, P.; Giacomelli, A.; Connault, J.; et al. Favourable phenotype of LDL particles in subjects with high cardiovascular risk switching from a ritonavir-boosted protease inhibitor to dolutegravir. Results of the NEAT 022 study. In Proceedings of the 20th International Workshop on Co-morbidities and adverse drug reactins in HIV, New York, NY, USA, 13–14 October 2018; p. 1. [Google Scholar]
- Gebhardt, A.; Fichtenbaum, C.J. Current pharmacotherapy for the treatment of dyslipidemia associated with HIV infection. Expert Opin. Pharmacother. 2019, 20, 1719–1729. [Google Scholar] [CrossRef] [PubMed]
Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NtRTI) | Protease Inhibitors (PI) |
---|---|
Zidovudine Lamivudine (3TC) Emtricitabine (FTC) Abacavir (ABC) Tenofovir disoproxil fumarate (TDF) Tenofovir alafenamide (TAF) Didanosine * Stavudine * | Lopinavir/r Atazanavir/r (ATZ/r) Fosamprenavir/r Darunavir/r (DRV/r) Darunavir/c (DRV/c) Saquinavir/r * Indinavir * Nelfinavir * Tipranavir/r * |
Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) | Entry Inhibitors |
Nevirapine Efavirenz (EFV) Etravirine Rilpivirine Doravirine | Enfuvirtide Maraviroc |
Integrase Strand Transfer Inhibitor (INSTI) | |
Raltegravir (RAL) Elvitegravir/c (EVG/c) Dolutegravir (DTG) Bictegravir (BIC) |
Trial, Year [Ref] Design of the Study | Treatment n (Participants); Age; % Men | Study Period | Total Cholesterol | LDL-c | HDL-c | Triglycerides | TC/HDL-c | N (%) on Lipid-Lowering Therapy |
---|---|---|---|---|---|---|---|---|
2015 [26] Double-blind | EVG/c, TDF, FTC n = 867; 35; 85% | Baseline 1 Week 48 2 | 163 14 | 104 5 | 44 4 | 100 8 | 3.6 0.1 | 25 (2.9%) |
EVG/c, TAF, FTC n = 866; 33; 85% | Baseline 1 Week 48 2 | 160 29 * | 101 14 * | 44 7 * | 95 19 * | 3.6 0.1 | 31 (3.6%) | |
GS-US-380-1490 2017 [27] 2019 [28] Double-blind | DTG, TAF, FTC n = 325; 34; 89% | Baseline 3 | 161 (138,186) | 99 (82,124) | 43 (35,52) | 95 (70,131) | 3.7 (3.1,4.5) | |
Week 48 4 | 15 (1,31) | 12 (−3,25) | 5 (−1,12) | 7 (−14,35) | −0.1 (−0.6,0.4) | 6 (2%) | ||
Week 96 4 | 16 (−2,34) | 16 (0,32) | 5 (−1,12) | 6 (−17,32) | −0.1 (−0.6,0.5) | 12 (4%) | ||
BIC, TAF, FTC n = 320; 33; 88% | Baseline 3 | 156 (136,182) | 98 (81,120) | 43 (35,52) | 97 (72,134) | 3.7 (3,4.5) | ||
Week 48 4 | 12 (−3,30) | 9 (−6,25) | 5 (0,11) | 3 (−21,31) | −0.1 (−0.5,0.3) | 5 (2%) | ||
Week 96 4 | 17 (−1,35) | 19 (4,36) | 4 (−1,9) | 6 (−17,39) | 0 (−0.5,0.5) | 11 (3%) | ||
GS-US-380-1489 2017 [29] 2019 [30] Double-blind | DTG, ABC, 3TC n = 315; 32; 90% | Baseline 3 | 162 (138,186) | 101 (84,126) | 42 (35,51) | 96 (66,138) | 3.7 (3,4.6) | |
Week 48 4 | 11 (−6,28) | 4 (−9,18) | 5 (0,11) | 3 (−25,27) | −0.2 (−0.7,0.2) | 9 (2.9%) | ||
Week 96 4 | 8 (−7,36) | 5 (−5,24) | 5 (−1,12) | 6 (−21,30) | −0.2 (−0.7,0.3) | |||
BIC, TAF, FTC n = 314; 31; 91% | Baseline 3 | 159 (133,181) | 101 (83,123) | 42 (34,51) | 93 (67,132) | 3.7 (3,4.7) | ||
Week 48 4 | 13 (−3,31) | 7 (−5,21) | 5 (−2,11) | 5 (−20,37) | −0.1 (−0.5,0.4) * | 8 (2.5%) | ||
Week 96 4 | 15 (1,34) * | 17 (2,32) * | 4 (−1,11) | 8 (−16,38) | −0.1 (−0.5,0.5) * | |||
SPRING-2 2013 [31] Double-blind | DTG, TDF, FTC or ABC, 3TC; n = 411; 37; 85% | Baseline 5 Week 48 6 | 163.8 (34) 6.9 (28) | 96.8 (30) 2.9 (21) | 44.4 (12) 2.7 (11) | 113.8 (64) 8.6 (91) | 3.9 (1) −0.04 (1) | |
RAL, TDF, FTC or ABC, 3TC; n = 411; 35; 86% | Baseline 5 Week 48 6 | 160.3 (38) 9 (29) | 93.4 (32) 3.3 (23) | 93.4 (32) 3.3 (23) | 115.9 (82) 10.1 (93) | 3.8 (1) −0.1 (2) |
Trial, Year [Ref] Design of the Study | Treatment n (Participants); Age; % Men | Study Period | Total Cholesterol | LDL-c | HDL-c | Triglycerides | TC/HDL-c | N (%) on Lipid Lowering Therapy |
---|---|---|---|---|---|---|---|---|
SPIRAL 2010 [34] Open-label | RAL; n = 139; 44; 81% | Baseline 1 | 198 (171,226) | 121(97,141) | 44 (35,54) | 168 (117,270) | 27 (19%) | |
Week 48 2 | −22.2 (−11.2%) | −7.9 (−6.5%) | −1.4 (−3.2%) | −37.1 (−22.1%) | −4.85% | 16 (12%) | ||
PI/r; n = 134; 45; 72% | Baseline 1 | 198(171,223) | 122 (97,147) | 43 (37,51) | 174 (114,236) | 28 (21%) | ||
Week 48 2 | +3.6 (1.8%) * | −3.5 (−2.9%) * | +2.5 (5.8%) * | +8.2 (4.7%) * | −1.28% * | 32 (24%) | ||
STRATEGY-PI 2014 [35] Open-label | EVG/c, TDF, FTC n = 293; 41; 85% | Baseline 3 | 186.9 (39) | 120.8 (34.4) | 50.9 (15.4) | 153.1 (154.9) | 3.9 (1.24) | |
Week 48 4 | −4.4 (62.8) | −1.2 (22.8) | 1.2 (8.5) | −29.2 (143.4) | −0.1 (0.8) | |||
PI/r, TDF, FTC n = 140; 40; 86% | Baseline 3 | 189.9 (38.2) | 123.9 (33.6) | 50.2 (12.7) | 145.1 (79.6) | 4 (1.12) | ||
Week 48 4 | −8.8 (68.1) | 1.2 (27) | 1.2 (10.8) | 8.8 (74.3) * | 0.2 (3.23) | |||
STRATEGY-NNRTI 2014 [36] Open-label | EVG/c, TDF, FTC n = 291; 43; 92% | Baseline 3 | 191.1 (35.5) | 120.8 (30.9 | 54 (14.3) | 140.7 (116.8) | 3.7 (1.1) | |
Week 48 4 | −6.9 (31.3) | −3.9 (26.6) | −3.1 (9.3) | −4.4 (81.4) | 0.1 (0.8) | |||
NNRTI, TDF, FTC n = 143; 39; 94% | Baseline 3 | 188 (35.5) | 118.1 (32) | 52.9 (15.1) | 141.6 (107.9) | 3.8 (1.3) | ||
Week 48 4 | 1.1 (22.4) | 3.9 (21.2) | 0 (9.3) * | −7.9 (75.2) | 0 (0.8) | |||
WAVES switch 2018 [37] Double-blind | EVG/c, TAF, FTC n = 159; 36 | Baseline 1 | 171 (148,203) | 105 (89,133) | 50 (43,61) | 105 (80,141) | 3.3 (2.8,4.1) | 2 (1%) |
Week 48 5 | 27 (7,46) | 16 (1,34) | 5 (−1,12) | 3 (−20,33) | 0.1 (−0.1,0.5) | |||
ATZ/r, TDF, FTC n = 53; 36 | Baseline 1 | 180 (254,201) | 115 (95,133) | 56 (44,64) | 105 (80,136) | 3.2 (2.7,4.1) | 0 | |
Week 48 5 | 5 (−7,24) * | 8 (−10,18) * | 0 (−4,7) * | 11 (−9,41) | 0 (−0.3,0.4) | |||
NEAT022 2018 [38] Open-label | DTG-immediate n = 205; 54; 88.3% | Baseline 1 | 201 (174,223) | 120 (97,143) | 46 (39,58) | 142 (106,204) | 4.2 (3.4,5.4) | |
Week 48 2 | −17.5 (8.7%) | −9.2 (7.7%) | 0.5 (1.1%) | −26.1 (18.4%) | −0.3 (7%) | |||
Week 96 2 | −15.7 (7.8%) | −8.3 (6.9%) | 1.3 (2.9%) | −22.2 (15.6%) | −0.3 (6.4%) | |||
DTG-deferred n = 210; 53; 90% | Baseline 1 | 197 (174,216) | 120 (97,139) | 46 (39,58) | 142 (106,195) | 4.1 (3.4,5.2) | ||
Week 48 2 | 1.4 (0.7%) * | 2.4 (2%) * | 1.1 (2.5%) | 5.9 (4.2) * | 0.02 (0.4%) | |||
Week 96 2 | −11.4 (5.8%) | −5.4 (4.5%) | 1.8 (3.9%) | −17 (12.1%) | −0.3 (7%) | |||
2018 [39] Open-label | BIC, TAF, FTC (overall group); n = 285; 48; 84% | Baseline 1 | 188 (163,215) | 121 (101,148) | 47 (39,55) | 122 (83,176) | 4 (3.3,4.9) | 8 (3%) |
Week 48 5 | 1 (−17,20) | 0 (−16,15) | 3 (−3,7) | −6 (−42,22) | −0.2 (−0.6,0.3) | |||
BIC, TAF, FTC (from ABC/3TC); n = 47; no data | Baseline 1 | 199 (178,223) | 130 (113,157) | 50 (40,56) | 128 (87,170) | 4.1 (3.4,4.9) | ||
Week 48 5 | −11 (−31,2) * | −7 (−31,0) * | 1 (−4,5) | −31 (−51,−1) * | −0.4 (−0.7,0) * | |||
PI/r or PI/c and TDF, FTC or ABC, 3TC; n = 287; 47; 82% | Baseline 1 | 183 (160,214) | 118 (98,143) | 46 (39,57) | 121 (87,163) | 3.8 (3.1,4.9) | 10 (3%) | |
Week 48 5 | 5 (−12,18) | 3 (−14,18) | 1 (−4,7) | 4 (−29,38) * | 0 (−0.5,0.4) * |
Trial, Year [Ref] Design of the Study | Treatment n (Participants); Age; % Men | Study Period | Total Cholesterol | LDL-c | HDL-c | Triglycerides | TC/HDL-c | % on Lipid Lowering Therapy |
---|---|---|---|---|---|---|---|---|
2019 [40] Open-label | EVG/c plus TDF, FTC or TAF, FTC; n = 236; 40; no data | Baseline 1 | 193 (167,225) | 122 (100,149) | 56 (46,68) | 99 (75,137) | 3.4 (2.8,4.1) | |
Week 48 2 | −1 (−17,16) | −1 (−14,13) | −1 (−6,5) | 4 (−15,28) | 0 (−0.3,0.3) | 4% | ||
BIC, TAF, FTC n = 234; 39; no data | Baseline 1 | 196 (171,224) | 120 (101,151) | 56 (47,69) | 105 (78,151) | 3.4 (2.9,4.1) | ||
Week 48 2 | −4 (−22,15) | −3 (−15,14) | −1 (−7,5) | −10 (−28,12) * | 0 (−0.3,0.3) | 2% | ||
2019 [41] Double-blind | DTG, ABC, 3TC n = 281; 45; 90% | Baseline 1 | 186 (162,213) | 118 (99,141) | 48 (41,59) | 111 (78,156) | 3.8 (3,4.7) | 1% |
Week 48 2 | 2 (−17,18) | 2 (−14,14) | 0 (−4,6) | 3 (−23,30) | 0 (−0.5,0.4) | |||
BIC, TAF, FTC n = 282; 47; 88% | Baseline 1 | 182 (162,203) | 113 (95,133) | 49 (40,59) | 111 (76,161) | 3.7 (3,4.5) | 4% | |
Week 48 2 | 0 (−17,18) | 1 (−13,18) | −1 (−6,4) | −5 (−34,23) * | 0 (−0.4,0.4) | |||
2018 [42] Double-blind | DTG, TAF, FTC n = 281; 50; 85% | Baseline 1 | 179 (156,209) | 107 (91,137) | 44 (38,55) | 130 (83,179) | 3.9 (3.3,4.8) | 3% |
Week 48 2 | −1 (−18,17) | 4 (−11,17) | 1 (−4,5) | 0 (−26,30) | 0 (−0.4,0.4) | |||
BIC, TAF, FTC n = 284; 51; 86% | Baseline 1 | 179 (150,208) | 107 (82,133) | 46 (39,58) | 117 (83,159) | 3.7 (3.1,4.6) | 5% | |
Week 48 2 | −1 (−20,15) | 3 (−14,19) | 0 (−4,4) | 1 (−30,30) | −0.1 (−0.4,0.4) |
Trial, Year [Ref] Design of the Study | Treatment n (Participants); Age; % Men | Study Period | Total Cholesterol | LDL-c | HDL-c | Triglycerides | TC/HDL-c |
---|---|---|---|---|---|---|---|
TANGO 2020 [45] Open-label | 3–4 drug ART, n = 372; 39; 91.1% | Baseline 1 | 189.2 | 111.9 | 54 | 132.7 | 3.9 |
Week 48 2 | 2.3% | 6% | 1.7% | 6% | 0.5% | ||
DTG, 3TC, n = 369; 40; 93.2% | Baseline 1 | 193 | 111.9 | 54 | 141.6 | 3.9 | |
Week 48 2 | −4.5% * | −5.5% * | −1.2% | −11.2% * | −3.3% * | ||
SWORD 2018 [47] Open-label | 3–4 drugs ART, n = 511; 43; 79% | Baseline 1 | 186.7 | 108.8 | 53.3 | 126.3 | 3.73 |
Week 48 1 | 187 | 107.5 | 54.7 | 125.8 | 3.65 | ||
DTG, rilpivirine, n = 513; 43; 77% | Baseline 1 | 184.3 | 107.2 | 52.3 | 126.4 | 3.78 | |
Week 48 1 | 186.1 | 109 | 54.1 | 118 | 3.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saumoy, M.; Sanchez-Quesada, J.L.; Ordoñez-Llanos, J.; Podzamczer, D. Do All Integrase Strand Transfer Inhibitors Have the Same Lipid Profile? Review of Randomised Controlled Trials in Naïve and Switch Scenarios in HIV-Infected Patients. J. Clin. Med. 2021, 10, 3456. https://doi.org/10.3390/jcm10163456
Saumoy M, Sanchez-Quesada JL, Ordoñez-Llanos J, Podzamczer D. Do All Integrase Strand Transfer Inhibitors Have the Same Lipid Profile? Review of Randomised Controlled Trials in Naïve and Switch Scenarios in HIV-Infected Patients. Journal of Clinical Medicine. 2021; 10(16):3456. https://doi.org/10.3390/jcm10163456
Chicago/Turabian StyleSaumoy, Maria, Jose Luís Sanchez-Quesada, Jordi Ordoñez-Llanos, and Daniel Podzamczer. 2021. "Do All Integrase Strand Transfer Inhibitors Have the Same Lipid Profile? Review of Randomised Controlled Trials in Naïve and Switch Scenarios in HIV-Infected Patients" Journal of Clinical Medicine 10, no. 16: 3456. https://doi.org/10.3390/jcm10163456
APA StyleSaumoy, M., Sanchez-Quesada, J. L., Ordoñez-Llanos, J., & Podzamczer, D. (2021). Do All Integrase Strand Transfer Inhibitors Have the Same Lipid Profile? Review of Randomised Controlled Trials in Naïve and Switch Scenarios in HIV-Infected Patients. Journal of Clinical Medicine, 10(16), 3456. https://doi.org/10.3390/jcm10163456