Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Methods
2.2.1. TCT
2.2.2. Echocardiographic Examination
- Right atrial (RA) diameter, in a four-chamber view.
- Right ventricle (RV) diameter, measured in a four-chamber view, under the tricuspid annulus.
- Tricuspid annular plane systolic excursion (TAPSE), values under 17 mm, measured at the lateral tricuspid valve annulus in M-Mode, were considered suggestive for RV dysfunction.
- Tricuspid Regurgitation Velocity (TRV), determined in a continuous Doppler.
- Echo-cardiographically estimated systolic PAP (esPAP), based on the peak TRV, taking into account the right atrial pressure (RAP), determined by assessing the inferior vena cava diameter, as well as its respiratory variations. In this study, we considered that esPAP values of ≥35 mm Hg at rest, indicates PH [3,10] with the severity ranging from mild (35–44 mm Hg), to moderate (45–60 mm Hg) and severe (>60 mm Hg) [14,15].
- Right ventricular global longitudinal strain (RV-GLS) was performed in an apical four chamber view [18]. After tracing the RV endocardial border, the region of interest was automatically generated, and manual corrections were subsequently performed to fit the thickness of the RV myocardial wall [19]. According to the latest international recommendations, RV dysfunction (RVD) was defined as either TAPSE under <17 mm and/or RV-GLS under −28% (borderline values for TAPSE were 17–20 and for RV-GLS −25 to −27) [17,18].
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Press Conference. The World Health Organization (WHO) Has Officially Named the Disease Caused by the Novel Coronavirus as COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 11 March 2020).
- Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhoua, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020, 311, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Pagnesi, M.; Baldetti, L.; Beneduce, A.; Calvo, F.; Gramegna, M.; Pazzanese, V.; Ingallina, G.; Napolano, A.; Finazzi, R.; Ruggeri, A.; et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. MNJ J. Heart 2020, 106, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Potus, F.; Mai, V.; Lebret, M.; Malenfant, S.; Breton-Gagnon, E.; Lajoie, A.C.; Boucherat, O.; Bonnet, S.; Provencher, S. Review: The pathophysiology of COVID-19 and SARS-CoV-2 infection novel insights on the pulmonary vascular consequences of COVID-19. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, C.; Janssen, M.; van der Horst, R.; van Kraaij, D.; Peeters, R.; van den Toorn, L.; Mostard, R. Unusually rapid development of pulmonary hypertension and right ventricular failure after COVID-19 pneumonia. EJCRIM 2020, 7, 001784. [Google Scholar]
- Stöbe, S.; Richter, S.; Seige, M.; Stehr, S.; Laufs, U.; Hagendorff, A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin. Res. Cardiol. 2020, 109, 1–18. [Google Scholar] [CrossRef]
- Wu, J.; Pan, J.; Teng, D.; Xu, X.; Feng, J.; Chen, Y.C. Interpretation of CT signs of 2019 novel coronavirus (COVID-19) pneumonia. Eur. Radiol. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Chung, M.; Bernheim, A.; Mei, X.; Zhang, N.; Huang, M.; Zeng, X.; Cui, J.; Xu, W.; Yang, Y.; Fayad, Z.A.; et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020, 295, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020. [Google Scholar] [CrossRef]
- WHO. World Health Organization: Clinical Management of COVID-19; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020, 295, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, P.S.; Carabello, B.A.; Lang, R.M.; Lopez, L.; Pellikka, P.A.; Picard, M.H.; Thomas, J.D.; Varghese, P.; Wang, T.Y.; Weissman, N.J.; et al. 2019 ACC/AHA/ASE key data elements and definitions for transthoracic echocardiography: A report of the American college of cardiology /American heart association task force on clinical data standards (writing committee to develop clinical data standards for transthoracic echocardiography) and the American society of echocardiography. Circ. Cardiovasc. Imaging 2019, 12. [Google Scholar] [CrossRef]
- Bursi, F.; Santangelo, G.; Sansalone, D.; Sansalone, D.; Valli, F.; Vella, A.M.; Toriello, F.; Barbieri, A.; Carugo, S.; Paolo, S. Prognostic utility of quantitative offline 2D-echocardiography in hospitalized patients with COVID-19 disease. Echocardiography 2020, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.E.; Franey, L.M.; Marwick, T.; Maeder, M.T.; Kaye, D.M.; Vlahos, A.P.; Serra, W.; Al-Azizi, K.; Schiller, N.B.; Lester, S.J. Noninvasive assessment of pulmonary vascular resistance by Doppler echocardiography. J. Am. Soc. Echocardiogr. 2013, 26, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.T.; Troutman, G.S.; Mao, F.; Fox, A.L.; Tanna, M.S.; Zamani, P.; Grandin, E.W.; Menachem, J.N.; Birati, E.Y.; Chirinos, J.A.; et al. Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: A non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension. Pulm. Circ. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baycan, O.F.; Barman, H.A.; Atici, A.; Tatlisu, A.; Bolen, F.; Ergen, P.; Icten, S.; Gungor, B.; Caliskan, M. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef]
- Madjid, M.; Solomon, S.; Vardeny, O. ACC Clinical Bulletin: Cardiac Implications of Novel Wuhan Coronavirus (2019-nCoV); Published February 13; ACC: Washington, DC, USA, 2020. [Google Scholar]
- Xiong, T.Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur. Heart J. 2020, 41, 1798–1800. [Google Scholar] [CrossRef] [Green Version]
- Vrettou, A.-R.; Parissis, J.; Ikonomidis, I. The dual role of echocardiography in the diagnosis of acute cardiac complications and treatment monitoring for coronavirus disease 2019 (COVID-19). Front. Cardiovasc. Med. 2020, 7, 129. [Google Scholar] [CrossRef]
- Kaminski, A.; Payne, A.; Roemer, S.; Ignatowski Khandheria, B.K. Answering to the call of critically ill patients: Limiting sonographer exposure to COVID-19 with focused protocols. J. Am. Soc. Echocardiogr. 2020, 33, 902–903. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, H.; Levy, F.; Cassol, M.; Meimoun, P.; Peltier, M.; Rusinaru, D.; Tribouilloy, C. Effects of age on pulmonary artery systolic pressure at rest and during exercise in normal adults. Eur. J. Echocardiogr. 2009, 10, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, E.M.; Gall, H.; Leening, M.J.G.; Lahousse, L.; Loth, D.W.; Krijthe, B.P.; Kiefte-de Jong, J.C.; Guy GHofman, B.A.; Stricker, B.H.; Ghofrani, H.A.; et al. Prevalence of pulmonary hypertension in the general population: The rotterdam study. PLoS ONE 2015, 10, e0130072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Wang, G.; Zhang, W.; Zhang, Y.; Li, W.Q.; Zhouet, Z. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil. Med. Res. 2020, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China, summary of a report of 72,314 cases from the chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Galiè, N.; McLaughlin, V.V.; Rubin, L.J.; Simonneau, G. An overview of the 6th world symposium on pulmonary hypertension. Eur. Respir. J. 2019, 53, 1802148. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All Patients | Patients with PH and Borderline esPAP | Patients with RVD and Borderline RVF |
---|---|---|---|
Number of cases | 91 | 7 (7.69%) 18 (19.78%) | 10 (10.28%) 12 (13.18%) |
Gender | Male 44 (48.35%) | Male 4 + 10 | Male 5 + 7 |
Women 47 (51.64%) | Women 3 + 8 | Women 4 + 6 | |
Age (median) | 46 (40–50) | 46 (40–50) | 48 (42.75–50.5) |
BMI | 26.8 (23.5–31.8) | 27.8 (23.1–31.8) | 29.6 (24.97–32.1) |
TCT global score | 4 (3–5) | 6 (5–7) | 6 (5–8) |
˂5 points | 58–63.73% | 3–12% | 1–4.54% |
5–10 points | 33–36.46% | 22–88% | 21–95.46% |
Echocardiography Results | |||
RA diameter | 3.5 (3.2–3.8) | 3.8 (3.7–4.05) | 3.8 (3.7–4.12) |
RV diameter | 2.8 (2.7–3) | 3 4 (3.3–3.7) | 3.4 (3.27–3.82) |
TRVmax | 2.3 (2.1–2.6) | 2.71 (2.66–3.25) | 2.72 (2.68–3.27) |
esPAP | 26.16 (22.64–30.24) | 34.4 (33.41–47.38) | 34.6 (33.78–47.77) |
PVR | 1.5 (1.2–2) | 2.5 (2–3.3) | 2.25 (2–3.2) |
TAPSE RV-GLS | 23 (22–24) −29 (−30–−28) | 20 (17.75–22) −26 (−27–−17.5) | 20 (17.37–21.25) −25 (−27–−17) |
Laboratory Results | |||
Leukocites (/uL) | 5820 (3740–8060) | 6025 (4570–7477.5) | |
Lymphocites (/uL) | 1790 (1430–2430) | 1740 (1160–2250) | 1790 (1407.5–2310) |
D-dimer (ng/mL) | 0.32 (0.29–0.4) | 0.41 (0.34–0.42) | 0.41 (0.33–0.42) |
CRP (mg/L) | 32.63 (10.78–42.73) | 45.58 (33.59–48.83) | 45.81 (42.64–49.16) |
Fibrinogen (g/L) | 2.92 (2.47–3.58) | 3.78 (3.26–4.08) | 3.88 (3.58–4.33) |
Interleukin-6 (pg/mL) | 5.6 (3.2–8.1) | 8.9 (8.7–9.65) | 9 (8.7–10.32) |
O2 saturation (%) | 96 (96–98) | 93 (90.5–96) | 93 (90–95.25) |
Time to normal PCR | 15 (14–17) | 18 (17–19.5) | 18 (17–21.75) |
Parameter | esPAP | RV-GLS | ||
---|---|---|---|---|
r (95%CI) | p | r (95%CI) | p | |
TCT Covid score | r = 0.608 (0.425; 0.751) | ˂0.001 | r = 0.547 (0.350; 0.699) | ˂0.001 |
CRP | r = 0.629 (0.472; 0.767) | ˂0.001 | r = 0.546 (0.360; 0.702) | ˂0.001 |
Interleukin-6 | r = 0.748 (0.594; 0.865) | ˂0.001 | r = 0.524 (0.300; 0.708) | 0.001 |
Fibrinogen | r = 0.428 (0.207; 0.610) | ˂0.001 | r = 0.483 (0.277; 0.664) | 0.001 |
Days until negativation | r = 0.598 (0.444; 0.743) | ˂0.001 | r = 0.540 (0.348; 0.711) | 0.001 |
Variable | β | ±SE | p | 95%CI for β |
---|---|---|---|---|
Multivariate linear regression analysis of esPAP | ||||
TCT COVID score | 1.488 | 0.295 | 0.001 | 0.903; 2.074 |
D-Dimers | −12.569 | 5.444 | 0.023 | −23.395; −1.744 |
Fibrinogen | −1.102 | 0.528 | 0.040 | −2.151; −0.052 |
Interleukin-6 | 0.526 | 0.175 | 0.004 | 0.178; 0.875 |
O2 saturation | −0.323 | 0.133 | 0.017 | −0.587; −0.058 |
PVR | 7.046 | 0.774 | 0.001 | 5.506; 8.586 |
Multivariate linear regression analysis of RV-GLS | ||||
TCTCOVID score | 0.556 | 0.138 | 0.001 | 0.281; 0.830 |
Interleukin-6 | −0.161 | 0.066 | 0.017 | −0.292; −0.030 |
TRVmax | −16.724 | 3.221 | 0.001 | −23.129; −10.318 |
esPAP | 1.138 | 0.180 | 0.001 | 0.780; 1.496 |
RA diameter | −1.582 | 0.446 | 0.001 | −2.469; −0.694 |
TAPSE | −0.361 | 0.101 | 0.001 | −2.469; −0.694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudoran, C.; Tudoran, M.; Lazureanu, V.E.; Marinescu, A.R.; Pop, G.N.; Pescariu, A.S.; Enache, A.; Cut, T.G. Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. J. Clin. Med. 2021, 10, 199. https://doi.org/10.3390/jcm10020199
Tudoran C, Tudoran M, Lazureanu VE, Marinescu AR, Pop GN, Pescariu AS, Enache A, Cut TG. Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. Journal of Clinical Medicine. 2021; 10(2):199. https://doi.org/10.3390/jcm10020199
Chicago/Turabian StyleTudoran, Cristina, Mariana Tudoran, Voichita Elena Lazureanu, Adelina Raluca Marinescu, Gheorghe Nicusor Pop, Alexandru Silvius Pescariu, Alexandra Enache, and Talida Georgiana Cut. 2021. "Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology" Journal of Clinical Medicine 10, no. 2: 199. https://doi.org/10.3390/jcm10020199
APA StyleTudoran, C., Tudoran, M., Lazureanu, V. E., Marinescu, A. R., Pop, G. N., Pescariu, A. S., Enache, A., & Cut, T. G. (2021). Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. Journal of Clinical Medicine, 10(2), 199. https://doi.org/10.3390/jcm10020199