An Integrated Model including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Ethics Statement
2.3. Patients
2.4. Definitions and Description of Variables
2.5. Weaning Protocol
2.6. Device Settings and Reintubation Criteria
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study
3.2. Respiratory Variables for Predicting the Success of HFNC Therapy within 72 h
3.3. Factors Predicting Reintubation within 72 h of Commencement of HFNC Therapy
3.4. Prognostic Capabilities of Models Using the ROX Index and Potential Factors for Predicting HFNC Success
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, J.; Jing, G.; Scott, J.B. Year in Review 2019: High-Flow Nasal Cannula Oxygen Therapy for Adult Subjects. Respir. Care 2020, 65, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Granton, D.; Wang, D.X.; Helviz, Y.; Einav, S.; Frat, J.P.; Mekontso-Dessap, A.; Schreiber, A.; Azoulay, E.; Mercat, A.; et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, Y.; Ling, B.; Zhu, Q.; Hu, Y.; Tan, D.; Geng, P.; Xu, J. High flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease with acute-moderate hypercapnic respiratory failure: An observational cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- Hernández, G.; Vaquero, C.; González, P.; Subira, C.; Frutos-Vivar, F.; Rialp, G.; Laborda, C.; Colinas, L.; Cuena, R.; Fernández, R. Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA 2016, 315, 1354–1361. [Google Scholar] [CrossRef]
- Hernández, G.; Vaquero, C.; Colinas, L.; Cuena, R.; González, P.; Canabal, A.; Sanchez, S.; Rodriguez, M.L.; Villasclaras, A.; Fernández, R. Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients: A Randomized Clinical Trial. JAMA 2016, 316, 1565–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guitton, C.; Ehrmann, S.; Volteau, C.; Colin, G.; Maamar, A.; Jean-Michel, V.; Mahe, P.J.; Landais, M.; Brule, N.; Bretonnière, C.; et al. Nasal high-flow preoxygenation for endotracheal intubation in the critically ill patient: A randomized clinical trial. Intensive Care Med. 2019, 45, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Frat, J.P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granton, D.; Chaudhuri, D.; Wang, D.; Einav, S.; Helviz, Y.; Mauri, T.; Mancebo, J.; Frat, J.P.; Jog, S.; Hernandez, G.; et al. High-Flow Nasal Cannula Compared with Conventional Oxygen Therapy or Noninvasive Ventilation Immediately Postextubation: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, e1129–e1136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yin, H.; Zhang, R.; Ye, X.; Wei, J. High-flow nasal cannula oxygen therapy versus conventional oxygen therapy in patients after planned extubation: A systematic review and meta-analysis. Crit. Care 2019, 23, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; Walline, J.H.; Ling, B.; Xu, Y.; Sun, J.; Wang, B.; Shan, X.; Wang, Y.; Cao, P.; Zhu, Q.; et al. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: A multicenter, randomized controlled trial. Crit. Care 2020, 24, 489. [Google Scholar] [CrossRef]
- Thille, A.W.; Cortés-Puch, I.; Esteban, A. Weaning from the ventilator and extubation in ICU. Curr. Opin. Crit. Care 2013, 19, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Einav, S.; Chaudhuri, D.; Mancebo, J.; Mauri, T.; Helviz, Y.; Goligher, E.C.; Jaber, S.; Ricard, J.D.; Rittayamai, N.; et al. The role for high flow nasal cannula as a respiratory support strategy in adults: A clinical practice guideline. Intensive Care Med. 2020, 46, 2226–2237. [Google Scholar] [CrossRef]
- Kang, B.J.; Koh, Y.; Lim, C.M.; Huh, J.W.; Baek, S.; Han, M.; Seo, H.S.; Suh, H.J.; Seo, G.J.; Kim, E.Y.; et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med. 2015, 41, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Cilione, C.; Tampieri, A.; Fracchia, C.; Marchioni, A.; Nava, S. Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax 2000, 55, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Ricard, J.D.; Roca, O.; Lemiale, V.; Corley, A.; Braunlich, J.; Jones, P.; Kang, B.J.; Lellouche, F.; Nava, S.; Rittayamai, N.; et al. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020, 46, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Roca, O.; Messika, J.; Caralt, B.; García-de-Acilu, M.; Sztrymf, B.; Ricard, J.D.; Masclans, J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care 2016, 35, 200–205. [Google Scholar] [CrossRef]
- Roca, O.; Caralt, B.; Messika, J.; Samper, M.; Sztrymf, B.; Hernández, G.; García-de-Acilu, M.; Frat, J.P.; Masclans, J.R.; Ricard, J.D. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am. J. Respir. Crit. Care Med. 2019, 199, 1368–1376. [Google Scholar] [CrossRef]
- Subirà, C.; Hernández, G.; Vázquez, A.; Rodríguez-García, R.; González-Castro, A.; García, C.; Rubio, O.; Ventura, L.; López, A.; de la Torre, M.C.; et al. Effect of Pressure Support vs T-Piece Ventilation Strategies During Spontaneous Breathing Trials on Successful Extubation Among Patients Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA 2019, 321, 2175–2182. [Google Scholar] [CrossRef]
- Girard, T.D.; Alhazzani, W.; Kress, J.P.; Ouellette, D.R.; Schmidt, G.A.; Truwit, J.D.; Burns, S.M.; Epstein, S.K.; Esteban, A.; Fan, E.; et al. An Official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Rehabilitation Protocols, Ventilator Liberation Protocols, and Cuff Leak Tests. Am. J. Respir. Crit. Care Med. 2017, 195, 120–133. [Google Scholar] [CrossRef]
- Ouellette, D.R.; Patel, S.; Girard, T.D.; Morris, P.E.; Schmidt, G.A.; Truwit, J.D.; Alhazzani, W.; Burns, S.M.; Epstein, S.K.; Esteban, A.; et al. Liberation From Mechanical Ventilation in Critically Ill Adults: An Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline: Inspiratory Pressure Augmentation During Spontaneous Breathing Trials, Protocols Minimizing Sedation, and Noninvasive Ventilation Immediately After Extubation. Chest 2017, 151, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E., Jr.; Lee, K.L.; Matchar, D.B.; Reichert, T.A. Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treat. Rep. 1985, 69, 1071–1077. [Google Scholar] [PubMed]
- Uno, H.; Cai, T.; Pencina, M.J.; D’Agostino, R.B.; Wei, L.J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 2011, 30, 1105–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaatten, H.; de Lange, D.W.; Artigas, A.; Bin, D.; Moreno, R.; Christensen, S.; Joynt, G.M.; Bagshaw, S.M.; Sprung, C.L.; Benoit, D.; et al. The status of intensive care medicine research and a future agenda for very old patients in the ICU. Intensive Care Med. 2017, 43, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Thille, A.W.; Boissier, F.; Muller, M.; Levrat, A.; Bourdin, G.; Rosselli, S.; Frat, J.P.; Coudroy, R.; Vivier, E. Role of ICU-acquired weakness on extubation outcome among patients at high risk of reintubation. Crit. Care 2020, 24, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thille, A.W.; Boissier, F.; Ben Ghezala, H.; Razazi, K.; Mekontso-Dessap, A.; Brun-Buisson, C. Risk factors for and prediction by caregivers of extubation failure in ICU patients: A prospective study. Crit. Care Med. 2015, 43, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Vanhorebeek, I.; Latronico, N.; Van den Berghe, G. ICU-acquired weakness. Intensive Care Med. 2020, 46, 637–653. [Google Scholar] [CrossRef]
- Franco, C.; Facciolongo, N.; Tonelli, R.; Dongilli, R.; Vianello, A.; Pisani, L.; Scala, R.; Malerba, M.; Carlucci, A.; Negri, E.A.; et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Suffredini, D.A.; Allison, M.G. A Rationale for Use of High Flow Nasal Cannula for Select Patients With Suspected or Confirmed Severe Acute Respiratory Syndrome Coronavirus-2 Infection. J. Intensive Care Med. 2021, 36, 9–17. [Google Scholar] [CrossRef]
- Raoof, S.; Nava, S.; Carpati, C.; Hill, N.S. High-Flow, Noninvasive Ventilation and Awake (Nonintubation) Proning in Patients With Coronavirus Disease 2019 With Respiratory Failure. Chest 2020, 158, 1992–2002. [Google Scholar] [CrossRef]
- Demoule, A.; Vieillard Baron, A.; Darmon, M.; Beurton, A.; Géri, G.; Voiriot, G.; Dupont, T.; Zafrani, L.; Girodias, L.; Labbé, V.; et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1039–1042. [Google Scholar] [CrossRef]
- Vianello, A.; Arcaro, G.; Molena, B.; Turato, C.; Sukthi, A.; Guarnieri, G.; Lugato, F.; Senna, G.; Navalesi, P. High-flow nasal cannula oxygen therapy to treat patients with hypoxemic acute respiratory failure consequent to SARS-CoV-2 infection. Thorax 2020, 75, 998–1000. [Google Scholar] [CrossRef]
- Huang, H.W.; Sun, X.M.; Shi, Z.H.; Chen, G.Q.; Chen, L.; Friedrich, J.O.; Zhou, J.X. Effect of High-Flow Nasal Cannula Oxygen Therapy Versus Conventional Oxygen Therapy and Noninvasive Ventilation on Reintubation Rate in Adult Patients After Extubation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Intensive Care Med. 2018, 33, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Ozyilmaz, E.; Ugurlu, A.O.; Nava, S. Timing of noninvasive ventilation failure: Causes, risk factors, and potential remedies. BMC Pulm. Med. 2014, 14, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Campos, J.L.; Garcia Polo, C.; Leon Jimenez, A.; Arnedillo, A.; Gonzalez-Moya, E.; Fenandez Berni, J.J. Staff training influence on non-invasive ventilation outcome for acute hypercapnic respiratory failure. Monaldi Arch. Chest Dis. 2006, 65, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Duan, J.; Bai, L.; Han, X.; Huang, S.; Guo, S. Noninvasive ventilation failure in pneumonia patients ≥65years old: The role of cough strength. J. Crit. Care 2018, 44, 149–153. [Google Scholar] [CrossRef]
- Pisani, L.; Astuto, M.; Prediletto, I.; Longhini, F. High flow through nasal cannula in exacerbated COPD patients: A systematic review. Pulmonology 2019, 25, 348–354. [Google Scholar] [CrossRef] [PubMed]
Variables | HFNC Outcome within 72 H | p Value | |
---|---|---|---|
Success (n = 226) | Failure (n = 50) | ||
Age * | 77 (67–84) | 78 (71–85) | 0.216 |
Male sex | 136 (60.2) | 40 (80) | 0.009 |
Body mass index * | 22 (19–24) | 20 (17–22) | 0.002 |
APACHE II score at admission * | 30 (27–34) | 30 (28–33) | 0.626 |
Charlson comorbidity index * | 6 (4–8) | 6 (4–8) | 0.989 |
Comorbidities | |||
Dementia | 28 (12.4) | 6 (12) | 1.000 |
Stroke | 36 (15.9) | 6 (12) | 0.663 |
Parkinson’s disease | 12 (5.3) | 2 (4) | 1.000 |
Seizure disorder | 4 (1.8) | 2 (4) | 0.298 |
Diabetes mellitus | 83 (36.7) | 13 (26) | 0.189 |
Chronic kidney disease | 52 (23) | 9 (18) | 0.572 |
Solid cancer | 64 (28.3) | 13 (26) | 0.862 |
Hematologic malignancy | 21 (9.3) | 4 (8) | 1.000 |
Cardiovascular disease | 65 (28.8) | 12 (24) | 0.602 |
COPD | 39 (17.3) | 11 (22) | 0.422 |
Diagnosis at admission | |||
Cardiovascular disease | 11 (4.9) | 1 (2.0) | 0.700 |
Pulmonary disease | 146 (64.6) | 31 (62) | 0.746 |
Gastrointestinal disease | 4 (1.8) | 0 (0) | 1.000 |
Neurologic disease | 14 (6.2) | 8 (16) | 0.038 |
Renal disease | 2 (0.9) | 0 (0) | 1.000 |
Other disease | 49 (21.7) | 10 (20) | 0.851 |
Immunosuppressive therapy | 13 (5.8) | 6 (12) | 0.125 |
Clinical status at the time of extubation | |||
Systolic blood pressure (mmHg) * | 128 (112–143) | 127 (111–146) | 0.895 |
Diastolic blood pressure (mmHg) * | 70 (60–81) | 72 (62–81) | 0.986 |
Heart rate (beats/min) * | 93 (80–104) | 96 (83–111) | 0.098 |
Respiratory rate (breaths/min) * | 21 (17–25) | 23 (17–29) | 0.055 |
Pao2/Fio2 * | 310 (239–404) | 264 (185–356) | 0.015 |
SOFA score * | 6 (4–8) | 7 (5–9) | 0.052 |
GCS score * | 14 (12–14) | 13 (12–14) | 0.353 |
Analgesia use † | 96 (42.5) | 27 (54) | 0.158 |
Vasopressor use ‡ | 59 (26.1) | 19 (38) | 0.117 |
Hemodialysis use § | 22 (9.7) | 7 (14) | 0.443 |
Total duration of ventilator care * | 5 (3–9) | 12 (6–16) | <0.001 |
Total duration of HFNC use, hours * | 42 (21–86) | 17 (5–25) | <0.001 |
Variables | Time (Hours) | AUROC | 95% CI | p Value |
---|---|---|---|---|
Spo2/Fio2 | Before extubation | 0.622 | 0.562–0.680 | 0.004 |
2 | 0.643 | 0.583–0.701 | 0.001 | |
6 | 0.619 | 0.555–0.681 | 0.022 | |
12 | 0.624 | 0.559–0.686 | 0.014 | |
RR, breaths/min | Before extubation | 0.595 | 0.535–0.654 | 0.042 |
2 | 0.625 | 0.564–0.683 | 0.002 | |
6 | 0.708 | 0.646–0.764 | <0.001 | |
12 | 0.678 | 0.614–0.738 | <0.001 | |
Paco2, mmHg | Before extubation | 0.504 | 0.443–0.564 | 0.934 |
2 | 0.512 | 0.450–0.573 | 0.814 | |
6 | 0.568 | 0.487–0.647 | 0.312 | |
12 | 0.506 | 0.431–0.582 | 0.923 | |
Flow, L/min | Before extubation | |||
2 | 0.601 | 0.540–0.660 | 0.003 | |
6 | 0.600 | 0.536–0.662 | 0.014 | |
12 | 0.584 | 0.518–0.648 | 0.064 | |
SpO2, % | Before extubation | 0.546 | 0.485–0.606 | 0.288 |
2 | 0.553 | 0.492–0.614 | 0.248 | |
6 | 0.554 | 0.489–0.617 | 0.293 | |
12 | 0.582 | 0.516–0.646 | 0.109 | |
Fio2 | Before extubation | 0.622 | 0.562–0.680 | 0.003 |
2 | 0.631 | 0.570–0.688 | 0.002 | |
6 | 0.611 | 0.547–0.673 | 0.026 | |
12 | 0.608 | 0.542–0.671 | 0.029 | |
Lactate, mmol/L | Before extubation | |||
2 | 0.561 | 0.486–0.634 | 0.363 | |
6 | 0.542 | 0.443–0.639 | 0.566 | |
12 | 0.632 | 0.541–0.715 | 0.094 | |
ROX index | Before extubation | |||
2 | 0.709 | 0.651–0.763 | <0.001 | |
6 | 0.707 | 0.645–0.763 | <0.001 | |
12 | 0.729 | 0.668–0.785 | <0.001 |
Variables | Hazard Ratio | 95% CI | p Value |
---|---|---|---|
Unadjusted ROX index | |||
2 h (ROX index > 8.7) | 0.27 | 0.141–0.527 | <0.001 |
6 h (ROX index > 8.7) | 0.33 | 0.167–0.645 | 0.001 |
12 h (ROX index > 10.4) | 0.37 | 0.164–0.818 | 0.014 |
Adjusted by male | |||
2 h (ROX index > 8.7) | 0.29 | 0.151–0.566 | <0.001 |
6 h (ROX index > 8.7) | 0.34 | 0.173–0.671 | 0.002 |
12 h (ROX index > 10.4) | 0.37 | 0.164–0.818 | 0.014 |
Adjusted by BMI | |||
2 h (ROX index > 8.7) | 0.25 | 0.129–0.485 | <0.001 |
6 h (ROX index > 8.7) | 0.30 | 0.152–0.590 | <0.001 |
12 h (ROX index > 10.4) | 0.32 | 0.144–0.728 | 0.006 |
Adjusted by Pao2/Fio2 before HFNC | |||
2 h (ROX index > 8.7) | 0.27 | 0.141–0.527 | <0.001 |
6 h (ROX index > 8.7) | 0.33 | 0.167–0.645 | 0.001 |
12 h (ROX index > 10.4) | 0.37 | 0.164–0.818 | 0.014 |
Adjusted by total duration of ventilator care | |||
2 h (ROX index > 8.7) | 0.30 | 0.154–0.577 | 0.001 |
6 h (ROX index > 8.7) | 0.39 | 0.196–0.778 | 0.007 |
12 h (ROX index > 10.4) | 0.42 | 0.187–0.948 | 0.037 |
ROX Index | Models | C-Index | 95% CI | p Value |
---|---|---|---|---|
1 | 0.709 | 0.651–0.763 | Reference | |
ROX index at 2 h | 2 | 0.786 | 0.705–0.867 | 0.013 |
Model | 3 | 0.798 | 0.728–0.868 | 0.005 |
4 | 0.811 | 0.745–0.877 | 0.005 | |
5 | 0.707 | 0.645–0.763 | Reference | |
ROX index at 6 h | 6 | 0.792 | 0.704–0.880 | 0.009 |
Model | 7 | 0.810 | 0.738–0.883 | 0.003 |
8 | 0.841 | 0.777–0.903 | 0.002 | |
9 | 0.729 | 0.668–0.785 | Reference | |
ROX index at 12 h | 10 | 0.816 | 0.731–0.901 | 0.015 |
Model | 11 | 0.833 | 0.758–0.907 | 0.003 |
12 | 0.858 | 0.789–0.927 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.S.; Chang, S.W.; Sim, J.K.; Kim, S.; Kim, J.H. An Integrated Model including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study. J. Clin. Med. 2021, 10, 3513. https://doi.org/10.3390/jcm10163513
Lee YS, Chang SW, Sim JK, Kim S, Kim JH. An Integrated Model including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study. Journal of Clinical Medicine. 2021; 10(16):3513. https://doi.org/10.3390/jcm10163513
Chicago/Turabian StyleLee, Young Seok, Sung Won Chang, Jae Kyeom Sim, Sua Kim, and Je Hyeong Kim. 2021. "An Integrated Model including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study" Journal of Clinical Medicine 10, no. 16: 3513. https://doi.org/10.3390/jcm10163513
APA StyleLee, Y. S., Chang, S. W., Sim, J. K., Kim, S., & Kim, J. H. (2021). An Integrated Model including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study. Journal of Clinical Medicine, 10(16), 3513. https://doi.org/10.3390/jcm10163513