Real-World Outcomes Using a Spinal Cord Stimulation Device Capable of Combination Therapy for Chronic Pain: A European, Multicenter Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting and Participants
2.3. Data Collection
2.4. Statistics
2.5. Device Description
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapural, L.; Yu, C.; Doust, M.W.; Gliner, B.E.; Vallejo, R.; Sitzman, B.T.; Amirdelfan, K.; Morgan, D.M.; Yearwood, T.L.; Bundschu, R.; et al. Comparison of 10-kHz High-Frequency and Traditional Low-Frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: 24-Month Results from a Multicenter, Randomized, Controlled Pivotal Trial. Neurosurgery 2016, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Deer, T.; Slavin, K.V.; Amirdelfan, K.; North, R.B.; Burton, A.W.; Yearwood, T.L.; Tavel, E.; Staats, P.; Falowski, S.; Pope, J.; et al. Success Using Neuromodulation with BURST (SUNBURST) Study: Results from a Prospective, Randomized Controlled Trial Using a Novel Burst Waveform. Neuromodulation 2018, 21, 56–66. [Google Scholar] [CrossRef]
- Sweet, J.; Badjatiya, A.; Tan, D.; Miller, J. Paresthesia-Free High-Density Spinal Cord Stimulation for Post-laminectomy Syndrome in a Prescreened Population: A Prospective Case Series. Neuromodulation 2016, 19, 260–267. [Google Scholar] [CrossRef]
- Viswanath, O.; Urits, I.; Bouley, E.; Peck, J.M.; Thompson, W.; Kaye, A.D. Evolving Spinal Cord Stimulation Technologies and Clinical Implications in Chronic Pain Management. Curr. Pain Headache Rep. 2019, 23, 39. [Google Scholar] [CrossRef]
- North, R.B. Spinal Cord Stimulation: A Critical Scientific Appraisal. In Proceedings of the Annual Meeting of the North American Neuromodulation Society, Las Vegas, NV, USA, 17–20 January 2019. [Google Scholar]
- Fishman, M.A.; Antony, A.; Esposito, M.; Deer, T.; Levy, R. The Evolution of Neuromodulation in the Treatment of Chronic Pain: Forward-Looking Perspectives. Pain Med. 2019, 20 (Suppl. 1), S58–S68. [Google Scholar] [CrossRef] [Green Version]
- European Migraine and Headache Alliance. Marking 50 Years of Spinal Cord Stimulation. Available online: https://www.emhalliance.org/news/curabitur-facilisis-pellentesque-pharetra-donec-justo-urna/ (accessed on 4 January 2020).
- Hayek, S.M.; Veizi, E.; Hanes, M. Treatment-Limiting Complications of Percutaneous Spinal Cord Stimulator Implants: A Review of Eight Years of Experience from an Academic Center Database. Neuromodulation 2015, 18, 603–608. [Google Scholar] [CrossRef]
- Antonovich, D.D.; Gama, W.; Ritter, A.; Wolf, B.J.; Nobles, R.H.; Selassie, M.A.; Hillegass, M.G. Reoperation Rates of Percutaneous and Paddle Leads in Spinal Cord Stimulator Systems: A Single-Center Retrospective Analysis. Pain Med. 2021, 22, 34–40. [Google Scholar] [CrossRef]
- Negoita, S.; Duy, P.Q.; Mahajan, U.V.; Anderson, W.S. Timing and prevalence of revision and removal surgeries after spinal cord stimulator implantation. J. Clin. Neurosci. 2019, 62, 80–82. [Google Scholar] [CrossRef] [PubMed]
- North, J.M.; Hong, K.J.; Cho, P.Y. Clinical Outcomes of 1 kHz Subperception Spinal Cord Stimulation in Implanted Patients with Failed Paresthesia-Based Stimulation: Results of a Prospective Randomized Controlled Trial. Neuromodulation 2016, 19, 731–737. [Google Scholar] [CrossRef]
- de Andres, J.; Monsalve-Dolz, V.; Fabregat-Cid, G.; Villanueva-Perez, V.; Harutyunyan, A.; Asensio-Samper, J.M.; Sanchis-Lopez, N. Prospective, Randomized Blind Effect-on-Outcome Study of Conventional vs High-Frequency Spinal Cord Stimulation in Patients with Pain and Disability Due to Failed Back Surgery Syndrome. Pain Med. 2017, 18, 2401–2421. [Google Scholar] [CrossRef] [Green Version]
- Shechter, R.; Yang, F.; Xu, Q.; Cheong, Y.K.; He, S.Q.; Sdrulla, A.; Carteret, A.F.; Wacnik, P.W.; Dong, X.; Meyer, R.A.; et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 2013, 119, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Cuellar, J.M.; Alataris, K.; Walker, A.; Yeomans, D.C.; Antognini, J.F. Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation 2013, 16, 318–327. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Q.; Yang, F.; Shi, C.; Sivanesan, E.; Liu, S.; Chen, X.; Sarma, S.V.; Vera-Portocarrero, L.P.; Linderoth, B.; et al. The Impact of Electrical Charge Delivery on Inhibition of Mechanical Hypersensitivity in Nerve-Injured Rats by Sub-Sensory Threshold Spinal Cord Stimulation. Neuromodulation 2019, 22, 163–171. [Google Scholar] [CrossRef]
- Reddy, C.G.; Dalm, B.D.; Flouty, O.E.; Gillies, G.T.; Howard, M.A., 3rd; Brennan, T.J. Comparison of Conventional and Kilohertz Frequency Epidural Stimulation in Patients Undergoing Trialing for Spinal Cord Stimulation: Clinical Considerations. World Neurosurg. 2016, 88, 586–591. [Google Scholar] [CrossRef]
- Vallejo, R.; Bradley, K.; Kapural, L. Spinal Cord Stimulation in Chronic Pain: Mode of Action. Spine 2017, 42 (Suppl. 14), S53–S60. [Google Scholar] [CrossRef]
- Linderoth, B.; Foreman, R.D. Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation 2017, 20, 525–533. [Google Scholar] [CrossRef]
- Metzger, C.S.; Hammond, M.B.; Pyles, S.T.; Washabaugh, E.P., 3rd; Waghmarae, R.; Berg, A.P.; North, J.M.; Pei, Y.; Jain, R. Pain relief outcomes using an SCS device capable of delivering combination therapy with advanced waveforms and field shapes. Expert. Rev. Med. Devices 2020, 17, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Osman, M.; Orhurhu, V.; Viswanath, O.; Kaye, A.D.; Simopoulos, T.; Yazdi, C. A Case Study of Combined Perception-Based and Perception-Free Spinal Cord Stimulator Therapy for the Management of Persistent Pain after a Total Knee Arthroplasty. Pain Ther. 2019, 8, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Caylor, J.; Reddy, R.; Yin, S.; Cui, C.; Huang, M.; Huang, C.; Ramesh, R.; Baker, D.G.; Simmons, A.; Souza, D.; et al. Spinal cord stimulation in chronic pain: Evidence and theory for mechanisms of action. Bioelectron. Med. 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Sdrulla, A.D.; Guan, Y.; Raja, S.N. Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms. Pain Pract. 2018, 18, 1048–1067. [Google Scholar] [CrossRef]
- Campbell, C.M.; Buenaver, L.F.; Raja, S.N.; Kiley, K.B.; Swedberg, L.J.; Wacnik, P.W.; Cohen, S.P.; Erdek, M.A.; Williams, K.A.; Christo, P.J. Dynamic Pain Phenotypes are Associated with Spinal Cord Stimulation-Induced Reduction in Pain: A Repeated Measures Observational Pilot Study. Pain Med. 2015, 16, 1349–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriek, N.; Groeneweg, J.G.; Stronks, D.L.; de Ridder, D.; Huygen, F.J. Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur. J. Pain 2017, 21, 507–519. [Google Scholar] [CrossRef]
- Geurts, J.W.; Joosten, E.A.; van Kleef, M. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain 2017, 158, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Veizi, E.; Hayek, S.M.; North, J.; Chafin, T.B.; Yearwood, T.L.; Raso, L.; Frey, R.; Cairns, K.; Berg, A.; Brendel, J.; et al. Spinal Cord Stimulation (SCS) with Anatomically Guided (3D) Neural Targeting Shows Superior Chronic Axial Low Back Pain Relief Compared to Traditional SCS-LUMINA Study. Pain Med. 2017, 18, 1534–1548. [Google Scholar] [CrossRef] [Green Version]
- Paz-Solís, J.; Thomson, S.; Jain, R.; Chen, L.; Huertas, I.; Doan, Q. Exploration of High and Low Frequency Options for Subperception Spinal Cord Stimulation Using Neural Dosing Parameter Relationships: The HALO Study. Neuromodulation 2021. [Google Scholar] [CrossRef]
- Thomson, S.J.; Tavakkolizadeh, M.; Love-Jones, S.; Patel, N.K.; Gu, J.W.; Bains, A.; Doan, Q.; Moffitt, M. Effects of Rate on Analgesia in Kilohertz Frequency Spinal Cord Stimulation: Results of the PROCO Randomized Controlled Trial. Neuromodulation 2018, 21, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiede, J.; Brown, L.; Gekht, G.; Vallejo, R.; Yearwood, T.; Morgan, D. Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation 2013, 16, 370–375. [Google Scholar] [CrossRef]
- Al-Kaisy, A.; van Buyten, J.; Smet, I.; Palmisani, S.; Pang, D.; Smith, T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med. 2014, 15, 347–354. [Google Scholar] [CrossRef]
- Wille, F.; Breel, J.S.; Bakker, E.W.; Hollmann, M.W. Altering Conventional to High Density Spinal Cord Stimulation: An Energy Dose-Response Relationship in Neuropathic Pain Therapy. Neuromodulation 2017, 20, 71–80. [Google Scholar] [CrossRef]
- Duse, G.; Reverberi, C.; Dario, A. Effects of Multiple Waveforms on Patient Preferences and Clinical Outcomes in Patients Treated with Spinal Cord Stimulation for Leg and/or Back Pain. Neuromodulation 2019, 22, 200–207. [Google Scholar] [CrossRef]
- Benyamin, R.; Galan, V.; Hatheway, J.; Kim, P.; Choi, D.; Falowski, S.; Calodney, A.; Sweet, J.; Yu, C.; Kapural, L.; et al. Options: A Prospective, Open-Label Study of High-Dose Spinal Cord Stimulation in Patients with Chronic Back and Leg Pain. Pain Physician 2020, 23, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Uno, T. Possible Mechanisms of Spinal Cord Stimulation: Disinhibition of the Dorsal Horn Circuits and Ascending Nociceptive Control. Neuromodulation 2020, 23, 407–408. [Google Scholar] [CrossRef]
- Taghipour, M.; Ghaffarpasand, F. Antinocioceptive Effects of Spinal Cord Stimulation by Activation of Periaqueductal Gray Matter and Rostral Ventromedial Medulla: A Mechanism Beyond the Gate Control Theory. Neuromodulation 2018, 21, 520–521. [Google Scholar] [CrossRef]
- Chakravarthy, K.; Richter, H.; Christo, P.J.; Williams, K.; Guan, Y. Spinal Cord Stimulation for Treating Chronic Pain: Reviewing Preclinical and Clinical Data on Paresthesia-Free High-Frequency Therapy. Neuromodulation 2018, 21, 10–18. [Google Scholar] [CrossRef]
- Zhang, T.C.; Janik, J.J.; Peters, R.V.; Chen, G.; Ji, R.; Grill, W.M. Spinal Sensory Projection Neuron Responses to Spinal Cord Stimulation Are Mediated by Circuits Beyond Gate Control. J. Neurophysiol. 2015, 114, 284–300. [Google Scholar] [CrossRef] [Green Version]
- Idlett, S.; Halder, M.; Zhang, T.; Quevedo, J.; Brill, N.; Gu, W.; Moffitt, M.; Hochman, S. Assessment of Axonal Recruitment Using Model-Guided Preclinical Spinal Cord Stimulation in the Ex Vivo Adult Mouse Spinal Cord. J. Neurophysiol. 2019, 122, 1406–1420. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wacnik, P.W.; Yang, F.; Carteret, A.F.; Chung, C.; Meyer, R.A.; Raja, S.N. Spinal cord stimulation-induced analgesia: Electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113, 1392–1405. [Google Scholar] [CrossRef] [Green Version]
- Stiller, C.O.; Cui, J.G.; O’Connor, W.T.; Brodin, E.; Meyerson, B.A.; Linderoth, B. Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery 1996, 39, 367–375. [Google Scholar] [CrossRef]
- Lee, K.Y.; Bae, C.; Lee, D.; Kagan, Z.; Bradley, K.; Chung, J.M.; Lab, J.H. Low-intensity, Kilohertz Frequency Spinal Cord Stimulation Differently Affects Excitatory and Inhibitory Neurons in the Rodent Superficial Dorsal Horn. Neuroscience 2020, 428, 132–139. [Google Scholar] [CrossRef]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Szucs, P.; Luz, L.L.; Pinho, R.; Aguiar, P.; Antal, Z.; Tiong, S.Y.X.; Todd, A.J.; Safronov, B.V. Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. J. Comp. Neurol. 2013, 521, 2719–2741. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Brownstone, R.M. Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur. J. Pain 2019, 23, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, J.T. Axon termination conditions for electrical stimulation. IEEE Trans. Biomed. Eng. 1993, 40, 654–663. [Google Scholar] [CrossRef]
- McIntyre, C.C.; Grill, W.M. Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J. 1999, 76, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, B.; Jankowska, E. Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. J. Physiol. 1976, 258, 33–61. [Google Scholar] [CrossRef]
- Radman, T.; Ramos, R.L.; Brumberg, J.C.; Bikson, M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009, 2, 215–228.e2283. [Google Scholar] [CrossRef] [Green Version]
- Dostrovsky, J.O.; Levy, R.; Wu, J.P.; Hutchison, W.D.; Tasker, R.R.; Lozano, A.M. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J. Neurophysiol. 2000, 84, 570–574. [Google Scholar] [CrossRef]
Gender—Females (%) | 53.1% (101/188) |
Age (Mean (SD)) | 60.0 (12.3) years n = 180 |
Key Diagnosis (patients may have multiple diagnoses) | Lumbosacral Radiculopathy 21% |
Failed Back Surgery Syndrome 64% | |
Pain Location (%) | Low Back and Legs (85.6%) |
Baseline NRS (Mean (SD)) | 7.9 (1.7) n = 188 |
Follow-up duration (Mean (SD)) | 296 (207) days n = 187 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallewaard, J.W.; Paz-Solis, J.F.; De Negri, P.; Canós-Verdecho, M.A.; Belaid, H.; Thomson, S.J.; Abejón, D.; Vesper, J.; Mehta, V.; Rigoard, P.; et al. Real-World Outcomes Using a Spinal Cord Stimulation Device Capable of Combination Therapy for Chronic Pain: A European, Multicenter Experience. J. Clin. Med. 2021, 10, 4085. https://doi.org/10.3390/jcm10184085
Kallewaard JW, Paz-Solis JF, De Negri P, Canós-Verdecho MA, Belaid H, Thomson SJ, Abejón D, Vesper J, Mehta V, Rigoard P, et al. Real-World Outcomes Using a Spinal Cord Stimulation Device Capable of Combination Therapy for Chronic Pain: A European, Multicenter Experience. Journal of Clinical Medicine. 2021; 10(18):4085. https://doi.org/10.3390/jcm10184085
Chicago/Turabian StyleKallewaard, Jan Willem, Jose Francisco Paz-Solis, Pasquale De Negri, Maria Angeles Canós-Verdecho, Hayat Belaid, Simon J. Thomson, David Abejón, Jan Vesper, Vivek Mehta, Philippe Rigoard, and et al. 2021. "Real-World Outcomes Using a Spinal Cord Stimulation Device Capable of Combination Therapy for Chronic Pain: A European, Multicenter Experience" Journal of Clinical Medicine 10, no. 18: 4085. https://doi.org/10.3390/jcm10184085
APA StyleKallewaard, J. W., Paz-Solis, J. F., De Negri, P., Canós-Verdecho, M. A., Belaid, H., Thomson, S. J., Abejón, D., Vesper, J., Mehta, V., Rigoard, P., Maino, P., Love-Jones, S., Peña, I. F., Bayerl, S., Perruchoud, C., Bougeard, R., Mertz, C., Pei, Y., & Jain, R. (2021). Real-World Outcomes Using a Spinal Cord Stimulation Device Capable of Combination Therapy for Chronic Pain: A European, Multicenter Experience. Journal of Clinical Medicine, 10(18), 4085. https://doi.org/10.3390/jcm10184085