Intraoperative Hyperglycemia May Be Associated with an Increased Risk of Myocardial Injury after Non-Cardiac Surgery in Diabetic Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Data Collection
2.2. Study Outcomes and Definitions
2.3. Perioperative cTn I Measurement and Management
2.4. Intraoperative Glucose Measurement and Management
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Institutional Review Board Statement
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, B.M.; Stearns, J.D.; Apsey, H.A.; Schlinkert, R.T.; Cook, C.B. Perioperative Management of Patients with Diabetes and Hyperglycemia Undergoing Elective Surgery. Curr. Diab. Rep. 2016, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Palermo, N.E.; Gianchandani, R.Y.; McDonnell, M.E.; Alexanian, S.M. Stress Hyperglycemia during Surgery and Anesthesia: Pathogenesis and Clinical Implications. Curr. Diab. Rep. 2016, 16, 33. [Google Scholar] [CrossRef]
- Galindo, R.J.; Fayfman, M.; Umpierrez, G.E. Perioperative Management of Hyperglycemia and Diabetes in Cardiac Surgery Patients. Endocrinol. Metab. Clin. N. Am. 2018, 47, 203–222. [Google Scholar] [CrossRef]
- Duggan, E.W.; Carlson, K.; Umpierrez, G.E. Perioperative Hyperglycemia Management: An Update. Anesthesiology 2017, 126, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Carson, J.L.; Scholz, P.M.; Chen, A.Y.; Peterson, E.D.; Gold, J.; Schneider, S.H. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 2002, 40, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Lazar, H.L.; Chipkin, S.R.; Fitzgerald, C.A.; Bao, Y.; Cabral, H.; Apstein, C.S. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation 2004, 109, 1497–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oezkur, M.; Wagner, M.; Weismann, D.; Krannich, J.H.; Schimmer, C.; Riegler, C.; Rucker, V.; Leyh, R.; Heuschmann, P.U. Chronic hyperglycemia is associated with acute kidney injury in patients undergoing CABG surgery—A cohort study. BMC Cardiovasc. Disord. 2015, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Ouattara, A.; Lecomte, P.; Le Manach, Y.; Landi, M.; Jacqueminet, S.; Platonov, I.; Bonnet, N.; Riou, B.; Coriat, P. Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 2005, 103, 687–694. [Google Scholar] [CrossRef]
- Bower, W.F.; Lee, P.Y.; Kong, A.P.; Jiang, J.Y.; Underwood, M.J.; Chan, J.C.; van Hasselt, C.A. Peri-operative hyperglycemia: A consideration for general surgery? Am. J. Surg. 2010, 199, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Clodi, M.; Resl, M.; Abrahamian, H.; Foger, B.; Weitgasser, R. Treatment of hyperglycemia in adult, critically ill patients (Update 2019). Wien. Klin. Wochenschr. 2019, 131, 218–220. [Google Scholar] [CrossRef]
- Gokhale, V.; Batra, T.; Shinde, S.S.; Gulati, S.; Kakrani, A.L. Glucose Monitoring in Critically Ill: Is Absence of “Stress Hyperglycemia” a Cause for Concern? J. Assoc. Physicians India 2019, 67, 43–46. [Google Scholar] [PubMed]
- Vascular Events in Noncardiac Surgery Patients Cohort Evaluation Study Investigators; Devereaux, P.J.; Chan, M.T.; Alonso-Coello, P.; Walsh, M.; Berwanger, O.; Villar, J.C.; Wang, C.Y.; Garutti, R.I.; Jacka, M.J.; et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 2012, 307, 2295–2304. [Google Scholar] [PubMed]
- Botto, F.; Alonso-Coello, P.; Chan, M.T.; Villar, J.C.; Xavier, D.; Srinathan, S.; Guyatt, G.; Cruz, P.; Graham, M.; Wang, C.Y.; et al. Myocardial injury after noncardiac surgery: A large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 2014, 120, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Punthakee, Z.; Iglesias, P.P.; Alonso-Coello, P.; Gich, I.; India, I.; Malaga, G.; Jover, R.D.; Gerstein, H.C.; Devereaux, P.J. Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): A prospective cohort study. Lancet Diabetes Endocrinol. 2018, 6, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Oh, A.R.; Lee, S.H.; Lee, J.H.; Min, J.J.; Kwon, J.H.; Kim, J.; Yang, K.; Choi, J.H.; Lee, S.C.; et al. Associations Between Preoperative Glucose and Hemoglobin A1c Level and Myocardial Injury after Noncardiac Surgery. J. Am. Heart Assoc. 2021, 10, e019216. [Google Scholar] [CrossRef] [PubMed]
- Buchleitner, A.M.; Martinez-Alonso, M.; Hernandez, M.; Sola, I.; Mauricio, D. Perioperative glycaemic control for diabetic patients undergoing surgery. Cochrane Database Syst. Rev. 2012, 12, CD007315. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Dhatariya, K.; Levy, N.; Kilvert, A.; Watson, B.; Cousins, D.; Flanagan, D.; Hilton, L.; Jairam, C.; Leyden, K.; Lipp, A.; et al. NHS Diabetes guideline for the perioperative management of the adult patient with diabetes. Diabet. Med. 2012, 29, 420–433. [Google Scholar] [CrossRef]
- Joshi, G.P.; Chung, F.; Vann, M.A.; Ahmad, S.; Gan, T.J.; Goulson, D.T.; Merrill, D.G.; Twersky, R.; Society for Ambulatory Anesthesia. Society for Ambulatory Anesthesia consensus statement on perioperative blood glucose management in diabetic patients undergoing ambulatory surgery. Anesth. Analg. 2010, 111, 1378–1387. [Google Scholar] [CrossRef] [Green Version]
- Moghissi, E.S.; Korytkowski, M.T.; DiNardo, M.; Einhorn, D.; Hellman, R.; Hirsch, I.B.; Inzucchi, S.E.; Ismail-Beigi, F.; Kirkman, M.S.; Umpierrez, G.E.; et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009, 32, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Lazar, H.L.; McDonnell, M.; Chipkin, S.R.; Furnary, A.P.; Engelman, R.M.; Sadhu, A.R.; Bridges, C.R.; Haan, C.K.; Svedjeholm, R.; Taegtmeyer, H.; et al. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. Ann. Thorac. Surg. 2009, 87, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.Y.; Kamphuisen, P.W.; Meyer, G.; Bauersachs, R.; Janas, M.S.; Jarner, M.F.; Khorana, A.A.; CATCH Investigators. Tinzaparin vs. Warfarin for Treatment of Acute Venous Thromboembolism in Patients with Active Cancer: A Randomized Clinical Trial. JAMA 2015, 314, 677–686. [Google Scholar] [CrossRef]
- Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Botker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar]
- Mahajan, V.S.; Jarolim, P. How to interpret elevated cardiac troponin levels. Circulation 2011, 124, 2350–2354. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef]
- Tomas, E.; Lin, Y.S.; Dagher, Z.; Saha, A.; Luo, Z.; Ido, Y.; Ruderman, N.B. Hyperglycemia and insulin resistance: Possible mechanisms. Ann. N. Y. Acad. Sci. 2002, 967, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Di Luzio, R.; Dusi, R.; Mazzotti, A.; Petroni, M.L.; Marchesini, G.; Bianchi, G. Stress Hyperglycemia and Complications Following Traumatic Injuries in Individuals with/without Diabetes: The Case of Orthopedic Surgery. Diabetes Metab. Syndr. Obes. 2020, 13, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansley, D.M.; Wang, B. Oxidative stress and myocardial injury in the diabetic heart. J. Pathol. 2013, 229, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.E. Hyperglycemia and perioperative glucose management. Curr. Pharm. Des. 2012, 18, 6195–6203. [Google Scholar] [CrossRef]
- Marfella, R.; Sasso, F.C.; Cacciapuoti, F.; Portoghese, M.; Rizzo, M.R.; Siniscalchi, M.; Carbonara, O.; Ferraraccio, F.; Torella, M.; Petrella, A.; et al. Tight Glycemic Control May Increase Regenerative Potential of Myocardium during Acute Infarction. J. Clin. Endocrinol. Metab. 2012, 97, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, V.G.; Asmis, L.M. Hypercoagulability in the perioperative period. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Frisch, A.; Chandra, P.; Smiley, D.; Peng, L.; Rizzo, M.; Gatcliffe, C.; Hudson, M.; Mendoza, J.; Johnson, R.; Lin, E.; et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care 2010, 33, 1783–1788. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S193–S202. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Thompson, R.; Dellinger, P.; Yanez, D.; Farrohki, E.; Flum, D. Importance of perioperative glycemic control in general surgery: A report from the Surgical Care and Outcomes Assessment Program. Ann. Surg. 2013, 257, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2017, 39, 119–177. [Google Scholar]
- Samaropoulos, X.F.; Light, L.; Ambrosius, W.T.; Marcovina, S.M.; Probstfield, J.; Goff, D.C., Jr. The effect of intensive risk factor management in type 2 diabetes on inflammatory biomarkers. Diabetes Res. Clin. Pract. 2012, 95, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Sasso, F.C.; Rinaldi, L.; Lascar, N.; Marrone, A.; Pafundi, P.C.; Adinolfi, L.E.; Marfella, R. Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 3106056. [Google Scholar] [CrossRef] [Green Version]
- Dandona, P.; Aljada, A.; Mohanty, P. The anti-inflammatory and potential anti-atherogenic effect of insulin: A new paradigm. Diabetologia 2002, 45, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Iliadis, F.; Kadoglou, N.; Didangelos, T. Insulin and the heart. Diabetes Res. Clin. Pract. 2011, 93 (Suppl. 1), S86–S91. [Google Scholar] [CrossRef]
BST < 180 | BST ≥ 180 | Before IPW | After IPW | |||
---|---|---|---|---|---|---|
(n = 8337) | (n = 2965) | p-Value | SMD | p-Value | SMD | |
Intraoperative minimum BST * | 120.3 (25.8) | 168.8 (44.2) | <0.001 | <0.001 | ||
Intraoperative maximum BST * | 134.8 (25.6) | 215.2 (35.8) | <0.001 | <0.001 | ||
Intraoperative insulin, units * | 21.7 (±39.3) | 29.1 (±265.9) | 0.013 | 0.651 | ||
Intraoperative insulin use | 2925 (35.1) | 1251 (42.2) | <0.001 | 14.6% | 0.270 | 2.5% |
Age | 61.0 (±13.7) | 63.4 (±11.2) | <0.001 | 19.8% | 0.046 | 4.7% |
Male | 5235 (62.8) | 1822 (61.5) | 0.203 | 2.8% | 0.243 | 2.7% |
Hypertension | 4733 (56.8) | 1908 (64.4) | <0.001 | 15.6% | 0.428 | 1.9% |
Chronic kidney disease | 637 (7.6) | 252 (8.5) | 0.147 | 3.2% | 0.832 | 0.5% |
Current alcoholic | 1753 (21.0) | 515 (17.4) | <0.001 | 9.3% | 0.917 | 0.3% |
Active cancer | 4408 (52.9) | 1801 (60.7) | <0.001 | 15.9% | 0.505 | 1.6% |
Previous disease | ||||||
Stroke | 573 (6.9) | 196 (6.6) | 0.656 | 1.0% | 0.891 | 0.3% |
Coronary artery disease | 1191 (14.3) | 470 (15.9) | 0.042 | 4.4% | 0.641 | 1.1% |
Heart failure | 194 (2.3) | 43 (1.5) | 0.005 | 6.4% | 0.298 | 2.6% |
Arrhythmia | 559 (6.7) | 160 (5.4) | 0.014 | 5.5% | 0.218 | 3.2% |
Heart valvular disease | 81 (1.0) | 19 (0.6) | 0.124 | 3.7% | 0.644 | 1.3% |
Preoperative in-hospital care | ||||||
Insulin use | 7508 (90.1) | 2788 (94.0) | <0.001 | 14.7% | 0.026 | 5.9% |
Intensive care unit | 390 (4.7) | 205 (6.9) | <0.001 | 9.6% | 0.004 | 6.6% |
ECMO | 1 (0.0) | 0 (0.0) | >0.999 | 1.5% | 0.554 | 1.4% |
Continuous renal replacement therapy | 41 (0.5) | 18 (0.6) | 0.549 | 1.6% | 0.177 | 2.9% |
Ventilator | 58 (0.7) | 44 (1.5) | <0.001 | 7.6% | 0.007 | 5.9% |
Operative variables | ||||||
ESC/ESA high-risk operation | 2950 (35.4) | 1578 (53.2) | <0.001 | 36.5% | 0.334 | 2.2% |
General anesthesia | 8289 (99.4) | 2961 (99.9) | 0.004 | 7.4% | 0.817 | 0.9% |
Emergency operation | 1100 (13.2) | 472 (15.9) | <0.001 | 7.7% | 0.211 | 2.9% |
Operation duration | 4.13 (±2.12) | 4.99 (±2.31) | <0.001 | 38.7% | 0.422 | 1.8% |
Continuous infusion of inotropics | 3097 (37.1) | 1221 (41.2) | <0.001 | 8.3% | 0.713 | 0.8% |
Packed red blood cell transfusion | 1048 (12.6) | 561 (18.9) | <0.001 | 17.5% | 0.255 | 2.5% |
BST < 180 | BST ≥ 180 | ||
---|---|---|---|
(n = 8337) | (n = 2965) | p-Value | |
Insulin | 1728 (20.7) | 617 (21.0) | 0.69 |
Metformin | 1617 (19.4) | 1183 (39.9) | <0.001 |
Beta-blocker | 1753 (21.0) | 638 (21.5) | 0.592 |
Calcium channel blocker | 2522 (30.3) | 1093 (36.9) | <0.001 |
ACE-inhibitor | 546 (6.5) | 209 (7.0) | 0.37 |
ARB | 2561 (30.7) | 1080 (36.4) | <0.001 |
Statin | 2414 (29.0) | 979 (33.0) | <0.001 |
Aspirin | 2027 (24.3) | 724 (24.4) | 0.93 |
Clopidogrel | 655 (7.9) | 225 (7.6) | 0.67 |
Warfarin | 312 (3.7) | 81 (2.7) | 0.012 |
RAAS | 2817 (33.8) | 1184 (39.9) | <0.001 |
Anti-platelet | 2492 (29.9) | 902 (30.4) | 0.60 |
DOAC | 94 (1.1) | 28 (0.9) | 0.47 |
BST < 180 (n = 8337) | BST ≥ 180 (n = 2965) | Univariable Analysis | Multivariable Analysis | After IPW | ||||
---|---|---|---|---|---|---|---|---|
Unadjusted OR/HR (95% CI) | p-Value | Adjusted OR/HR * (95% CI) | p-Value | OR/HR (95% CI) | p-Value | |||
MINS | 1434 (17.2) | 713 (24.0) | 1.52 (1.38–1.69) | <0.001 | 1.34 (1.20–1.50) | <0.001 | 1.30 (1.17–1.44) | <0.001 |
In-hospital mortality | 191 (2.3) | 125 (4.2) | 1.39 (1.11–1.74) | 0.005 | 1.45 (1.14–1.83) | <0.001 | 1.34 (1.02–1.75) | 0.01 |
30-day mortality | 147 (1.8) | 93 (3.1) | 1.80 (1.39–2.33) | <0.001 | 1.94 (1.48–2.56) | <0.001 | 1.78 (1.33–2.38) | <0.001 |
BST < 180 | BST ≥ 180 | p-Value | |
---|---|---|---|
(n = 1437) | (n = 713) | ||
Postoperative Diagnosis | |||
Myocardial infarction | 31 (0.4) | 24 (0.8) | 0.005 |
ST-elevation | 7 (0.1) | 1 (0.0) | 0.630 |
Non-ST-elevation | 24 (0.3) | 23 (0.8) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, J.; Kim, H.; Yang, K.; Choi, J.-h.; Kim, K.; Sung, J.; Ahn, J.; Lee, S.-H. Intraoperative Hyperglycemia May Be Associated with an Increased Risk of Myocardial Injury after Non-Cardiac Surgery in Diabetic Patients. J. Clin. Med. 2021, 10, 5219. https://doi.org/10.3390/jcm10225219
Kim S, Park J, Kim H, Yang K, Choi J-h, Kim K, Sung J, Ahn J, Lee S-H. Intraoperative Hyperglycemia May Be Associated with an Increased Risk of Myocardial Injury after Non-Cardiac Surgery in Diabetic Patients. Journal of Clinical Medicine. 2021; 10(22):5219. https://doi.org/10.3390/jcm10225219
Chicago/Turabian StyleKim, Sojin, Jungchan Park, Hara Kim, Kwangmo Yang, Jin-ho Choi, Kyunga Kim, Jidong Sung, Joonghyun Ahn, and Seung-Hwa Lee. 2021. "Intraoperative Hyperglycemia May Be Associated with an Increased Risk of Myocardial Injury after Non-Cardiac Surgery in Diabetic Patients" Journal of Clinical Medicine 10, no. 22: 5219. https://doi.org/10.3390/jcm10225219
APA StyleKim, S., Park, J., Kim, H., Yang, K., Choi, J. -h., Kim, K., Sung, J., Ahn, J., & Lee, S. -H. (2021). Intraoperative Hyperglycemia May Be Associated with an Increased Risk of Myocardial Injury after Non-Cardiac Surgery in Diabetic Patients. Journal of Clinical Medicine, 10(22), 5219. https://doi.org/10.3390/jcm10225219