Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.2. Clinical Characteristics
3.3. Molecular Findings in the Study Cohort
3.4. Genotype–Phenotype Correlation and Mutations of Particular Interest
4. Discussion
- (1)
- Biallelic mutations that predict nonsense-mediated mRNA decay are always associated with MYO5B-MVID. This indicates that the MVID phenotype is caused by a loss-of-function of MYO5B, which causes clinical symptoms via disrupted enterocyte polarization [1,17,22,36]. The small number of missense mutations associated with MYO5B-MVID might all lead to misfolding and MYO5B degradation, also resulting in lack of MYO5B protein. The loss of MYO5B motor function alone does not cause liver disease.
- (2)
- Contrastingly, a distinct set of missense mutations is identified in patients with MYO5B-PFIC, and these mutant MYO5B proteins are expressed, as has been shown for two of these missense mutations, p.C266R, and p.S158F [11,15,37]. Apparently, intestinal MYO5B function of these mutant proteins is preserved, at least to the degree in that such biallelic missense mutations allow sufficient degree of enterocytic function to maintain intestinal autonomy. However, displacement of bile canalicular transporters to the cytoplasm of hepatocytes was shown in liver biopsies of patients with MVID presenting with cholestasis and homozygous missense mutations p. P660L [37] as well as in patients with MYO5B-PFIC with the homozygous missense mutations p. C266R [11] and p.S158F mutation [15]. Mutagenesis experiments showed that the disrupting effect of PFIC-associated MYO5B motor domain mutants on the localization of canalicular proteins was critically dependent on their preserved ability to interact with active RAB11a, as loss of MYO5B did not affect RAB11-dependent vesicle trafficking [15].
- (3)
- The conclusion from recent in vitro and in vivo studies is indirectly supported by our genotype–phenotype correlation, which shows that MYO5B is not required for the correct localization of hepatic canalicular proteins. It was shown that PFIC-associated MYO5B mutants require active RAB11a for their disruptive effect on canalicular protein localization, and this previous study indicated a direct and simple explanation for the observed genotype–phenotype correlation in patients with MYO5B mutations.
- (4)
- Patients with MYO5B-MIXED most often present with a missense or late-truncating mutation in trans with a loss-of-function mutation in MYO5B. In these instances, the presence of a single mutant expressed protein cannot prevent MVID development in enterocytes and causes cholestatic liver disease by putatively interfering with RAB11- or RAB8-dependent [38] processes.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogel, G.F.; Janecke, A.R.; Krainer, I.M.; Gutleben, K.; Witting, B.; Mitton, S.G.; Mansour, S.; Ballauff, A.; Roland, J.T.; Engevik, A.C.; et al. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic 2017, 18, 453–464. [Google Scholar] [CrossRef]
- Davidson, G.P.; Cutz, E.; Hamilton, J.R.; Gall, D.G. Familial enteropathy: A syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 1978, 75, 783–790. [Google Scholar] [CrossRef]
- Cutz, E.; Rhoads, J.M.; Drumm, B.; Sherman, P.M.; Durie, P.R.; Forstner, G.G. Microvillus inclusion disease: An inherited defect of brush-border assembly and differentiation. N. Engl. J. Med. 1989, 320, 646–651. [Google Scholar] [CrossRef]
- Ruemmele, F.M.; Schmitz, J.; Goulet, O. Microvillous inclusion disease (microvillous atrophy). Orphanet J. Rare Dis. 2006, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Wiegerinck, C.L.; Janecke, A.R.; Schneeberger, K.; Vogel, G.F.; van Haaften-Visser, D.Y.; Escher, J.C.; Adam, R.; Thoni, C.E.; Pfaller, K.; Jordan, A.J.; et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 2014, 147, 65–68. [Google Scholar] [CrossRef]
- Stepensky, P.; Bartram, J.; Barth, T.F.; Lehmberg, K.; Walther, P.; Amann, K.; Philips, A.D.; Beringer, O.; Zur Stadt, U.; Schulz, A.; et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr. Blood Cancer 2013, 60, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Dhekne, H.S.; Pylypenko, O.; Overeem, A.W.; Ferreira, R.J.; van der Velde, K.J.; Rings, E.; Posovszky, C.; Swertz, M.A.; Houdusse, A.; van IJzendoorn, S.C.D. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum. Mutat. 2018, 39, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, G.F.; van Rijn, J.M.; Krainer, I.M.; Janecke, A.R.; Posovszky, C.; Cohen, M.; Searle, C.; Jantchou, P.; Escher, J.C.; Patey, N.; et al. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, M.; Lacaille, F.; Verkarre, V.; Mategot, R.; Feldmann, G.; Grodet, A.; Sauvat, F.; Irtan, S.; Davit-Spraul, A.; Jacquemin, E.; et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014, 60, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, E.; Taylor, S.A.; Davit-Spraul, A.; Thebaut, A.; Thomassin, N.; Guettier, C.; Whitington, P.F.; Jacquemin, E. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology 2017, 65, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.L.; Gong, J.Y.; Feng, J.Y.; Wang, R.X.; Han, J.; Liu, T.; Lu, Y.; Li, L.T.; Zhang, M.H.; Sheps, J.A.; et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low gamma-glutamyltransferase cholestasis. Hepatology 2017, 65, 1655–1669. [Google Scholar] [CrossRef] [PubMed]
- Bull, L.N.; Carlton, V.E.; Stricker, N.L.; Baharloo, S.; DeYoung, J.A.; Freimer, N.B.; Magid, M.S.; Kahn, E.; Markowitz, J.; DiCarlo, F.J.; et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): Evidence for heterogeneity. Hepatology 1997, 26, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Sambrotta, M.; Strautnieks, S.; Papouli, E.; Rushton, P.; Clark, B.E.; Parry, D.A.; Logan, C.V.; Newbury, L.J.; Kamath, B.M.; Ling, S.; et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat. Genet. 2014, 46, 326–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droge, C.; Bonus, M.; Baumann, U.; Klindt, C.; Lainka, E.; Kathemann, S.; Brinkert, F.; Grabhorn, E.; Pfister, E.D.; Wenning, D.; et al. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J. Hepatol. 2017, 67, 1253–1264. [Google Scholar] [CrossRef]
- Overeem, A.W.; Li, Q.; Qiu, Y.L.; Carton-Garcia, F.; Leng, C.; Klappe, K.; Dronkers, J.; Hsiao, N.H.; Wang, J.S.; Arango, D.; et al. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting From MYO5B Mutations. Hepatology 2020, 72, 213–229. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, K.J.; Dhekne, H.S.; Swertz, M.A.; Sirigu, S.; Ropars, V.; Vinke, P.C.; Rengaw, T.; van den Akker, P.C.; Rings, E.H.; Houdusse, A.; et al. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum. Mutat. 2013, 34, 1597–1605. [Google Scholar] [CrossRef]
- Muller, T.; Hess, M.W.; Schiefermeier, N.; Pfaller, K.; Ebner, H.L.; Heinz-Erian, P.; Ponstingl, H.; Partsch, J.; Rollinghoff, B.; Kohler, H.; et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 2008, 40, 1163–1165. [Google Scholar] [CrossRef]
- Ruemmele, F.M.; Muller, T.; Schiefermeier, N.; Ebner, H.L.; Lechner, S.; Pfaller, K.; Thoni, C.E.; Goulet, O.; Lacaille, F.; Schmitz, J.; et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat. 2010, 31, 544–551. [Google Scholar] [CrossRef]
- Klee, K.M.C.; Janecke, A.R.; Civan, H.A.; Rosipal, S.; Heinz-Erian, P.; Huber, L.A.; Muller, T.; Vogel, G.F. AP1S1 missense mutations cause a congenital enteropathy via an epithelial barrier defect. Hum. Genet. 2020, 139, 1247–1259. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Oak, N.; Plon, S.E. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol. 2017, 18, 225. [Google Scholar] [CrossRef] [Green Version]
- van IJzendoorn, S.C.D.; Li, Q.; Qiu, Y.L.; Wang, J.S.; Overeem, A.W. Unequal effects of MYO5B mutations in liver and intestine determine the clinical presentation of low-GGT cholestasis. Hepatology 2020. [Google Scholar] [CrossRef]
- Schneeberger, K.; Vogel, G.F.; Teunissen, H.; van Ommen, D.D.; Begthel, H.; El Bouazzaoui, L.; van Vugt, A.H.; Beekman, J.M.; Klumperman, J.; Muller, T.; et al. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. Proc. Natl. Acad. Sci. USA 2015, 112, 12408–12413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szperl, A.M.; Golachowska, M.R.; Bruinenberg, M.; Prekeris, R.; Thunnissen, A.M.; Karrenbeld, A.; Dijkstra, G.; Hoekstra, D.; Mercer, D.; Ksiazyk, J.; et al. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golachowska, M.R.; van Dael, C.M.; Keuning, H.; Karrenbeld, A.; Hoekstra, D.; Gijsbers, C.F.; Benninga, M.A.; Rings, E.H.; van Ijzendoorn, S.C. MYO5B mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Erickson, R.P.; Larson-Thome, K.; Valenzuela, R.K.; Whitaker, S.E.; Shub, M.D. Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am. J. Med. Genet. A 2008, 146A, 3117–3119. [Google Scholar] [CrossRef]
- Cockar, I.; Foskett, P.; Strautnieks, S.; Clinch, Y.; Fustok, J.; Rahman, O.; Sutton, H.; Mtegha, M.; Fessatou, S.; Kontaki, E.; et al. Mutations in Myosin 5B in Children With Early-onset Cholestasis. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 184–188. [Google Scholar] [CrossRef]
- Comegna, M.; Amato, F.; Liguori, R.; Berni Canani, R.; Spagnuolo, M.I.; Morroni, M.; Guarino, A.; Castaldo, G. Two cases of microvillous inclusion disease caused by novel mutations in MYO5B gene. Clin. Case Rep. 2018, 6, 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.; Bensallah, H.; Martinez-Vinson, C.; Berrebi, D.; Arbeille, B.; Salomon, J.; Goulet, O.; Marinier, E.; Drunat, S.; Samson-Bouma, M.E.; et al. Microvillous atrophy: Atypical presentations. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 779–785. [Google Scholar] [CrossRef]
- Chen, C.P.; Chiang, M.C.; Wang, T.H.; Hsueh, C.; Chang, S.D.; Tsai, F.J.; Wang, C.N.; Chern, S.R.; Wang, W. Microvillus inclusion disease: Prenatal ultrasound findings, molecular diagnosis and genetic counseling of congenital diarrhea. Taiwan. J. Obstet. Gynecol. 2010, 49, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.; Guo, L.; Zhang, Z.; Wang, B.; Huang, S.; Song, Y.; Chen, F.; Wen, W. Phenotypic and genetic analysis of a family affected with microvillus inclusion disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2016, 33, 792–796. [Google Scholar] [CrossRef]
- Fernandez Caamano, B.; Quiles Blanco, M.J.; Fernandez Tome, L.; Burgos Lizaldez, E.; Sarria Oses, J.; Molina Arias, M.; Prieto Bozano, G. Intestinal failure and transplantation in microvillous inclusion disease. An. Pediatr. (Barc.) 2015, 83, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Croft, N.M.; Howatson, A.G.; Ling, S.C.; Nairn, L.; Evans, T.J.; Weaver, L.T. Microvillous inclusion disease: An evolving condition. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Choudry, O.; Kashyap, A.; Velazquez, D.M. Congenital diarrhea in a newborn infant: A case report. World J. Clin. Pediatr. 2019, 8, 43–48. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Kamin, D.S.; Acra, S.; Goldsmith, J.D.; Roland, J.T.; Lencer, W.I.; Muise, A.M.; Goldenring, J.R.; Avitzur, Y.; Martin, M.G.; et al. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology 2018, 154, 2045–2059.e6. [Google Scholar] [CrossRef] [Green Version]
- Goulet, O.; Ruemmele, F. Causes and management of intestinal failure in children. Gastroenterology 2006, 130, S16–S28. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.F.; Klee, K.M.; Janecke, A.R.; Muller, T.; Hess, M.W.; Huber, L.A. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J. Cell Biol. 2015, 211, 587–604. [Google Scholar] [CrossRef]
- Schlegel, C.; Weis, V.G.; Knowles, B.C.; Lapierre, L.A.; Martin, M.G.; Dickman, P.; Goldenring, J.R.; Shub, M.D. Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig. Dis. Sci. 2018, 63, 356–365. [Google Scholar] [CrossRef]
- Roland, J.T.; Bryant, D.M.; Datta, A.; Itzen, A.; Mostov, K.E.; Goldenring, J.R. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl. Acad. Sci. USA 2011, 108, 2789–2794. [Google Scholar] [CrossRef] [Green Version]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Carton-Garcia, F.; Overeem, A.W.; Nieto, R.; Bazzocco, S.; Dopeso, H.; Macaya, I.; Bilic, J.; Landolfi, S.; Hernandez-Losa, J.; Schwartz, S., Jr.; et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci. Rep. 2015, 5, 12312. [Google Scholar] [CrossRef]
- Weis, V.G.; Knowles, B.C.; Choi, E.; Goldstein, A.E.; Williams, J.A.; Manning, E.H.; Roland, J.T.; Lapierre, L.A.; Goldenring, J.R. Loss of MYO5B in mice recapitulates Microvillus Inclusion Disease and reveals an apical trafficking pathway distinct to neonatal duodenum. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 131–157. [Google Scholar] [CrossRef] [Green Version]
MYO5B-PFIC | 23 | 20.2% |
MYO5B-MIXED | 32 | 28.1% |
MYO5B-MVID | 31 | 27.2% |
Missing information | 28 | 24.5% |
total | 114 | 100% |
Domain | ||||||
---|---|---|---|---|---|---|
Head | IQ | Coiled Coil | Tail | Total | ||
Mutation | count (%) | 37 (80.4) | 4 (8.7) | 2 (4.4) | 3 (6.5) | 46 (100) |
Amino acid residues | count (%) | 692 (41.9) | 130 (7.9) | 554 (33.5) | 277 (16.7) | 1653 (100) |
Genotype | Total | |||||
---|---|---|---|---|---|---|
Biallelic Missense | Biallelic Truncating | Missense-Truncating | ||||
Phenotype | MYO5B-MVID | count (%) | 9 (31.0) | 15 (51.7) | 5 (17.3) | 29 (100) |
MYO5B-PFIC | count (%) | 11 (57.9) | 0 (0) | 8 (42.1) | 19 (100) | |
MYO5B-MIXED | count (%) | 12 (40.0) | 11 (36.7) | 7 (23.3) | 30 (100) | |
total | 32 | 26 | 20 | 78 |
MYO5B-PFIC | MYO5B-MVID | MYO5B-MIXED | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | ID | cDNA | Protein | Class | Study | ID | cDNA | Protein | Class | Study | ID | cDNA | Protein | Class |
this study | 10D2367 | c.1669G > T | p.V557L. p.V557L | Mis Mis | this study | 18D1383 | c.2014A > T c.2014A > T | p.K672 * p.K672 * | Tru Tru | this study | 18D4596 | c.1247T > A c.1247T > A | p.I416N p.I416N | Mis Mis |
this study | 11D1388 | c.1669G > T | p.V557L. p.V557L | Mis Mis | this study | 10D0098 | c.3190C > T c.3514C > T | p.R1064 * p.Q1172 * | Tru Tru | this study | 10D0028 | c.1475A > G c.1475A > G | p.D492G p.D492G | Mis Mis |
[26] | pat 1 | c.274C > T 1463T > C | p.R92C p.I488T | Mis Mis | this study | 16D2984 | c.4399C > T c.4399C > T | p.Q1467 * p.Q1467 * | Tru Tru | this study | 11D2081 | c.[1966C > T;4844C > T] c.[1966C > T;4844C > T] | p.[R656C;P1615L] p.[R656C;P1615L] | Mis Mis |
[26] | pat 3 | c.2470C > T | p.R824C p.R824C | Mis Mis | this study | 15D1631 | c.1323-2A > G c.1323-2A > G | splicing splicing | Tru Tru | this study | 12D1383 | c.[1966C > T;4844C > T] c.[1966C > T;4844C > T] | p.[R656C;P1615L] p.[R656C;P1615L] | Mis Mis |
[11] | pat 4 | c.3237G > C c.1604G > A | p.Q1079H p.S535N | Mis Mis | this study | 09D0802 | c.3046C > T c.3046C > T | p.R1016 * p.R1016 * | Tru Tru | this study | 17D1468 | c.3131-2A > G c.3131-2A > G | splicing splicing | Mis Mis |
[11] | pat 5 | c.796T > C | p.C266R p.C266R | Mis Mis | this study | 10D0875 | c.736C > A c.2612del | p.K246 * p.V871Gfs * 33 | Tru Tru | [17] | 14483 | c.1966C > T c.1966C > T | p.R656C p.R656C | Mis Mis |
[11] | pat 6 | c.1748G > A c.2801T > G | p.S583N p.I934S | Mis Mis | this study | 11D0567 | c.2014A > T c.2014A > T | p.K672 * p.K672 * | Tru Tru | [18] | 106 | c.502G > A c.502G > A | p.G168R p.G168R | Mis Mis |
[11] | pat 10 | c.2470C > T | p.R824C p.R824C | Mis Mis | this study | 11D1811 | c.838 + 1G > A c.4740_4741del | splicing p.H1580Qfs * 1 | Tru Tru | [18] | S285C1 | c.4667_4668TT > GC c.4667_4668TT > GC | p.L1556R p.L1556R | Mis Mis |
[10] | pat 1 | c.274C > T c.2395C > T | p.R92C p.R799W | Mis Mis | this study | 12D2180 | c.2T > A c27 + 2T > A | p.M1? splicing | Tru Tru | [18] | 107 | c.1303G > A c.1303G > A | p.G435R p.G435R | Mis Mis |
[10] | pat 2 | c.1499T > C c.1925T > C | p.I500T p.L642P | Mis Mis | this study | 17D2697 | c.25C > T exon 1del | p.Q9 * start removal | Tru Tru | [28] | pat 2 | c.1222A > T c.1582C > T | p.I408F p.L528F | Mis Mis |
[10] | pat 3 | c.356A > G | p.Y119C p.Y119C | Mis Mis | this study | 18D0872 | c.2245C > T exon 1del | p.R749 * start removal | Tru Tru | [28] | pat 3 | c.1222A > T c.1582C > T | p.I408F p.L528F | Mis Mis |
this study | 14D0856 | c.274C > T c.4123C > T | p.R92C p.Q1375* | Mis Tru | this study | GOSH 1 | c.1087C > T c.1087C > T | p.R363 * p.R363* | Tru Tru | this study | 13D2752 | c.445C > T c.5383C > T | p.Q149* p.R1795* | Tru Tru |
this study | 14D0857 | c.274C > T c.4123C > T | p.R92C p.Q1375 * | Mis Tru | this study | GOSH 2 | c.3046C > T c.5354_5355del | p.R1016 * p.F1785* | Tru Tru | this study | 10D1077 | c.1323-2A > G c.1323-2A > G | splicing splicing | Tru Tru |
[11] | pat 8 | c.437C > T c.3046C > T | p.S158F p.R1016 * | Mis Tru | [18] | 114 | c.1110_1113del c.4755dup | p.S370Rfs * 27 p.D1586* | Tru Tru | this study | 11D1983 | c.5395-1C > G c.5395-1C > G | splicing splicing | Tru Tru |
[11] | pat 9 | c.437C > T c.3046C > T | p.S158F p.R1016 * | Mis Tru | [18] | 115 | c.2003 + 2A > G c.2003 + 2A > G | splicing splicing | Tru Tru | this study | EN1 | c.5395-1C > G c.5395-1C > G | splicing splicing | Tru Tru |
[26] | pat 2 | c.274C > T c.1860dupT | p.R92C p.M621Hfs * 43 | Mis Tru | this study | 14D0669 | c.1966C > T c.2014A > T | p.R656C p.K672* | Mis Tru | this study | GOSH 3 | c.1576C > T c.2111del | p.Q526 * p.F704Sfs*67 | Tru Tru |
[10] | pat 4 | c.2470C > T c.1135C > T;c.1906-2A > G | p.R824C p.R379C;F636Lfs * 2 | Mis Tru | this study | 18D4787 | c.1966C > T c.2014A > T | p.R656C p.K672 * | Mis Tru | this study | GOSH 4 | c.672_673del c.672_673del | p.Q225Dfs * 4 p.Q225Dfs * 4 | Tru Tru |
[10] | pat 5 | c.2395C > T c.1753-1G > T | p.R799W splicing | Mis Tru | this study | 10D1884 | c.1591C > T;c.1856C > T c.5395-2A > G | p.R531W; p.P619L splicing | Mis Tru | [17] | 14484 | c.5392C > T c.5392C > T | p.R1798 * p.R1798 * | Tru Tru |
[11] | pat 3 | c.1201C > T c.1021C > T | p.R401C p.Q341* | Mis Tru | [18] | 112 | c.866C > A c.4840C > T | p.S289 * p.Q1614* | Tru Tru | |||||
this study | EN6 | c.947G > T c.4082T > C | p.G316V p.L1361P | Mis Mis | [18] | 121 | c.947-1G > A c.947-1G > A | splicing splicing | Tru Tru | |||||
[11] | pat 1 | c.3538-1G > A§ c.2414 + 5G > T& | splicing splicing | In-frame del In-frame del | [8] | 14D2264 | c.414C > A c.414C > A | p.H138Q p.H138Q | Mis Mis | [33] | pat 1 | c.1462del c.1462del | p.I488Lfs * 93 p.I488Lfs * 93 | Tru Tru |
[11] | pat 2 | c.3538-1G > A§ c.2414 + 5G > T& | splicing splicing | In-frame del In-frame del | [27] | C25 | c.505 A > G c.505 A > G | p.K169E p.K169E | Mis Mis | [22] | 19D0612 | c.1323-2A > G c.1323-2A > G | splicing splicing | Tru Tru |
[26] | pat 4 | c.1175T > C c.2349A > G | p.M392T p.K783 = | Mis ? | [28] | pat 6 | c. 656G > A c.4028T > C | p.R219H p.L1343P | Mis Mis | this study | 11D0303 | c.1489A > T c.1720G > T | p.I497F p.E574 * | Mis Tru |
this study | 13D2757 | c.1739T > C c.1110_1113del | p.L580P p.S370Rfs * 27 | Mis Tru | ||||||||||
[28] | pat 7 | c.1347delC c.3163-3165dup | p.F450Lfs * 30 ? | Mis ? | [18] | 108 | c.428C > A c.42G > A | p.A143E p.W14 * | Mis Tru | |||||
[11] | pat 7 | c.2090del c.4852 + 11A > G$ | p.R697Gfs * 74 splicing | Mis ? | [28] | pat 8 | c.1347delC c.3163-3165dup | p.F450Lfs * 30 ? | Mis ? | [26] | pat 6* | c.244G > A | p.E82K p.E82K | Mis Mis |
[8] | pat 1* 15D3187 | c.244G > A | p.E82K p.E82K | Mis Mis | this study | EN9 | c.242A > G c.4798C > T | p.H81R p.Q1600 * | Mis Tru | |||||
This study | 13D1128 * | c.244G > A | p.E82K p.E82K | Mis Mis | this study | EN10 | c.1175T > C c.3046C > T | p.M392T p.R1016 * | Mis Tru | |||||
This study | 09D1219 | c.1087C > T exon 18del | p.R363 * ? | Tru tru | [26] | pat 5 | c.1175T > C c.3046C > T | p.M392T p.R1016 * | Mis Tru | |||||
This study | 12D0574 | c.[1966C > T; 4844C > T] c.[1966C > T; 4844C > T] | p.[R656C; P1615L] p.[R656C; P1615L] | Mis Mis | ||||||||||
This study | 14D0124 | c.2057C > T c.2057C > T | p.T686M p.T686M | Mis Mis | [30] | pat 1 | c.2729_2731delC ? | p.R911Afs916 * ? | Tru ? | |||||
This study | 13D2411 | c.2057C > T c.2057C > T | p.T686M p.T686M | Mis Mis | [28] | pat 1 | c.2259-2262dup ? | p.Y755Gfs * 9 ? | Tru ? | |||||
This study | EN5 | c.1175T > C c.3046C > T | p.M392T p.R1016 * | Mis Tru | This study | 13D2706 | c.1708dup c.1006G > A | p.D570Gfs * 5 p.G336R | Tru Mis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldrian, D.; Vogel, G.F.; Frey, T.K.; Ayyıldız Civan, H.; Aksu, A.Ü.; Avitzur, Y.; Ramos Boluda, E.; Çakır, M.; Demir, A.M.; Deppisch, C.; et al. Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. J. Clin. Med. 2021, 10, 481. https://doi.org/10.3390/jcm10030481
Aldrian D, Vogel GF, Frey TK, Ayyıldız Civan H, Aksu AÜ, Avitzur Y, Ramos Boluda E, Çakır M, Demir AM, Deppisch C, et al. Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. Journal of Clinical Medicine. 2021; 10(3):481. https://doi.org/10.3390/jcm10030481
Chicago/Turabian StyleAldrian, Denise, Georg F. Vogel, Teresa K. Frey, Hasret Ayyıldız Civan, Aysel Ünlüsoy Aksu, Yaron Avitzur, Esther Ramos Boluda, Murat Çakır, Arzu Meltem Demir, Caroline Deppisch, and et al. 2021. "Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations" Journal of Clinical Medicine 10, no. 3: 481. https://doi.org/10.3390/jcm10030481