Computed Tomography Structured Reporting in the Staging of Lymphoma: A Delphi Consensus Proposal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Expert Panel
2.2. Selection of the Delphi Domains and Items
2.3. Statistical Analysis
3. Results
3.1. Structured Report
- Lesion site (e.g., lymph node disease, bulky disease, spleen or extra-nodal disease). For nodal disease we clarified the site, according to the stage: limited disease (stage I-II) or advanced disease (stage III-IV).
- Size, i.e., largest dimension on axial plane (mm) and dimension of the axis perpendicular to the largest diameter (mm).
- CT appearance (areas of contrast enhancement and areas of necrosis/colliquation).
- Relationship with neighboring structures.
3.2. Consensus Agreement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onaindia, A.; Santiago-Quispe, N.; Iglesias-Martinez, E.; Romero-Abrio, C. Molecular Update and Evolving Classification of Large B-Cell Lymphoma. Cancers 2021, 13, 3352. [Google Scholar] [CrossRef]
- de Leval, L.; Jaffe, E.S. Lymphoma Classification. Cancer J. 2020, 26, 176–185. [Google Scholar] [CrossRef]
- Kirienko, M.; Ninatti, G.; Cozzi, L.; Voulaz, E.; Gennaro, N.; Barajon, I.; Ricci, F.; Carlo-Stella, C.; Zucali, P.; Sollini, M.; et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. La Radiol. Med. 2020, 125, 951–960. [Google Scholar] [CrossRef]
- Lian, S.; Zhang, C.; Chi, J.; Huang, Y.; Shi, F.; Xie, C. Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps. La Radiol. Med. 2020, 125, 647–653. [Google Scholar] [CrossRef]
- Zanoni, L.; Mattana, F.; Calabrò, D.; Paccagnella, A.; Broccoli, A.; Nanni, C.; Fanti, S. Overview and recent advances in PET/CT imaging in lymphoma and multiple myeloma. Eur. J. Radiol. 2021, 141, 109793. [Google Scholar] [CrossRef]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058, Erratum in 2016, 34, 2562. [Google Scholar] [CrossRef] [PubMed]
- Vriens, D.; Visser, E.P.; de Geus-Oei, L.-F.; Oyen, W.J. Methodological considerations in quantification of oncological FDG PET studies. Eur. J. Nucl. Med. Mol. Imaging 2009, 37, 1408–1425. [Google Scholar] [CrossRef] [Green Version]
- European Society of Radiology (ESR). ESR paper on structured reporting in radiology. Insights Imaging 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granata, V.; Caruso, D.; Grassi, R.; Cappabianca, S.; Reginelli, A.; Rizzati, R.; Masselli, G.; Golfieri, R.; Rengo, M.; Regge, D.; et al. Structured Reporting of Rectal Cancer Staging and Restaging: A Consensus Proposal. Cancers 2021, 13, 2135. [Google Scholar] [CrossRef] [PubMed]
- Faggioni, L.; Coppola, F.; Ferrari, R.; Neri, E.; Regge, D. Usage of structured reporting in radiological practice: Results from an Italian online survey. Eur. Radiol. 2016, 27, 1934–1943. [Google Scholar] [CrossRef]
- Neri, E.; Coppola, F.; Larici, A.R.; Sverzellati, N.; Mazzei, M.A.; Sacco, P.; Dalpiaz, G.; Feragalli, B.; Miele, V.; Grassi, R. Structured reporting of chest CT in COVID-19 pneumonia: A consensus proposal. Insights Imaging 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Italian Society of Medical and Interventional Radiology (SIRM). Available online: https://www.sirm.org/ (accessed on 30 August 2021).
- Beets-Tan, R.G.H.; Lambregts, D.M.J.; Maas, M.; Bipat, S.; Barbaro, B.; Curvo-Semedo, L.; Fenlon, H.M.; Gollub, M.J.; Gourtsoyianni, S.; Halligan, S.; et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur. Radiol. 2018, 28, 1465–1475, Erratum in 2018, 28, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
- KSAR Study Group for Rectal Cancer Essential Items for Structured Reporting of Rectal Cancer MRI: 2016 Consensus Recommendation from the Korean Society of Abdominal Radiology. Korean J. Radiol. 2017, 18, 132–151. [CrossRef] [PubMed] [Green Version]
- Lee, D.H.; Kim, B.; Lee, E.S.; Kim, H.J.; Min, J.H.; Lee, J.M.; Choi, M.H.; Seo, N.; Choi, S.H.; Kim, S.H.; et al. Radiologic Evaluation and Structured Reporting Form for Extrahepatic Bile Duct Cancer: 2019 Consensus Recommendations from the Korean Society of Abdominal Radiology. Korean J. Radiol. 2021, 22, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Schoeppe, F.; Sommer, W.H.; Nörenberg, D.; Verbeek, M.; Bogner, C.; Westphalen, C.B.; Dreyling, M.; Rummeny, E.J.; Fingerle, A.A. Structured reporting adds clinical value in primary CT staging of diffuse large B-cell lymphoma. Eur. Radiol. 2018, 28, 3702–3709. [Google Scholar] [CrossRef]
- Kahn, C.E.; Genereaux, B.; Langlotz, C.P. Conversion of Radiology Reporting Templates to the MRRT Standard. J. Digit. Imaging 2015, 28, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Becker, G. Creating comparability among reliability coefficients: The case of Cronbach Alpha and Cohen Kappa. Psychol. Rep. 2000, 87, 1171. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Grassi, R.; Miele, V.; Giovagnoni, A. Artificial intelligence: A challenge for third millennium radiologist. La Radiol. Med. 2019, 124, 241–242. [Google Scholar] [CrossRef] [Green Version]
- Nardone, V.; Boldrini, L.; Grassi, R.; Franceschini, D.; Morelli, I.; Becherini, C.; Loi, M.; Greto, D.; Desideri, I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers 2021, 13, 3590. [Google Scholar] [CrossRef]
- Neri, E.; Coppola, F.; Miele, V.; Bibbolino, C.; Grassi, R. Artificial intelligence: Who is responsible for the diagnosis? La Radiol. Med. 2020, 125, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Van Assen, M.; Muscogiuri, G.; Caruso, D.; Lee, S.J.; Laghi, A.; De Cecco, C.N. Artificial intelligence in cardiac radiology. La Radiol. Med. 2020, 125, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Grassi, R.; Fusco, R.; Belli, A.; Cutolo, C.; Pradella, S.; Grazzini, G.; La Porta, M.; Brunese, M.C.; De Muzio, F.; et al. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma. Infect. Agents Cancer 2021, 16, 53. [Google Scholar] [CrossRef]
- Granata, V.; Grassi, R.; Fusco, R.; Galdiero, R.; Setola, S.V.; Palaia, R.; Belli, A.; Silvestro, L.; Cozzi, D.; Brunese, L.; et al. Pancreatic cancer detection and characterization: State of the art and radiomics. Eur. Rev. Med Pharmacol. Sci. 2021, 25, 3684–3699. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Fusco, R.; Barretta, M.L.; Picone, C.; Avallone, A.; Belli, A.; Patrone, R.; Ferrante, M.; Cozzi, D.; Grassi, R.; et al. Radiomics in hepatic metastasis by colorectal cancer. Infect. Agents Cancer 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Reinert, C.P.; Krieg, E.-M.; Bösmüller, H.; Horger, M. Mid-term response assessment in multiple myeloma using a texture analysis approach on dual energy-CT-derived bone marrow images—A proof of principle study. Eur. J. Radiol. 2020, 131. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-T.; Shan, Q.-Y.; Chen, S.-L.; Li, B.; Feng, S.-T.; Xu, E.-J.; Li, X.; Long, J.-Y.; Xie, X.-Y.; Lu, M.-D.; et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: Technical reproducibility of acquisition and scanners. La Radiol. Med. 2020, 125, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Shiri, I.; Hajianfar, G.; Oveisi, N.; Abdollahi, H.; Deevband, M.R.; Oveisi, M.; Zaidi, H. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. La Radiol. Med. 2020, 125, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Farchione, A.; Larici, A.R.; Masciocchi, C.; Cicchetti, G.; Congedo, M.T.; Franchi, P.; Gatta, R.; Cicero, S.L.; Valentini, V.; Bonomo, L.; et al. Exploring technical issues in personalized medicine: NSCLC survival prediction by quantitative image analysis—usefulness of density correction of volumetric CT data. La Radiol. Med. 2020, 125, 625–635. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, L.; Li, G.; Zhang, X.; Ren, J.; Shi, Z.; Li, J.; Yu, S. Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. La Radiol. Med. 2020, 125, 465–473. [Google Scholar] [CrossRef]
- Fusco, R.; Piccirillo, A.; Sansone, M.; Granata, V.; Rubulotta, M.; Petrosino, T.; Barretta, M.; Vallone, P.; Di Giacomo, R.; Esposito, E.; et al. Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification. Diagnostics 2021, 11, 815. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Granata, V.; Mazzei, M.A.; Di Meglio, N.; Del Roscio, D.; Moroni, C.; Monti, R.; Cappabianca, C.; Picone, C.; Neri, E.; et al. Quantitative imaging decision support (QIDSTM) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan. Cancer Control. 2021, 28. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Avallone, A.; De Stefano, A.; Ottaiano, A.; Sbordone, C.; Brunese, L.; Izzo, F.; Petrillo, A. Radiomics-Derived Data by Contrast Enhanced Magnetic Resonance in RAS Mutations Detection in Colorectal Liver Metastases. Cancers 2021, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Granata, V.; Petrillo, A. Introduction to Special Issue of Radiology and Imaging of Cancer. Cancers 2020, 12, 2665. [Google Scholar] [CrossRef]
- Schicchi, N.; Fogante, M.; Palumbo, P.; Agliata, G.; Pirani, P.E.; Di Cesare, E.; Giovagnoni, A. The sub-millisievert era in CTCA: The technical basis of the new radiation dose approach. La Radiol. Med. 2020, 125, 1024–1039. [Google Scholar] [CrossRef]
- Do, T.D.; Rheinheimer, S.; Kauczor, H.-U.; Stiller, W.; Weber, T.; Skornitzke, S. Image quality evaluation of dual-layer spectral CT in comparison to single-layer CT in a reduced-dose setting. Eur. Radiol. 2020, 30, 5709–5719. [Google Scholar] [CrossRef]
- Karpitschka, M.; Augart, D.; Becker, H.-C.; Reiser, M.; Graser, A. Dose reduction in oncological staging multidetector CT: Effect of iterative reconstruction. Br. J. Radiol. 2013, 86, 20120224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Yang, Z.; Gong, L.; Jiang, S.; Wang, L.; Zhang, H. Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations. La Radiol. Med. 2020, 125, 374–383. [Google Scholar] [CrossRef]
- Unterrainer, M.; Ruzicka, M.; Fabritius, M.P.; Mittlmeier, L.M.; Winkelmann, M.; Rübenthaler, J.; Brendel, M.; Subklewe, M.; Von Bergwelt-Baildon, M.; Ricke, J.; et al. PET/CT imaging for tumour response assessment to immunotherapy: Current status and future directions. Eur. Radiol. Exp. 2020, 4, 1–13. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Giona, A.; Di Martino, A.; Errante, Y.; Scarciolla, L.; Mallio, C.A.; Denaro, V.; Zobel, B.B. Extra-spinal incidental findings at lumbar spine MRI in the general population: A large cohort study. Insights Imaging 2013, 4, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.; Powell, D.K.; Kagetsu, N.J. Efficacy of a Checklist-Style Structured Radiology Reporting Template in Reducing Resident Misses on Cervical Spine Computed Tomography Examinations. J. Digit. Imaging 2014, 27, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Brook, O.R.; Brook, A.; Vollmer, C.M.; Kent, T.S.; Sanchez, N.; Pedrosa, I. Structured Reporting of Multiphasic CT for Pancreatic Cancer: Potential Effect on Staging and Surgical Planning. Radiology 2015, 274, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Marcal, L.P.; Fox, P.S.; Evans, D.B.; Fleming, J.B.; Varadhachary, G.R.; Katz, M.H.; Tamm, E.P. Analysis of free-form radiology dictations for completeness and clarity for pancreatic cancer staging. Abdom. Imaging 2015, 40, 2391–2397. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.A.; Silveira, P.C.; Sainani, N.I.; Khorasani, R. Impact of a Structured Report Template on the Quality of MRI Reports for Rectal Cancer Staging. Am. J. Roentgenol. 2015, 205, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.L.; Bolos, P.R. Reporting and Dictation. In Branstetter IV BF: Practical Imaging Informatics: Foundations and Applications for PACS Professionals; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2009; pp. 147–162. [Google Scholar]
Panelist # | A1. Anthropometric Data | A2. Personal Assessments | A3. Allergies and Adverse Reactions | B1. Clinical Presentation | B2. BOM | B3. Laboratory Tests | B4. Histology | C1. Exam Data | C2. Precontrast Scans | C3. Post-Contrast Scans | 4. Dosimetric Data | C5. Use of Contrast Medium | C6. Adverse Events in Progress | D1. Lymph Node Locations | D2. Bulky Disease | D3. Spleen | D4. Extranodal Locations | D5. Non Measurable Injuries | D6. Bone Lesions | D7. Selected Target Lesions | D8. SPD (Sum Product Diameter) Calculation | D9. Conclusions | E1. Meaningful Key Images | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 102 |
2 | 5 | 5 | 4 | 3 | 3 | 3 | 3 | 5 | 3 | 3 | 1 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 96 |
3 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 111 |
4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 91 |
5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 113 |
6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 114 |
7 | 4 | 3 | 5 | 5 | 5 | 2 | 5 | 4 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 97 |
8 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 4 | 3 | 2 | 5 | 5 | 5 | 3 | 4 | 5 | 3 | 3 | 3 | 3 | 2 | 3 | 5 | 75 |
9 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 111 |
10 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 112 |
11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
12 | 4 | 3 | 4 | 5 | 2 | 3 | 5 | 4 | 5 | 5 | 5 | 2 | 5 | 3 | 4 | 5 | 3 | 3 | 3 | 3 | 2 | 3 | 5 | 86 |
13 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 5 | 5 | 5 | 5 | 2 | 3 | 4 | 5 | 4 | 3 | 3 | 2 | 5 | 96 |
14 | 2 | 3 | 5 | 4 | 5 | 5 | 5 | 5 | 4 | 2 | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 3 | 5 | 4 | 5 | 5 | 2 | 97 |
15 | 5 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 108 |
Mean | 4.0 | 4.1 | 4.6 | 4.4 | 4.3 | 4.1 | 4.4 | 4.7 | 4.0 | 3.9 | 4.5 | 4.6 | 4.9 | 4.4 | 4.6 | 4.7 | 4.5 | 4.4 | 4.6 | 4.3 | 4.4 | 4.5 | 4.8 | 101.6 |
Standard deviation | 0.9 | 1.0 | 0.7 | 1.0 | 1.1 | 1.2 | 1.1 | 0.5 | 1.3 | 1.5 | 1.3 | 0.4 | 0.4 | 0.7 | 0.4 | 0.5 | 0.8 | 0.8 | 0.7 | 0.7 | 1.0 | 0.7 | 0.0 | 11.8 |
Panelist # | A1. Anthropometric Data | A2. Personal Assessments | A3. Allergies and Adverse Reactions | B1. Clinical Presentation | B2. BOM | B3. Laboratory Tests | B4. Histology | C1. Exam Data | C2. Precontrast Scans | C3. Post-contrast Scans | 4. Dosimetric Data | C5. Use of Contrast Medium | C6. Adverse Events in Progress | D1. Lymph Node Locations | D2. Bulky Disease | D3. Spleen | D4. Extranodal Locations | D5. Non Measurable Injuries | D6. Bone Lesions | D7. Selected Target Lesions | D8. SPD (Sum Product Diameter) Calculation | D9. Conclusions | E1. Meaningful Key Images | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
2 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
3 | 5 | 3 | 5 | 3 | 3 | 3 | 4 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 103 |
4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
5 | 3 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 4 | 5 | 3 | 4 | 5 | 5 | 5 | 5 | 105 |
6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
7 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 5 | 5 | 109 |
8 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
9 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5 | 113 |
10 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
12 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 114 |
13 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
14 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
15 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 115 |
Mean | 4.8 | 4.8 | 5.0 | 4.8 | 4.8 | 4.8 | 4.9 | 4.9 | 4.9 | 4.9 | 4.9 | 5.0 | 5.0 | 4.9 | 5.0 | 4.9 | 5.0 | 4.8 | 4.9 | 4.9 | 4.9 | 5.0 | 5.0 | 112.9 |
Standard deviation | 0.6 | 0.7 | 0.0 | 0.7 | 0.7 | 0.7 | 0.3 | 0.3 | 0.4 | 0.4 | 0.3 | 0.0 | 0.0 | 0.3 | 0.0 | 0.3 | 0.0 | 0.7 | 0.3 | 0.4 | 0.3 | 0.0 | 0.0 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granata, V.; Pradella, S.; Cozzi, D.; Fusco, R.; Faggioni, L.; Coppola, F.; Grassi, R.; Maggialetti, N.; Buccicardi, D.; Lacasella, G.V.; et al. Computed Tomography Structured Reporting in the Staging of Lymphoma: A Delphi Consensus Proposal. J. Clin. Med. 2021, 10, 4007. https://doi.org/10.3390/jcm10174007
Granata V, Pradella S, Cozzi D, Fusco R, Faggioni L, Coppola F, Grassi R, Maggialetti N, Buccicardi D, Lacasella GV, et al. Computed Tomography Structured Reporting in the Staging of Lymphoma: A Delphi Consensus Proposal. Journal of Clinical Medicine. 2021; 10(17):4007. https://doi.org/10.3390/jcm10174007
Chicago/Turabian StyleGranata, Vincenza, Silvia Pradella, Diletta Cozzi, Roberta Fusco, Lorenzo Faggioni, Francesca Coppola, Roberta Grassi, Nicola Maggialetti, Duccio Buccicardi, Giorgia Viola Lacasella, and et al. 2021. "Computed Tomography Structured Reporting in the Staging of Lymphoma: A Delphi Consensus Proposal" Journal of Clinical Medicine 10, no. 17: 4007. https://doi.org/10.3390/jcm10174007
APA StyleGranata, V., Pradella, S., Cozzi, D., Fusco, R., Faggioni, L., Coppola, F., Grassi, R., Maggialetti, N., Buccicardi, D., Lacasella, G. V., Montella, M., Ciaghi, E., Bellifemine, F., De Filippo, M., Rengo, M., Bortolotto, C., Prost, R., Barresi, C., Cappabianca, S., ... Miele, V. (2021). Computed Tomography Structured Reporting in the Staging of Lymphoma: A Delphi Consensus Proposal. Journal of Clinical Medicine, 10(17), 4007. https://doi.org/10.3390/jcm10174007