Wilson’s Disease: An Update on the Diagnostic Workup and Management
Abstract
:1. Introduction
2. Etiology and Epidemiology of the Disease
3. Clinical Presentation of Wilson’s Disease
3.1. The Hepatic Alterations in Wilson’s Disease
3.2. The Neurologic Changes in Wilson’s Disease
3.3. The Psychiatric Manifestation of Wilson’s Disease
3.4. The Ophthalmic Signs and Symptoms in the Course of Wilson’s Disease
3.5. The Hematologic Alterations in Wilson’s Disease
3.6. The Renal Manifestation of Wilson’s Disease
3.7. The Bone–Muscular Alterations of Wilson’s Disease
3.8. Symptoms and Signs from Other Systems and Tissues in the Course of Wilson’s Disease
4. Diagnostic Approach to Patients with Wilson’s Disease Suspicion
4.1. Biochemical Evaluation for the Diagnosis of Wilson’s Disease
4.1.1. Serum Ceruloplasmin
4.1.2. Urinary Copper
4.1.3. Serum Copper
4.1.4. Coombs-Negative Hemolytic Anemia
4.1.5. Blood Liver Tests
4.1.6. ATP7B Protein Quantification: A New Non-Invasive Diagnostic Assay
4.2. Genetic Testing for At-Risk-of Wilson’s Disease Individuals
4.3. Radiologic Imaging in Wilson’s Disease
4.4. Histopathological Examination in Wilson’s Disease
4.5. Criteria for the Diagnosis of Wilson’s Disease
5. Management of Wilson’s Disease
5.1. Dietary Recommendations
5.2. Pharmacotherapy
5.2.1. D-Penicillamine
5.2.2. Trientine
5.2.3. Tetrathiomolybdate
5.2.4. Zinc Salts
6. Future Perspectives in Wilson’s Disease Treatment
7. Liver Transplantation for Wilson’s Disease
8. Pregnancy and Wilson’s Disease
9. Long-Term Monitoring of Patients with Wilson’s Disease
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trocello, J.M.; Broussolle, E.; Girardot-Tinant, N.; Pelosse, M.; Lachaux, A.; Lloyd, C.; Woimant, F. Wilson’s disease, 100 years later. Rev. Neurol. 2013, 169, 936–943. [Google Scholar] [CrossRef]
- Dzieżyc-Jaworska, K.; Litwin, T.; Członkowska, A. Clinical manifestations of Wilson disease in organs other than the liver and brain. Ann. Transl. Med. 2019, 7 (Suppl. 2), S62. [Google Scholar] [CrossRef]
- Poujois, A.; Woimant, F. Challenges in the diagnosis of Wilson disease. Ann. Transl. Med. 2019, 7 (Suppl. 2), S67. [Google Scholar] [CrossRef]
- Hartwig, C.; Zlatic, S.A.; Wallin, M.; Vrailas-Mortimer, A.; Fahrni, C.J.; Faundez, V. Trafficking mechanisms of P-type ATPase copper transporters. Curr. Opin. Cell Biol. 2019, 59, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.J.; Hahn, S.H. The genetics of Wilson disease. Handb. Clin. Neurol. 2017, 142, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferenci, P. Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: Impact on genetic testing. Hum. Genet. 2006, 120, 151–159. [Google Scholar] [CrossRef]
- Gomes, A.; Dedoussis, G.V. Geographic distribution of ATP7B mutations in Wilson disease. Ann. Hum. Biol. 2016, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Introduction to Metals in Biology 2018: Copper homeostasis and utilization in redox enzymes. J. Biol. Chem. 2018, 293, 4603–4605. [Google Scholar] [CrossRef] [Green Version]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Mohr, I.; Weiss, K.H. Biochemical Markers for the Diagnosis and Monitoring of Wilson Disease. Clin. Biochem. Rev. 2019, 40, 59–77. [Google Scholar] [CrossRef]
- Lalioti, V.; Muruais, G.; Tsuchiya, Y.; Pulido, D.; Sandoval, I.V. Molecular mechanisms of copper homeostasis. Front. Biosci. 2009, 14, 4878–4903. [Google Scholar] [CrossRef] [Green Version]
- Baldari, S.; Di Rocco, G.; Toietta, G. Current Biomedical Use of Copper Chelation Therapy. Int. J. Mol. Sci. 2020, 21, 1069. [Google Scholar] [CrossRef] [Green Version]
- Letelier, M.E.; Sánchez-Jofré, S.; Peredo-Silva, L.; Cortés-Troncoso, J.; Aracena-Parks, P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem. Biol. Interact. 2010, 188, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers. 2018, 4, 21. [Google Scholar] [CrossRef]
- Cleymaet, S.; Nagayoshi, K.; Gettings, E.; Faden, J. A review and update on the diagnosis and treatment of neuropsychiatric Wilson disease. Expert Rev. Neurother. 2019, 19, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Stättermayer, A.F.; Traussnigg, S.; Dienes, H.P.; Aigner, E.; Stauber, R.; Lackner, K.; Hofer, H.; Stift, J.; Wrba, F.; Stadlmayr, A.; et al. Hepatic steatosis in Wilson disease--Role of copper and PNPLA3 mutations. J. Hepatol. 2015, 63, 156–163. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Brůha, R.; Dušek, P. Pathogenesis of Wilson disease. Handb. Clin. Neurol. 2017, 142, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, C.; Fanni, D.; Congiu, T.; Piras, M.; Cau, F.; Moi, M.; Faa, G. Liver pathology in Wilson’s disease: From copper overload to cirrhosis. J. Inorg. Biochem. 2019, 193, 106–111. [Google Scholar] [CrossRef]
- Roberts, E.A. Update on the Diagnosis and Management of Wilson Disease. Curr. Gastroenterol. Rep. 2018, 20, 56. [Google Scholar] [CrossRef]
- Guindi, M. Wilson disease. Semin. Diagn. Pathol. 2019, 36, 415–422. [Google Scholar] [CrossRef]
- Boga, S.; Ala, A.; Schilsky, M.L. Hepatic features of Wilson disease. Handb. Clin. Neurol. 2017, 142, 91–99. [Google Scholar] [CrossRef]
- Zhong, H.J.; Xiao, P.; Lin, D.; Zhou, H.M.; He, X.X. Cirrhosis in Wilson Disease is characterized by Impaired Hepatic Synthesis, Leukopenia and Thrombocytopenia. Int. J. Med. Sci. 2020, 17, 1345–1350. [Google Scholar] [CrossRef]
- Pfeiffenberger, J.; Mogler, C.; Gotthardt, D.N.; Schulze-Bergkamen, H.; Litwin, T.; Reuner, U.; Hefter, H.; Huster, D.; Schemmer, P.; Członkowska, A.; et al. Hepatobiliary malignancies in Wilson disease. Liver Int. 2015, 35, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- van Meer, S.; de Man, R.A.; van den Berg, A.P.; Houwen, R.H.; Linn, F.H.; van Oijen, M.G.; Siersema, P.D.; van Erpecum, K.J. No increased risk of hepatocellular carcinoma in cirrhosis due to Wilson disease during long-term follow-up. J. Gastroenterol. Hepatol. 2015, 30, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Reyes, C.V. Hepatocellular Carcinoma in Wilson Disease-related Liver Cirrhosis. Gastroenterol. Hepatol. 2008, 4, 435–437. [Google Scholar]
- Iwadate, H.; Ohira, H.; Suzuki, T.; Abe, K.; Yokokawa, J.; Takiguchi, J.; Rai, T.; Orikasa, H.; Irisawa, A.; Obara, K.; et al. Hepatocellular carcinoma associated with Wilson’s disease. Intern. Med. 2004, 43, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
- Thattil, R.; Dufour, J.F. Hepatocellular carcinoma in a non-cirrhotic patient with Wilson’s disease. World J. Gastroenterol. 2013, 19, 2110–2113. [Google Scholar] [CrossRef]
- Rosencrantz, R.A.; LeCompte, L.; Yusuf, Y. Beneath the Copper-Pediatric Wilson’s Disease Cirrhosis and Hepatocellular Carcinoma: A Case Report with Literature Review. Semin. Liver Dis. 2015, 35, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. Electronic address: Easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorincz, M.T. Recognition and treatment of neurologic Wilson’s disease. Semin. Neurol. 2012, 32, 538–543. [Google Scholar] [CrossRef]
- Zimbrean, P.C.; Schilsky, M.L. Psychiatric aspects of Wilson disease: A review. Gen. Hosp. Psychiatry 2014, 36, 53–62. [Google Scholar] [CrossRef]
- Schindler, E.A.; Guo, X.M.; Schrag, M.; Ghoshal, S.; Schilsky, M.L.; Beslow, L.A. Neuropsychiatric presentation of Wilson disease in an adolescent male. Neuropediatrics 2016, 47, 346–347. [Google Scholar] [CrossRef] [PubMed]
- European Association for Study of Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J. Hepatol. 2012, 56, 671–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiebers, D.O.; Hollenhorst, R.W.; Goldstein, N.P. The ophthalmologic manifestations of Wilson’s disease. Mayo. Clin. Proc. 1977, 52, 409–416. [Google Scholar]
- Davison, J.E. Eye involvement in inherited metabolic disorders. Ther. Adv. Ophthalmol. 2020, 12, 2515841420979109. [Google Scholar] [CrossRef]
- Deguti, M.M.; Tietge, U.J.; Barbosa, E.R.; Cancado, E.L. The eye in Wilson’s disease: Sunflower cataract associated with Kayser-Fleischer ring. J. Hepatol. 2002, 37, 700. [Google Scholar] [CrossRef]
- Langwińska-Wośko, E.; Litwin, T.; Dzieżyc, K.; Członkowska, A. The sunflower cataract in Wilson’s disease: Pathognomonic sign or rare finding? Acta Neurol. Belg. 2016, 116, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.N.; Mao, L.P.; Lou, Y.J.; Tong, H.Y. Hemolytic anemia as first presentation of Wilson’s disease with uncommon ATP7B mutation. Int. J. Clin. Exp. Med. 2015, 8, 4708–4711. [Google Scholar] [PubMed]
- Dzieżyc, K.; Litwin, T.; Członkowska, A. Other organ involvement and clinical aspects of Wilson disease. Handb. Clin. Neurol. 2017, 142, 157–169. [Google Scholar] [CrossRef]
- Grandis, D.J.; Nah, G.; Whitman, I.R.; Vittinghoff, E.; Dewland, T.A.; Olgin, J.E.; Marcus, G.M. Wilson’s Disease and Cardiac Myopathy. Am. J. Cardiol. 2017, 120, 2056–2060. [Google Scholar] [CrossRef] [PubMed]
- Buksińska-Lisik, M.; Litwin, T.; Pasierski, T.; Członkowska, A. Cardiac assessment in Wilson’s disease patients based on electrocardiography and echocardiography examination. Arch. Med. Sci. 2019, 15, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antos, A.; Litwin, T.; Skowrońska, M.; Kurkowska-Jastrzębska, I.; Członkowska, A. Pitfalls in diagnosing Wilson’s Disease by genetic testing alone: The case of a 47-year-old woman with two pathogenic variants of the ATP7B gene. Neurol. Neurochir. Pol. 2020, 54, 478–480. [Google Scholar] [CrossRef]
- Reeve, J.L.; Frayling, I.M.; Twomey, P.J. Challenges in molecular diagnosis of Wilson disease. J. Clin. Pathol. 2020, 73, 181–182. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Yang, R.M.; Wang, X.P. Management Perspective of Wilson’s Disease: Early Diagnosis and Individualized Therapy. Curr. Neuropharmacol. 2021, 19, 465–485. [Google Scholar] [CrossRef]
- Nagral, A.; Sarma, M.S.; Matthai, J.; Kukkle, P.L.; Devarbhavi, H.; Sinha, S.; Alam, S.; Bavdekar, A.; Dhiman, R.K.; Eapen, C.E.; et al. Wilson’s Disease: Clinical Practice Guidelines of the Indian National Association for Study of the Liver, the Indian Society of Pediatric Gastroenterology, Hepatology and Nutrition, and the Movement Disorders Society of India. J. Clin. Exp. Hepatol. 2019, 9, 74–98. [Google Scholar] [CrossRef]
- Müller, T.; Koppikar, S.; Taylor, R.M.; Carragher, F.; Schlenck, B.; Heinz-Erian, P.; Kronenberg, F.; Ferenci, P.; Tanner, S.; Siebert, U.; et al. Re-evaluation of the penicillamine challenge test in the diagnosis of Wilson’s disease in children. J. Hepatol. 2007, 47, 270–276. [Google Scholar] [CrossRef]
- Socha, P.; Janczyk, W.; Dhawan, A.; Baumann, U.; D’Antiga, L.; Tanner, S.; Iorio, R.; Vajro, P.; Houwen, R.; Fischler, B.; et al. Wilson’s Disease in Children: A Position Paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 334–344. [Google Scholar] [CrossRef]
- Poujois, A.; Woimant, F. Wilson’s disease: A 2017 update. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 512–520. [Google Scholar] [CrossRef] [PubMed]
- El Balkhi, S.; Poupon, J.; Trocello, J.M.; Leyendecker, A.; Massicot, F.; Galliot-Guilley, M.; Woimant, F. Determination of ultrafiltrable and exchangeable copper in plasma: Stability and reference values in healthy subjects. Anal. Bioanal. Chem. 2009, 394, 1477–1484. [Google Scholar] [CrossRef]
- Woimant, F.; Djebrani-Oussedik, N.; Poujois, A. New tools for Wilson’s disease diagnosis: Exchangeable copper fraction. Ann. Transl. Med. 2019, 7 (Suppl. 2), S70. [Google Scholar] [CrossRef]
- El Balkhi, S.; Trocello, J.M.; Poupon, J.; Chappuis, P.; Massicot, F.; Girardot-Tinant, N.; Woimant, F. Relative exchangeable copper: A new highly sensitive and highly specific biomarker for Wilson’s disease diagnosis. Clin. Chim. Acta. 2011, 412, 2254–2260. [Google Scholar] [CrossRef]
- Grudeva-Popova, J.G.; Spasova, M.I.; Chepileva, K.G.; Zaprianov, Z.H. Acute hemolytic anemia as an initial clinical manifestation of Wilson’s disease. Folia Med. 2000, 42, 42–46. [Google Scholar]
- Deiss, A.; Lee, G.R.; Cartwright, G.E. Hemolytic anemia in Wilson’s disease. Ann. Intern. Med. 1970, 73, 413–418. [Google Scholar] [CrossRef]
- Shaver, W.A.; Bhatt, H.; Combes, B. Low serum alkaline phosphatase activity in Wilson’s disease. Hepatology 1986, 6, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Korman, J.D.; Volenberg, I.; Balko, J.; Webster, J.; Schiodt, F.V.; Squires, R.H., Jr.; Fontana, R.J.; Lee, W.M.; Schilsky, M.L. Pediatric and Adult Acute Liver Failure Study Groups. Screening for Wilson disease in acute liver failure: A comparison of currently available diagnostic tests. Hepatology 2008, 48, 1167–1174. [Google Scholar] [CrossRef]
- Collins, C.J.; Yi, F.; Dayuha, R.; Duong, P.; Horslen, S.; Camarata, M.; Coskun, A.K.; Houwen, R.H.J.; Pop, T.L.; Zoller, H.; et al. Direct Measurement of ATP7B Peptides Is Highly Effective in the Diagnosis of Wilson Disease. Gastroenterology 2021, 60, 2367–2382.e1. [Google Scholar] [CrossRef]
- Kieffer, D.A.; Medici, V. Wilson disease: At the crossroads between genetics and epigenetics-A review of the evidence. Liver Res. 2017, 1, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Z.; Li, G.Y.; Chen, J.L.; Li, J.Q.; Wang, X.P. Paramagnetic Metal Accumulation in the Deep Gray Matter Nuclei Is Associated With Neurodegeneration in Wilson’s Disease. Front. Neurosci. 2020, 14, 573633. [Google Scholar] [CrossRef] [PubMed]
- Parekh, J.R.; Agrawal, P.R. Wilson’s disease: ‘Face of giant panda’ and ‘trident’ signs together. Oxf. Med. Case Reports 2014, 2014, 16–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litwin, T.; Gromadzka, G.; Członkowska, A.; Gołębiowski, M.; Poniatowska, R. The effect of gender on brain MRI pathology in Wilson’s disease. Metab. Brain Dis. 2013, 28, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Dusek, P.; Smolinski, L.; Redzia-Ogrodnik, B.; Golebiowski, M.; Skowronska, M.; Poujois, A.; Laurencin, C.; Jastrzebska-Kurkowska, I.; Litwin, T.; Członkowska, A. Semiquantitative Scale for Assessing Brain MRI Abnormalities in Wilson Disease: A Validation Study. Mov. Disord. 2020, 35, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Doganay, S.; Gumus, K.; Koc, G.; Bayram, A.K.; Dogan, M.S.; Arslan, D.; Gumus, H.; Gorkem, S.B.; Ciraci, S.; Serin, H.I.; et al. Magnetic Susceptibility Changes in the Basal Ganglia and Brain Stem of Patients with Wilson’s Disease: Evaluation with Quantitative Susceptibility Mapping. Magn. Reson. Med. Sci. 2018, 17, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Broniek-Kowalik, K.; Dzieżyc, K.; Litwin, T.; Członkowska, A.; Szaflik, J.P. Anterior segment optical coherence tomography (AS-OCT) as a new method of detecting copper deposits forming the Kayser-Fleischer ring in patients with Wilson disease. Acta Ophthalmol. 2019, 97, e757–e760. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Lutsenko, S.; Sun, X.; Muzik, O. Imaging copper metabolism imbalance in Atp7b (-/-) knockout mouse model of Wilson’s disease with PET-CT and orally administered 64CuCl2. Mol. Imaging Biol. 2012, 14, 600–607. [Google Scholar] [CrossRef]
- Alkhalik Basha, M.A.; Refaat, R.; Ahmed, A.F.; Yousef, H.Y.; Alsowey, A.M.; Metwally, M.I.; Aly, S.A.; Hussien, H.M.; El-Saadany, H.F.; AlGhobashy, A.A.; et al. Brain magnetic resonance spectroscopy (MRS) as a diagnostic tool for detecting early neurological changes in children with Wilson’s disease. Eur. J. Radiol. 2019, 111, 41–46. [Google Scholar] [CrossRef]
- Ryan, A.; Nevitt, S.J.; Tuohy, O.; Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane. Database Syst. Rev. 2019, 2019, CD012267. [Google Scholar] [CrossRef]
- Sánchez-Monteagudo, A.; Ripollés, E.; Berenguer, M.; Espinós, C. Wilson’s Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021, 9, 1100. [Google Scholar] [CrossRef] [PubMed]
- Litwin, T.; Dzieżyc, K.; Członkowska, A. Wilson disease-treatment perspectives. Ann. Transl. Med. 2019, 7 (Suppl. 2), S68. [Google Scholar] [CrossRef]
- Russell, K.; Gillanders, L.K.; Orr, D.W.; Plank, L.D. Dietary copper restriction in Wilson’s disease. Eur. J. Clin. Nutr. 2018, 72, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Einer, C.; Leitzinger, C.; Lichtmannegger, J.; Eberhagen, C.; Rieder, T.; Borchard, S.; Wimmer, R.; Denk, G.; Popper, B.; Neff, F.; et al. A High-Calorie Diet Aggravates Mitochondrial Dysfunction and Triggers Severe Liver Damage in Wilson Disease Rats. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 571–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilsky, M.L. Wilson Disease: Diagnosis, Treatment, and Follow-up. Clin. Liver Dis. 2017, 21, 755–767. [Google Scholar] [CrossRef]
- Mulligan, C.; Bronstein, J.M. Wilson Disease: An Overview and Approach to Management. Neurol. Clin. 2020, 38, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.H.; Askari, F.K.; Czlonkowska, A.; Ferenci, P.; Bronstein, J.M.; Bega, D.; Ala, A.; Nicholl, D.; Flint, S.; Olsson, L.; et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: An open-label, multicentre, phase 2 study. Lancet Gastroenterol. Hepatol. 2017, 2, 869–876. [Google Scholar] [CrossRef]
- Moini, M.; To, U.; Schilsky, M.L. Recent advances in Wilson disease. Transl. Gastroenterol. Hepatol. 2021, 6, 21. [Google Scholar] [CrossRef]
- Członkowska, A.; Litwin, T. Wilson disease—Currently used anticopper therapy. Handb. Clin. Neurol. 2017, 142, 181–191. [Google Scholar] [CrossRef]
- Członkowska, A.; Dzieżyc-Jaworska, K.; Kłysz, B.; Barbara, R.O.; Litwin, T. Difficulties in diagnosis and treatment of Wilson disease-a case series of five patients. Ann. Transl. Med. 2019, 7 (Suppl. 2), S73. [Google Scholar] [CrossRef]
- Brewer, G.J.; Askari, F.; Lorincz, M.T.; Carlson, M.; Schilsky, M.; Kluin, K.J.; Hedera, P.; Moretti, P.; Fink, J.K.; Tankanow, R.; et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch. Neurol. 2006, 63, 521–527. [Google Scholar] [CrossRef]
- Weiss, K.H.; Stremmel, W. Clinical considerations for an effective medical therapy in Wilson’s disease. Ann. N. Y. Acad. Sci. 2014, 1315, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.T.; Rahman, M.M.; Islam, K.A.; Ferdouse, Z. Neurologic manifestations, diagnosis and management of Wilson’s disease in children—An update. Mymensingh. Med. J. 2014, 23, 195–203. [Google Scholar]
- Medici, V.; Sturniolo, G.C. Tetrathiomolybdate, a copper chelator for the treatment of Wilson disease, pulmonary fibrosis and other indications. IDrugs Investig. Drugs J. 2008, 11, 592–606. [Google Scholar]
- Członkowska, A.; Litwin, T.; Karliński, M.; Dziezyc, K.; Chabik, G.; Czerska, M. D-penicillamine versus zinc sulfate as first-line therapy for Wilson’s disease. Eur. J. Neurol. 2014, 21, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Taly, A.B. Withdrawal of penicillamine from zinc sulphate-penicillamine maintenance therapy in Wilson’s disease: Promising, safe and cheap. J. Neurol. Sci. 2008, 264, 129–132. [Google Scholar] [CrossRef]
- Appenzeller-Herzog, C.; Mathes, T.; Heeres, M.L.S.; Weiss, K.H.; Houwen, R.H.J.; Ewald, H. Comparative effectiveness of common therapies for Wilson disease: A systematic review and meta-analysis of controlled studies. Liver Int. 2019, 39, 2136–2152. [Google Scholar] [CrossRef]
- Weiss, K.H.; Gotthardt, D.N.; Klemm, D.; Merle, U.; Ferenci-Foerster, D.; Schaefer, M.; Ferenci, P.; Stremmel, W. Zinc monotherapy is not as effective as chelating agents in treatment of Wilson disease. Gastroenterology 2011, 140, 1189–1198.e1. [Google Scholar] [CrossRef]
- Brewer, G.J. Zinc acetate for the treatment of Wilson’s disease. Expert Opin. Pharmacother. 2001, 2, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Brewer, G.J. Zinc therapy induction of intestinal metallothionein in Wilson’s disease. Am. J. Gastroenterol. 1999, 94, 301–302. [Google Scholar] [CrossRef]
- Calvo, J.; Jung, H.; Meloni, G. Copper metallothioneins. IUBMB Life 2017, 69, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Tapia, L.; González-Agüero, M.; Cisternas, M.F.; Suazo, M.; Cambiazo, V.; Uauy, R.; González, M. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem. J. 2004, 378, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antczak-Kowalska, M.; Członkowska, A.; Litwin, T.; Nehring, P.; Niewada, M.; Przybyłkowski, A. Gastropathy in patients with Wilson disease. Scand. J. Gastroenterol. 2020, 55, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Camarata, M.A.; Ala, A.; Schilsky, M.L. Zinc Maintenance Therapy for Wilson Disease: A Comparison Between Zinc Acetate and Alternative Zinc Preparations. Hepatol. Commun. 2019, 3, 1151–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, E.A.; Schilsky, M.L. American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: An update. Hepatology 2008, 47, 2089–20111. [Google Scholar] [CrossRef] [PubMed]
- Fryer, M.J. Potential of vitamin E as an antioxidant adjunct in Wilson’s disease. Med. Hypotheses 2009, 73, 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Ji, H.F. Adjunctive vitamin E treatment in Wilson disease and suggestions for future trials. Hepatology 2010, 51, 1864–1865. [Google Scholar] [CrossRef]
- von Herbay, A.; de Groot, H.; Hegi, U.; Stremmel, W.; Strohmeyer, G.; Sies, H. Low vitamin E content in plasma of patients with alcoholic liver disease, hemochromatosis and Wilson’s disease. J. Hepatol. 1994, 20, 41–46. [Google Scholar] [CrossRef]
- Rodo, M.; Czonkowska, A.; Pulawska, M.; Swiderska, M.; Tarnacka, B.; Wehr, H. The level of serum lipids, vitamin E and low density lipoprotein oxidation in Wilson’s disease patients. Eur. J. Neurol. 2000, 7, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Concilli, M.; Iacobacci, S.; Chesi, G.; Carissimo, A.; Polishchuk, R. A systems biology approach reveals new endoplasmic reticulum-associated targets for the correction of the ATP7B mutant causing Wilson disease. Metallomics 2016, 8, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Chesi, G.; Hegde, R.N.; Iacobacci, S.; Concilli, M.; Parashuraman, S.; Festa, B.P.; Polishchuk, E.V.; Di Tullio, G.; Carissimo, A.; Montefusco, S.; et al. Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants. Hepatology 2016, 63, 1842–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, Y.; Li, P.; Zhou, L.; Xiao, L.; Liu, Y.; Zheng, Z.; Qin, F.; Hao, Q.; Xu, H.; Yao, S.; et al. Long-Term Correction of Copper Metabolism in Wilson’s Disease Mice with AAV8 Vector Delivering Truncated ATP7B. Hum. Gene. Ther. 2019, 30, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.wilsonsdisease.org/programs-research/finding-clinical-trials-for-wilson-disease (accessed on 16 October 2021).
- Filippi, C.; Dhawan, A. Current status of human hepatocyte transplantation and its potential for Wilson’s disease. Ann. N. Y. Acad. Sci. 2014, 1315, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sauer, V.; Siaj, R.; Stöppeler, S.; Bahde, R.; Spiegel, H.U.; Köhler, G.; Zibert, A.; Schmidt, H.H. Repeated transplantation of hepatocytes prevents fulminant hepatitis in a rat model of Wilson’s disease. Liver Transpl. 2012, 18, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Schilsky, M.L. Liver transplantation for Wilson’s disease. Ann. N. Y. Acad. Sci. 2014, 1315, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Torrazza-Perez, E.; Schilsky, M.L. Liver transplantation for Wilson disease. Handb. Clin. Neurol. 2017, 142, 193–204. [Google Scholar] [CrossRef]
- Lankarani, K.B.; Malek-Hosseini, S.A.; Nikeghbalian, S.; Dehghani, M.; Pourhashemi, M.; Kazemi, K.; Janghorban, P.; Akbari, M.; Ghahramani, S.; Eghtesad, B.; et al. Fourteen Years of Experience of Liver Transplantation for Wilson’s Disease; A Report on 107 Cases from Shiraz, Iran. PLoS ONE 2016, 11, e0167890. [Google Scholar] [CrossRef]
- Dhawan, A.; Taylor, R.M.; Cheeseman, P.; De Silva, P.; Katsiyiannakis, L.; Mieli-Vergani, G. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl. 2005, 11, 441–448. [Google Scholar] [CrossRef]
- Kreymann, B.; Seige, M.; Schweigart, U.; Kopp, K.F.; Classen, M. Albumin dialysis: Effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation: A new possibility for the elimination of protein-bound toxins. J. Hepatol. 1999, 31, 1080–1085. [Google Scholar] [CrossRef]
- Rustom, N.; Bost, M.; Cour-Andlauer, F.; Lachaux, A.; Brunet, A.S.; Boillot, O.; Bordet, F.; Valla, F.; Richard, N.; Javouhey, E. Effect of molecular adsorbents recirculating system treatment in children with acute liver failure caused by Wilson disease. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 160–164. [Google Scholar] [CrossRef]
- Pfeiffenberger, J.; Beinhardt, S.; Gotthardt, D.N.; Haag, N.; Freissmuth, C.; Reuner, U.; Gauss, A.; Stremmel, W.; Schilsky, M.L.; Ferenci, P.; et al. Pregnancy in Wilson’s disease: Management and outcome. Hepatology 2018, 67, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.E.; Pan, M.; Han, Y.Z.; Yang, R.M.; Wang, J.; Gao, S. The study of Wilson disease in pregnancy management. BMC Pregnancy Childbirth 2019, 19, 522. [Google Scholar] [CrossRef] [Green Version]
- Dathe, K.; Beck, E.; Schaefer, C. Pregnancy outcome after chelation therapy in Wilson disease. Evaluation of the German Embryotox Database. Reprod. Toxicol. 2016, 65, 39–45. [Google Scholar] [CrossRef]
- Bruha, R.; Marecek, Z.; Pospisilova, L.; Nevsimalova, S.; Vitek, L.; Martasek, P.; Nevoral, J.; Petrtyl, J.; Urbanek, P.; Jiraskova, A.; et al. Long-term follow-up of Wilson disease: Natural history, treatment, mutations analysis and phenotypic correlation. Liver Int. 2011, 31, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Masełbas, W.; Członkowska, A.; Litwin, T.; Niewada, M. Persistence with treatment for Wilson disease: A retrospective study. BMC Neurol. 2019, 19, 278. [Google Scholar] [CrossRef] [PubMed]
Clinical and Laboratory Presentation | Points |
---|---|
Kayser–Fleischer rings | |
Present | 2 |
Absent | 0 |
Neurologic symptoms or typical abnormalities of brain MRI | |
Severe | 2 |
Mild | 1 |
Absent | 0 |
Serum ceruloplasmin (g/L) | |
Normal (>0.2) | 0 |
0.1–0.2 | 1 |
<0.1 | 2 |
Coombs-negative hemolytic anemia | |
Present | 1 |
Absent | 0 |
Liver copper (in the absence of cholestasis) | |
>5 × ULN (>4 µmol/g) | 2 |
0.8–4 µmol/g | 1 |
Normal (<0.8 µmol/g) | −1 |
Rhodanine-positive granules * | 1 |
24 h urinary copper (in the absence of acute hepatitis) | |
Normal | 0 |
1–2 × ULN | 1 |
>2 × ULN | 2 |
Normal but >5 × ULN after D-penicillamine | 2 |
Mutation analysis | |
Mutations detected on both chromosomes | 4 |
Mutations detected on one chromosome | 1 |
Mutations absent | 0 |
TOTAL SCORE: | |
Diagnosis established | 4 or more |
Diagnosis possible, more tests needed | 3 |
Diagnosis very unlikely | 2 or less |
Medication | Treatment Indications | Adverse Effects | Potency and Efficacy |
---|---|---|---|
Agents mobilizing copper from tissues and increasing its urinary excretion (chelators) | |||
D -Penicillamine | First-line induction treatmen: the first oral chelating agent for WD treatment | Allergic reactions (fever and rash), lymphadenopathy, bone marrow suppression, lymphadenopathy, lupus-like syndrome, kidney dysfunction, and deterioration in neurological status | Very effective |
Trientine | Second-line induction treatment: approved for patients intolerant of d-penicillamine | Autoimmune reactions, kidney dysfunction, bone marrow suppression, and deterioration in neurological status | Effective |
Agents preventing copper absorption | |||
Zinc salts | Maintenance treatment: first-line induction treatment in selected patient subgroups (neurologic WD variant, intolerant to chelators, pregnant women, and asymptomatic WD patients) | Stomach irritation and otherwise a low level of toxicity | Effective |
Agents forming copper–albumin complexes (currently under evaluation) | |||
Bis-choline tetra-thiomolybdate (TTM) | Planned for first-line induction treatment | Hepatitis and bone marrow suppression | Under assessment, very effective |
Group of WD Patients | Treatment Indications | Medication * | Recommended Dosage for Adults | Recommended Dosage for Children |
---|---|---|---|---|
Symptomatic WD patients | Initial treatment (6 to 12 months) | D–penicillamine | 250 mg at alternating days, gradually increasing by 250 mg every 2–4 weeks until 1.0–1.5 g/day in two or three doses (no definitive protocol on the rate of dose escalation) | 150–300 mg, titrated until 20 mg/kg/day, given in two or three doses; young adults should take 1.0 g (maximum 1.5 g) daily in two to four doses |
Trientine (heat-sensitive, stored at 2–8 °C) | 750 mg, 1.5 g/day in three doses | 20 mg/kg/day in two to three divided doses; young adults should take 1.0 g (max. 1.5 g) daily in two to three doses | ||
Zinc salts | 150 mg of elemental zinc/day in three doses | Age > 16 years and body weight > 50 kg: 150 mg of elemental zinc/day in three doses Age 6–16 years and body weight < 50 kg: 75 mg of elemental zinc/day in three doses Age < 6 years: 50 mg of elemental zinc/day in two doses | ||
Maintenance treatment (lifelong therapy) | D–penicillamine | 10–20 mg/kg/day and up to 0.75–1.0 g/day in two doses | 900–1500 mg per day in two or three doses | |
Trientine (heat-sensitive, stored at 2–8 °C) | 900mg, 1.5 g/day (or 10–15 mg/kg/day) in two to three doses; one daily dose of trientine as a maintenance therapy has been suggested and is currently under evaluation | 900 mg, 1.5 g/day (or 10–15 mg/kg/day) in two to three doses | ||
Zinc salts (treatment of choice) | Dosage presented above and tailored individually | Dosage presented above and tailored individually | ||
Asymptomatic WD patients | Zinc salts (treatment of choice) | Dosage presented above and tailored individually | Dosage presented above and tailored individually | |
D-penicillamine or trientine | Reduced dosage of 10–15 mg/kg in two to four dosages |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasztelan-Szczerbinska, B.; Cichoz-Lach, H. Wilson’s Disease: An Update on the Diagnostic Workup and Management. J. Clin. Med. 2021, 10, 5097. https://doi.org/10.3390/jcm10215097
Kasztelan-Szczerbinska B, Cichoz-Lach H. Wilson’s Disease: An Update on the Diagnostic Workup and Management. Journal of Clinical Medicine. 2021; 10(21):5097. https://doi.org/10.3390/jcm10215097
Chicago/Turabian StyleKasztelan-Szczerbinska, Beata, and Halina Cichoz-Lach. 2021. "Wilson’s Disease: An Update on the Diagnostic Workup and Management" Journal of Clinical Medicine 10, no. 21: 5097. https://doi.org/10.3390/jcm10215097
APA StyleKasztelan-Szczerbinska, B., & Cichoz-Lach, H. (2021). Wilson’s Disease: An Update on the Diagnostic Workup and Management. Journal of Clinical Medicine, 10(21), 5097. https://doi.org/10.3390/jcm10215097