Programmed Intermittent Epidural Bolus versus Continuous Epidural Infusion in Major Upper Abdominal Surgery: A Retrospective Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ultrasound-Assisted Thoracic Epidural Catheter Placement
2.3. Epidural PCA Setting
2.4. Anesthetic Management Based on the Enhanced Recovery after Surgery (ERAS) Protocol
2.5. Postoperative Analgesia
2.6. Outcome Assessment
2.7. Statistical Analysis
2.8. Sample Size Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werawatganon, T.; Charuluxananan, S. Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst. Rev. 2005, CD004088. [Google Scholar] [CrossRef]
- Wu, C.L.; Cohen, S.R.; Richman, J.M.; Rowlingson, A.J.; Courpas, G.E.; Cheung, K.; Lin, E.E.; Liu, S.S. Efficacy of Postoperative Patient-controlled and Continuous Infusion Epidural Analgesia versus Intravenous Patient-controlled Analgesia with OpioidsA Meta-analysis. Anesthesiology 2005, 103, 1079–1088. [Google Scholar] [CrossRef]
- Ueda, K.; Ueda, W.; Manabe, M. A comparative study of sequential epidural bolus technique and continuous epidural infusion. Anesthesiology 2005, 103, 126–129. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, C.; Cobb, B.; Riley, E.; Carvalho, B. Programmed intermittent epidural boluses for maintenance of labor analgesia: An impact study. Int. J. Obstet. Anesth. 2016, 26, 32–38. [Google Scholar] [CrossRef]
- George, R.B.; Allen, T.K.; Habib, A.S. Intermittent epidural bolus compared with continuous epidural infusions for labor analgesia: A systematic review and meta-analysis. Anesth. Analg. 2013, 116, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojo, O.A.; Mehdiratta, J.E.; Gamez, B.H.; Hunting, J.; Habib, A.S. Comparison of Programmed Intermittent Epidural Boluses With Continuous Epidural Infusion for the Maintenance of Labor Analgesia: A Randomized, Controlled, Double-Blind Study. Anesth. Analg. 2020, 130, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Wiesmann, T.; Hoff, L.; Prien, L.; Torossian, A.; Eberhart, L.; Wulf, H.; Feldmann, C. Programmed intermittent epidural bolus versus continuous epidural infusion for postoperative analgesia after major abdominal and gynecological cancer surgery: A randomized, triple-blinded clinical trial. BMC Anesthesiol. 2018, 18, 154. [Google Scholar] [CrossRef]
- Su, P.-Y.P.; Peniche, A.; Clelland, E.; Ladd, M.; Delgado, A.; Chen, L.-L.; Siegmueller, C.; Latronica, M.; Naidu, R.; Aleshi, P. Comparison of programmed intermittent epidural bolus and continuous epidural infusion for post-operative analgesia after major abdominal surgery: A randomized controlled trial. J. Clin. Anesth. 2020, 64, 109850. [Google Scholar] [CrossRef]
- Cachemaille, M.; Grass, F.; Fournier, N.; Suter, M.R.; Demartines, N.; Hübner, M.; Blanc, C. Pain intensity in the first 96 hours after abdominal surgery: A prospective cohort study. Pain Med. 2020, 21, 803–813. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.-H.; Sim, J.H.; Jeong, W.; Lee, D.; Kwon, H.-M.; Choi, S.-S.; Jeong, S.-M. Real-time ultrasound-guided low thoracic epidural catheter placement: Technical consideration and fluoroscopic evaluation. Reg. Anesth. Pain Med. 2021, 46, 512–517. [Google Scholar] [CrossRef]
- Miller, T.E.; Roche, A.M.; Mythen, M. Fluid management and goal-directed therapy as an adjunct to Enhanced Recovery After Surgery (ERAS). Can. J. Anesth. 2015, 62, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Lassen, K.; Coolsen, M.M.; Slim, K.; Carli, F.; de Aguilar-Nascimento, J.E.; Schäfer, M.; Parks, R.W.; Fearon, K.C.; Lobo, D.N.; Demartines, N. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Clin. Nutr. 2012, 31, 817–830. [Google Scholar] [CrossRef]
- Wiesmann, T.; Kranke, P.; Eberhart, L. Postoperative nausea and vomiting–a narrative review of pathophysiology, pharmacotherapy and clinical management strategies. Expert Opin. Parmacother. 2015, 16, 1069–1077. [Google Scholar] [CrossRef]
- McNicol, E.; Tzortzopoulou, A.; Cepeda, M.; Francia, M.; Farhat, T.; Schumann, R. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: A systematic review and meta-analysis. Br. J. Anaesth. 2011, 106, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Feldheiser, A.; Aziz, O.; Baldini, G.; Cox, B.; Fearon, K.; Feldman, L.; Gan, T.; Kennedy, R.; Ljungqvist, O.; Lobo, D. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: Consensus statement for anaesthesia practice. Acta Anaesthesiol. Scand. 2016, 60, 289–334. [Google Scholar] [CrossRef] [Green Version]
- Gammaitoni, A.R.; Fine, P.; Alvarez, N.; McPherson, M.L.; Bergmark, S. Clinical application of opioid equianalgesic data. Clin. J. Pain 2003, 19, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Hashmi, M.F.; Bhattacharya, P.T. Hypotension. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Sng, B.L.; Zeng, Y.; de Souza, N.N.A.; Leong, W.L.; Oh, T.T.; Siddiqui, F.J.; Assam, P.N.; Han, N.L.R.; Chan, E.S.; Sia, A.T. Automated mandatory bolus versus basal infusion for maintenance of epidural analgesia in labour. Cochrane Database Syst. Rev. 2018, 2018, CD011344. [Google Scholar] [CrossRef] [PubMed]
- Bullingham, A.; Liang, S.; Edmonds, E.; Mathur, S.; Sharma, S. Continuous epidural infusion vs programmed intermittent epidural bolus for labour analgesia: A prospective, controlled, before-and-after cohort study of labour outcomes. Br. J. Anaesth. 2018, 121, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Higashi, M.; Shigematsu, K.; Nakamori, E.; Sakurai, S.; Yamaura, K. Efficacy of programmed intermittent bolus epidural analgesia in thoracic surgery: A randomized controlled trial. BMC Anesthesiol. 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Hughey, S. Bolus epidural infusion improves spread compared with continuous infusion in a cadaveric porcine spine model. Reg. Anesth. Pain Med. 2019, 44, 1080–1083. [Google Scholar] [CrossRef]
- Mowat, I.; Tang, R.; Vaghadia, H.; Krebs, C.; Henderson, W.; Sawka, A. Epidural distribution of dye administered via an epidural catheter in a porcine model. Br. J. Anesth. 2016, 116, 277–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okutomi, T.; Minakawa, M.; Hoka, S. Saline volume and local anesthetic concentration modify the spread of epidural anesthesia. Can. J. Anesth. 1999, 46, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Dernedde, M.; Stadler, M.; Bardiau, F.; Boogaerts, J.G. Continuous epidural infusion of large concentration/small volume versus small concentration/large volume of levobupivacaine for postoperative analgesia. Anesth. Analg. 2003, 96, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Ellis, H.; Coleridge-Smith, P.D.; Joyce, A. Abdominal incisions--vertical or transverse? Postgrad. Med. J. 1984, 60, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.; George, R.B.; Cobb, B.; McKenzie, C.; Riley, E.T. Implementation of programmed intermittent epidural bolus for the maintenance of labor analgesia. Anesth. Analg. 2016, 123, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Leo, S.; Ocampo, C.; Lim, Y.; Sia, A. A randomized comparison of automated intermittent mandatory boluses with a basal infusion in combination with patient-controlled epidural analgesia for labor and delivery. Int. J. Obstet. Anesth. 2010, 19, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Chamley, D.M.; Mooney, P.H.; Deam, R.K.; Mark, A.H.; Hagglof, B. Epidural ropivacaine infusion for postoperative analgesia after major lower abdominal surgery—A dose finding study. Anesth. Analg. 1995, 81, 982–986. [Google Scholar]
- Wiebalck, A.; Brodner, G.; Van Aken, H. The effects of adding sufentanil to bupivacaine for postoperative patient-controlled epidural analgesia. Anesth. Analg. 1997, 85, 124–129. [Google Scholar]
- Clemente, A.; Carli, F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva Anestesiol. 2008, 74, 549–563. [Google Scholar]
- Borzellino, G.; Francis, N.K.; Chapuis, O.; Krastinova, E.; Dyevre, V.; Genna, M. Role of epidural analgesia within an ERAS program after laparoscopic colorectal surgery: A review and meta-analysis of randomised controlled studies. Surg. Res. Pract. 2016, 2016, 7543684. [Google Scholar] [CrossRef] [Green Version]
- Ip, H.Y.V.; Abrishami, A.; Peng, P.W.; Wong, J.; Chung, F. Predictors of postoperative pain and analgesic consumption: A qualitative systematic review. J. Am. Soc. Anesthesiol. 2009, 111, 657–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, K.J.; Kalkman, C.J.; Grobbee, D.E.; Bonsel, G.J.; Moons, K.G.; Vergouwe, Y. The risk of severe postoperative pain: Modification and validation of a clinical prediction rule. Anesth. Analg. 2008, 107, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T. Guidelines on the management of postoperative pain. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CEI (n = 124) | PIEB (n = 69) | p Value | |
---|---|---|---|
Age (year) | 65.0 (58.0–71.0) | 65.0 (61.0–69.0) | 0.567 |
Gender, male | 85 (68.5) | 46 (66.7) | 0.914 |
BMI (kg/m2) | 23.6 ± 3.1 | 23.4 ± 3.2 | 0.692 |
ASA PS | 0.007 | ||
I | 13 (10.5) | 2 (2.9) | |
II | 95 (76.6) | 47 (68.1) | |
III | 16 (12.9) | 20 (29) | |
HTN | 48 (38.7) | 27 (39.1) | 0.999 |
DM | 33 (26.6) | 25 (36.2) | 0.218 |
IHD | 9 (7.3) | 9 (13.0) | 0.286 |
CVA | 7 (5.6) | 7 (10.1) | 0.387 |
Variables related to TEA | |||
Duration of epidural analgesia (h) | 90.0 (87.7–94.2) | 88.0 (81.0–93.0) | 0.059 |
Needle depth (cm) | 5.8 (5.3–6.0) | 6.0 (5.5–6.1) | 0.373 |
Sufentanil dose (μg) | 150.0 (150.0–150.0) | 150.0 (100.0–200.0) | 0.131 |
Intraoperative variables | |||
Type of surgery | 0.451 | ||
Whipple’s procedure | 23 (18.5) | 6 (8.7) | |
PPPD | 63 (50.8) | 44 (63.8) | |
Total pancreatectomy | 6 (4.8) | 4 (5.8) | |
Distal pancreatectomy | 8 (6.5) | 3 (4.3) | |
Hepatectomy | 18 (14.5) | 9 (13) | |
BDR | 6 (4.8) | 3 (4.3) | |
Duration of surgery (min) | 250.5 (191.5–335.5) | 238.0 (196.0–283.0) | 0.300 |
Crystalloids (mL) | 1600.0 (1300.0–2300.0) | 1600.0 (1150.0–2000.0) | 0.283 |
Colloids (mL) | 100.0 (0.0–500.0) | 100.0 (0.0–500.0) | 0.816 |
Red blood cell (units) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.855 |
Urine output (mL) | 227.5 (137.5–345.0) | 250.0 (135.0–400.0) | 0.607 |
Estimated blood loss (mL) | 109.0 (81–420.0) | 100.0 (83–621.0) | 0.956 |
ASA Ⅰ (n = 15) | ASA Ⅱ (n = 142) | ASA Ⅲ (n = 36) | p Value | |
---|---|---|---|---|
PIEB, n (%) | 13 (86.7) | 95 (66.9) | 16 (44.4) | 0.007 |
Total opioid consumption (mg) | 33.3 (19.2–45.8) | 31.7 (18.3–45.0) | 29.2 (22.5–42.5) | 0.913 |
Mean NRS 72 h after surgery | 3.5 (3.0–4.2) | 3.5 (3.0–4.5) | 4.0 (3.0–4.5) | 0.726 |
Worst NRS 72 h after surgery | 5.0 (3.0–6.0) | 5.0 (3.0–6.0) | 5.0 (3.0–6.0) | 0.740 |
Epidural LA dosage (mg) | 45.9 (37.5–52.3) | 43.6 (37.5–53.7) | 45.1 (37.5–52.9) | 0.901 |
CEI (n = 124) | PIEB (n = 69) | p Value | |
---|---|---|---|
Hypotension | |||
PACU | 22 (17.7) | 15 (21.7) | 0.627 |
24 h | 16 (12.9) | 15 (21.7) | 0.999 |
48 h | 4 (3.2%) | 3 (4.3) | 0.999 |
72 h | 1 (0.8) | 1 (1.4) | 0.999 |
Use of vasopressor | |||
PACU | 15 (12.1) | 9 (13.0) | 0.999 |
24 h | 3 (2.4) | 3 (4.3) | 0.759 |
48 h | 3 (2.4) | 2 (2.9) | 0.999 |
72 h | 2 (1.6) | 2 (2.9) | 0.941 |
Nausea and vomiting | |||
PACU | 2 (1.6) | 4 (5.8) | 0.241 |
24 h | 16 (12.9) | 15 (21.7) | 0.162 |
48 h | 16 (12.9) | 10 (21.7) | 0.928 |
72 h | 18 (14.5) | 11 (15.9) | 0.956 |
Pruritus | 2 (1.6) | 1 (1.4) | 0.999 |
Neurologic deficit | 2 (1.6) | 0 (0.0) | 0.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Lee, D.-K.; Kwon, H.-J.; Kwon, H.-M.; Lee, J.-H.; Kim, D.-H.; Jeong, S.-M. Programmed Intermittent Epidural Bolus versus Continuous Epidural Infusion in Major Upper Abdominal Surgery: A Retrospective Comparative Study. J. Clin. Med. 2021, 10, 5382. https://doi.org/10.3390/jcm10225382
Kim Y-J, Lee D-K, Kwon H-J, Kwon H-M, Lee J-H, Kim D-H, Jeong S-M. Programmed Intermittent Epidural Bolus versus Continuous Epidural Infusion in Major Upper Abdominal Surgery: A Retrospective Comparative Study. Journal of Clinical Medicine. 2021; 10(22):5382. https://doi.org/10.3390/jcm10225382
Chicago/Turabian StyleKim, Yeon-Ju, Do-Kyeong Lee, Hyun-Jung Kwon, Hye-Mee Kwon, Jong-Hyuk Lee, Doo-Hwan Kim, and Sung-Moon Jeong. 2021. "Programmed Intermittent Epidural Bolus versus Continuous Epidural Infusion in Major Upper Abdominal Surgery: A Retrospective Comparative Study" Journal of Clinical Medicine 10, no. 22: 5382. https://doi.org/10.3390/jcm10225382
APA StyleKim, Y.-J., Lee, D.-K., Kwon, H.-J., Kwon, H.-M., Lee, J.-H., Kim, D.-H., & Jeong, S.-M. (2021). Programmed Intermittent Epidural Bolus versus Continuous Epidural Infusion in Major Upper Abdominal Surgery: A Retrospective Comparative Study. Journal of Clinical Medicine, 10(22), 5382. https://doi.org/10.3390/jcm10225382