Clinical Factors Associated with Atrial Fibrillation Detection on Single-Time Point Screening Using a Hand-Held Single-Lead ECG Device
Abstract
:1. Introduction
2. Materials and Methods
Statistycal Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Boriani, G.; Diemberger, I.; Martignani, C.; Biffi, M.; Branzi, A. The epidemiological burden of atrial fibrillation: A challenge for clinicians and health care systems. Eur. Heart J. 2006, 27, 893–894. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Pettorelli, D. Atrial fibrillation burden and atrial fibrillation type: Clinical significance and impact on the risk of stroke and decision making for long-term anticoagulation. Vascul. Pharmacol. 2016, 83, 26–35. [Google Scholar] [CrossRef]
- Vitolo, M.; Proietti, M.; Harrison, S.; Lane, D.A.; Potpara, T.S.; Boriani, G.; Lip, G.Y.H. The Euro Heart Survey and EURObservational Research Programme (EORP) in atrial fibrillation registries: Contribution to epidemiology, clinical management and therapy of atrial fibrillation patients over the last 20 years. Intern. Emerg. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Diemberger, I.; Ziacchi, M.; Valzania, C.; Gardini, B.; Cimaglia, P.; Martignani, C.; Biffi, M. AF burden is important—Fact or fiction? Int. J. Clin. Pract. 2014, 68, 444–452. [Google Scholar] [CrossRef]
- Boriani, G.; Valzania, C.; Biffi, M.; Diemberger, I.; Ziacchi, M.; Martignani, C. Asymptomatic lone atrial fibrillation—How can we detect the arrhythmia? Curr. Pharm. Des. 2015, 21, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Camm, J.; Calkins, H.; Healey, J.S.; Rosenqvist, M.; Wang, J.; Albert, C.M.; Anderson, C.S.; Antoniou, S.; Benjamin, E.J.; et al. Screening for Atrial Fibrillation: A Report of the AF-SCREEN International Collaboration. Circulation 2017, 135, 1851–1867. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Haeusler, K.G.; Healey, J.S.; Freedman, B.; Boriani, G.; Brachmann, J.; Brandes, A.; Bustamante, A.; Casadei, B.; Crijns, H.J.G.M.; et al. Searching for Atrial Fibrillation Poststroke: A White Paper of the AF-SCREEN International Collaboration. Circulation 2019, 140, 1834–1850. [Google Scholar] [CrossRef]
- Strano, S.; Toni, D.; Ammirati, F.; Sanna, T.; Tomaino, M.; Brignole, M.; Mazza, A.; Nguyen, B.L.; Di Bonaventura, C.; Ricci, R.P.; et al. Neuro-arrhythmology: A challenging field of action and research: A review from the Task Force of Neuro-arrhythmology of Italian Association of Arrhythmias and Cardiac Pacing. J. Cardiovasc. Med. 2019, 20, 731–744. [Google Scholar] [CrossRef]
- Fauchier, L.; Bodin, A.; Bisson, A.; Herbert, J.; Spiesser, P.; Clementy, N.; Babuty, D.; Chao, T.F.; Lip, G.Y.H. Incident Comorbidities, Aging and the Risk of Stroke in 608,108 Patients with Atrial Fibrillation: A Nationwide Analysis. J. Clin. Med. 2020, 9, 1234. [Google Scholar] [CrossRef]
- Boriani, G.; Vitolo, M.; Lane, D.A.; Potpara, T.S.; Lip, G.Y. Beyond the 2020 guidelines on atrial fibrillation of the European society of cardiology. Eur. J. Intern. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Imberti, J.F.; Vitolo, M. Anticoagulation to prevent ischemic stroke in patients with atrial fibrillation: A complex scenario including underdiagnosis, undertreatment or underdosing of oral anticoagulants. Eur. Heart J. Qual. Care Clin. Outcomes 2020. [Google Scholar] [CrossRef] [PubMed]
- Lowres, N.; Olivier, J.; Chao, T.F.; Chen, S.A.; Chen, Y.; Diederichsen, A.; Fitzmaurice, D.A.; Gomez-Doblas, J.J.; Harbison, J.; Healey, J.S.; et al. Estimated stroke risk, yield, and number needed to screen for atrial fibrillation detected through single time screening: A multicountry patient-level meta-analysis of 141,220 screened individuals. PLoS Med. 2019, 16, e1002903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2020. [Google Scholar] [CrossRef]
- Petryszyn, P.; Niewinski, P.; Staniak, A.; Piotrowski, P.; Well, A.; Well, M.; Jeskowiak, I.; Lip, G.; Ponikowski, P. Effectiveness of screening for atrial fibrillation and its determinants. A meta-analysis. PLoS ONE 2019, 14, e0213198. [Google Scholar] [CrossRef] [Green Version]
- Mairesse, G.H.; Moran, P.; Van Gelder, I.C.; Elsner, C.; Rosenqvist, M.; Mant, J.; Banerjee, A.; Gorenek, B.; Brachmann, J.; Varma, N.; et al. Screening for atrial fibrillation: A European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLAECE). Europace 2017, 19, 1589–1623. [Google Scholar] [CrossRef]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Proietti, M.; Lane, D.A.; Boriani, G.; Lip, G.Y.H. Stroke Prevention, Evaluation of Bleeding Risk, and Anticoagulant Treatment Management in Atrial Fibrillation Contemporary International Guidelines. Can. J. Cardiol. 2019, 35, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.J.; Neubeck, L.; Orchard, J.W.; Puranik, R.; Raju, H.; Freedman, B.; La Gerche, A.; Semsarian, C. ECG-based cardiac screening programs: Legal, ethical, and logistical considerations. Heart Rhythm 2019, 16, 1584–1591. [Google Scholar] [CrossRef]
- Tieleman, R.G.; Plantinga, Y.; Rinkes, D.; Bartels, G.L.; Posma, J.L.; Cator, R.; Hofman, C.; Houben, R.P. Validation and clinical use of a novel diagnostic device for screening of atrial fibrillation. Europace 2014, 16, 1291–1295. [Google Scholar] [CrossRef]
- Zink, M.D.; Mischke, K.G.; Keszei, A.P.; Rummey, C.; Freedman, B.; Neumann, G.; Tolksdorf, A.; Frank, F.; Wienströer, J.; Kuth, N.; et al. Screen-detected atrial fibrillation predicts mortality in elderly subjects. Europace 2020. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Proietti, M. Screening for atrial fibrillation: Need for an integrated, structured approach. Eur. J. Intern. Med. 2019, 67, 33–35. [Google Scholar] [CrossRef]
- Jones, N.R.; Taylor, C.J.; Hobbs, F.D.R.; Bowman, L.; Casadei, B. Screening for atrial fibrillation: A call for evidence. Eur. Heart J. 2020, 41, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Linker, D.T.; Murphy, T.B.; Mokdad, A.H. Selective screening for atrial fibrillation using multivariable risk models. Heart 2018, 104, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.H.; Banerjee, A.; Boriani, G.; Chiang, C.E.; Fargo, R.; Freedman, B.; Lane, D.A.; Ruff, C.T.; Turakhia, M.; Werring, D.; et al. Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report. Chest 2018. [Google Scholar] [CrossRef] [Green Version]
- Svennberg, E.; Engdahl, J.; Al-Khalili, F.; Friberg, L.; Frykman, V.; Rosenqvist, M. Mass Screening for Untreated Atrial Fibrillation: The STROKESTOP Study. Circulation 2015, 131, 2176–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proietti, M.; Mairesse, G.H.; Goethals, P.; Scavee, C.; Vijgen, J.; Blankoff, I.; Vandekerckhove, Y.; Lip, G.Y.; Belgian Heart Rhythm Week Investigators. A population screening programme for atrial fibrillation: A report from the Belgian Heart Rhythm Week screening programme. Europace 2016, 18, 1779–1786. [Google Scholar] [CrossRef]
- Kaasenbrood, F.; Hollander, M.; Rutten, F.H.; Gerhards, L.J.; Hoes, A.W.; Tieleman, R.G. Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination. Europace 2016, 18, 1514–1520. [Google Scholar] [CrossRef]
- Rivezzi, F.; Vio, R.; Bilato, C.; Pagliani, L.; Pasquetto, G.; Saccà, S.; Verlato, R.; Migliore, F.; Iliceto, S.; Bossone, V.; et al. Screening of unknown atrial fibrillation through handheld device in the elderly. J. Geriatr. Cardiol. 2020, 17, 495–501. [Google Scholar] [CrossRef]
- Uittenbogaart, S.B.; Verbiest-van Gurp, N.; Lucassen, W.A.M.; Winkens, B.; Nielen, M.; Erkens, P.M.G.; Knottnerus, J.A.; van Weert, H.C.P.M.; Stoffers, H.E.J.H. Opportunistic screening versus usual care for detection of atrial fibrillation in primary care: Cluster randomised controlled trial. BMJ 2020, 370, m3208. [Google Scholar] [CrossRef]
- Fitzmaurice, D.A.; Hobbs, F.D.; Jowett, S.; Mant, J.; Murray, E.T.; Holder, R.; Raftery, J.P.; Bryan, S.; Davies, M.; Lip, G.Y.; et al. Screening versus routine practice in detection of atrial fibrillation in patients aged 65 or over: Cluster randomised controlled trial. BMJ 2007, 335, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelreich, J.C.L.; Veelers, L.; Lucassen, W.A.M.; Schnabel, R.B.; Rienstra, M.; van Weert, H.C.P.M.; Harskamp, R.E. Prediction models for atrial fibrillation applicable in the community: A systematic review and meta-analysis. Europace 2020, 22, 684–694. [Google Scholar] [CrossRef]
- Saliba, W.; Gronich, N.; Barnett-Griness, O.; Rennert, G. Usefulness of CHADS2 and CHA2DS2-VASc Scores in the Prediction of New-Onset Atrial Fibrillation: A Population-Based Study. Am. J. Med. 2016, 129, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, V.L.; Fantecchi, E.; Tordoni, V.; Melara, L.; Barbieri, A.; Vitolo, M.; Lip, G.Y.H.; Boriani, G. Atrial fibrillation pattern and factors affecting the progression to permanent atrial fibrillation. Intern. Emerg. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Schnabel, R.B.; Healey, J.S.; Lopes, R.D.; Verbiest-van Gurp, N.; Lobban, T.; Camm, J.A.; Freedman, B. Consumer-led screening for atrial fibrillation using consumer-facing wearables, devices and apps: A survey of health care professionals by AF-SCREEN international collaboration. Eur. J. Intern. Med. 2020, 82, 97–104. [Google Scholar] [CrossRef]
- de Moraes, E.R.F.L.; Cirenza, C.; Lopes, R.D.; Carvalho, A.C.; Guimaraes, P.O.; Rodrigues, A.A.E.; de Paola, A.A.V. Prevalence of atrial fibrillation and stroke risk assessment based on telemedicine screening tools in a primary healthcare setting. Eur. J. Intern. Med. 2019, 67, 36–41. [Google Scholar] [CrossRef]
- Boriani, G.; Vitolo, M. The 12-lead ECG: A continuous reference for the cardiologist. J. Cardiovasc. Med. 2019, 20, 459–463. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, J.; Shi, X.; Yao, Y.; Sun, Y.; Xia, Y.; Yu, B.; Liu, T.; Chen, Y.; Lip, G.Y.H.; et al. Mobile health technology-supported atrial fibrillation screening and integrated care: A report from the mAFA-II trial Long-term Extension Cohort. Eur. J. Intern. Med. 2020, 82, 105–111. [Google Scholar] [CrossRef]
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, E.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef] [PubMed]
- Boëlle, P.Y.; Delory, T.; Maynadier, X.; Janssen, C.; Piarroux, R.; Pichenot, M.; Lemaire, X.; Baclet, N.; Weyrich, P.; Melliez, H.; et al. Trajectories of Hospitalization in COVID-19 Patients: An Observational Study in France. J. Clin. Med. 2020, 9, 3148. [Google Scholar] [CrossRef]
- Hayashi, K.; Kayano, T.; Sorano, S.; Nishiura, H. Hospital Caseload Demand in the Presence of Interventions during the COVID-19 Pandemic: A Modeling Study. J. Clin. Med. 2020, 9, 3065. [Google Scholar] [CrossRef]
- Burke, T.; Berry, A.; Taylor, L.K.; Stafford, O.; Murphy, E.; Shevlin, M.; McHugh, L.; Carr, A. Increased Psychological Distress during COVID-19 and Quarantine in Ireland: A National Survey. J. Clin. Med. 2020, 9, 3481. [Google Scholar] [CrossRef]
- Boriani, G.; Vitolo, M. COVID-19 pandemic: Complex interactions with the arrhythmic profile and the clinical course of patients with cardiovascular disease. Eur. Heart J. 2020. [Google Scholar] [CrossRef]
- Ugbolue, U.C.; Duclos, M.; Urzeala, C.; Berthon, M.; Kulik, K.; Bota, A.; Thivel, D.; Bagheri, R.; Gu, Y.; Baker, J.S.; et al. An Assessment of the Novel COVISTRESS Questionnaire: COVID-19 Impact on Physical Activity, Sedentary Action and Psychological Emotion. J. Clin. Med. 2020, 9, 3352. [Google Scholar] [CrossRef]
- Flesia, L.; Monaro, M.; Mazza, C.; Fietta, V.; Colicino, E.; Segatto, B.; Roma, P. Predicting Perceived Stress Related to the Covid-19 Outbreak through Stable Psychological Traits and Machine Learning Models. J. Clin. Med. 2020, 9, 3350. [Google Scholar] [CrossRef] [PubMed]
- Fileti, L.; Vecchio, S.; Moretti, C.; Reggi, A.; Aquilina, M.; Balducelli, M.; Santarelli, A.; Grosseto, D.; Piovaccari, G.; Rubboli, A. Impact of the COVID-19 pandemic on coronary invasive procedures at two Italian high-volume referral centers. J. Cardiovasc. Med. 2020, 21, 869–873. [Google Scholar] [CrossRef]
- Boriani, G.; Palmisano, P.; Guerra, F.; Bertini, M.; Zanotto, G.; Lavalle, C.; Notarstefano, P.; Accogli, M.; Bisignani, G.; Forleo, G.B.; et al. Impact of COVID-19 pandemic on the clinical activities related to arrhythmias and electrophysiology in Italy: Results of a survey promoted by AIAC (Italian Association of Arrhythmology and Cardiac Pacing). Intern. Emerg. Med. 2020, 15, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.; Gislason, G.H.; Schou, M.; Zareini, B.; Biering-Sørensen, T.; Phelps, M.; Kragholm, K.; Andersson, C.; Fosbøl, E.L.; Hansen, M.L.; et al. New-onset atrial fibrillation: Incidence, characteristics, and related events following a national COVID-19 lockdown of 5.6 million people. Eur. Heart J. 2020, 41, 3072–3079. [Google Scholar] [CrossRef]
- Blomström-Lundqvist, C. Effects of COVID-19 lockdown strategies on management of atrial fibrillation. Eur. Heart J. 2020, 41, 3080–3082. [Google Scholar] [CrossRef]
- Tomasoni, D.; Adamo, M.; Italia, L.; Branca, L.; Chizzola, G.; Fiorina, C.; Lupi, L.; Inciardi, R.M.; Cani, D.S.; Lombardi, C.M.; et al. Impact of COVID-2019 outbreak on prevalence, clinical presentation and outcomes of ST-elevation myocardial infarction. J. Cardiovasc. Med. 2020, 21, 874–881. [Google Scholar] [CrossRef]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Kubik, M.; et al. Screening for Atrial Fibrillation With Electrocardiography: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Geelhoed, B.; Niiranen, T.J.; Gianfagna, F.; Vishram-Nielsen, J.K.K.; Costanzo, S.; Söderberg, S.; Ojeda, F.M.; Vartiainen, E.; Donati, M.B.; et al. Comparison of Cardiovascular Risk Factors in European Population Cohorts for Predicting Atrial Fibrillation and Heart Failure, Their Subsequent Onset, and Death. J. Am. Heart Assoc. 2020, 9, e015218. [Google Scholar] [CrossRef] [PubMed]
- Sagnard, A.; Hammache, N.; Sellal, J.M.; Guenancia, C. New Perspective in Atrial Fibrillation. J. Clin. Med. 2020, 9, 3713. [Google Scholar] [CrossRef] [PubMed]
Total | Screening NEGATIVE for AF | Screening POSITIVE for AF 1 | OR (95% CI) | p | |
---|---|---|---|---|---|
Number of subjects | 2814 | 2758 (98.0) | 56 (2.0) | ||
Female gender | 1617 (55.5) | 1597 (57.9) | 20 (35.7) | 0.40 (0.23–0.7) | 0.001 |
Age, years, mean (SD) | 66 ± 13 | 68 ± 9 | 74 ± 7 | 1.09 (1.06–1.13) | <0.001 |
Age, years, median (IQR) | 68 (61–74) | 69 (61–74) | 70-(65–75) | ||
Age ≥ 65 yrs | 1848 (65.7) | 1794 (65) | 54 (96.4) | 14.51 (3.53–59.63) | <0.001 |
Age ≥ 75 yrs | 691 (24.6) | 663 (24) | 28 (50) | 3.16 (1.86–5.37) | <0.001 |
Age strata (yrs) | |||||
<30 | 67 (2.4) | 67 (2.4) | 0 | ||
30–39 | 60 (2.1) | 60 (2.2) | 0 | ||
40–49 | 138 (4.9) | 138 (5) | 0 | ||
50–59 | 353 (12.5) | 352 (12.8) | 1 (1.8) | ||
60–69 | 932 (33.1) | 921 (33.4) | 11 (19.6) | ||
70–79 | 988 (35.1) | 956 (34.7) | 32 (57.1) | ||
≥80 | 276 (9.8) | 264 (9.6) | 12 (21.4) | ||
Heart failure | 100 (3.6) | 85 (3.1) | 15 (26.8) | 11.5 (6.13–21.59) | <0.001 |
Hypertension | 1389 (49.4) | 1347 (48.8) | 42 (75) | 3.14 (1.71–5.78) | <0.001 |
Diabetes | 315 (11.2) | 304 (11) | 11 (19.6) | 1.97 (1.01–3.86) | 0.043 |
Previous AMI | 180 (6.4) | 169 (6.1) | 11 (19.6) | 3.75 (1.90–7.37) | <0.001 |
Peripheral artery disease | 218 (7.7) | 212 (7.7) | 6 (10.7) | 1.44 (0.61–3.40) | 0.401 |
Previous stroke/TIA | 69 (2.5) | 64 (2.3) | 5 (8.9) | 4.13 (1.59–10.69) | 0.002 |
CHA2DS2VAsc score mean (SD) | 2.3 ± 1.4 | 2.5 ± 1.3 | 3.3 ± 1 | 1.71 (1.45–2.02) | <0.001 |
CHA2DS2VAsc score median (IQR) | 2 (1–3) | 2 (1–3) | 3 (3–4) | ||
CHA2DS2VAsc score > 0 in males and >1 in females | 2163 (76.9) | 2108 (76.4) | 55 (98.2) | 16.96 (2.34–122.79) | <0.001 |
CHA2DS2VASc score strata | |||||
0 | 255 (9.1) | 254 (9.2) | 1 (1.8) | ||
1 | 607 (21.6) | 606 (22) | 1 (1.8) | ||
2 | 767 (27.3) | 758 (27.5) | 9 (16.1) | ||
3 | 655 (23.3) | 634 (23) | 21 (37.5) | ||
4 | 358 (12.7) | 345 (12.5) | 13 (23.2) | ||
5 | 119 (4.2) | 112 (4.1) | 7 (12.5) | ||
6 | 34 (1.2) | 32 (1.2) | 2 (3.6) | ||
≥ 7 | 19 (0.6) | 17 (0.6) | 2 (3.5) |
Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|
% | % | % | % | |
Age ≥ 65 (1848 [65.7%]) | 96.4 | 24.2 | 2.9 | 99.8 |
Age ≥ 75 (691 [24.6%]) | 50 | 76 | 4.1 | 98.7 |
CHA2DS2VASc > 0 in males and >1 in females or CHA2DS2VA > 0 (2163 [76.9%]) | 98.2 | 23.6 | 2.5 | 99.8 |
CHA2DS2VASc > 1 in males and >2 in females or CHA2DS2VA > 1 (1510 [53.7%]) | 92.9 | 47.1 | 3.4 | 99.7 |
CHA2DS2VASc > 2 (1185 [42.1%]) | 80.4 | 58.7 | 3.8 | 99.3 |
CHA2DS2VASc > 3 (530 [18.8%]) | 42.9 | 81.7 | 4.5 | 98.6 |
CHA2DS2VA > 2 (781 [27.8%]) | 73.2 | 73.2 | 5.2 | 99.3 |
CHADS2 > 0 (1708 [60.7%]) | 92.9 | 40 | 3 | 99.6 |
CHADS2 > 1 (722 [25.7%]) | 69.6 | 75.2 | 5.4 | 99.2 |
CHADS2 > 2 (196 [7%]) | 23.2 | 93.4 | 6.6 | 98.4 |
CHADS265 > 0 (2150 [76.4%]) | 98.2 | 24 | 2.6 | 99.8 |
CHADS265 > 1 (1255 [44.6%]) | 89.3 | 56.3 | 4 | 99.6 |
CHADS265 > 2 (336 [11.9%]) | 37.5 | 88.6 | 6.3 | 98.6 |
Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|
% | % | % | % | |
Age ≥ 75 (691 [37.4%]) | 51.9 | 63.1 | 4.1 | 97.8 |
CHA2DS2VASc > 1 in males and >2 in females or CHA2DS2VA > 1 (1432 [77.5%]) | 94.4 | 23 | 3.6 | 99.3 |
CHA2DS2VASc > 2 (1141 [61.7%]) | 81.5 | 38.9 | 3.9 | 98.6 |
CHA2DS2VASc > 3 (522 [28.2%]) | 44.4 | 72.2 | 4.6 | 97.7 |
CHA2DS2VA > 2 (767 [41.5%]) | 75.9 | 59.5 | 5.3 | 98.8 |
CHADS2 > 0 (1406 [76.1%]) | 94.4 | 24.5 | 3.6 | 99.3 |
CHADS2 > 1 (678 [36.7%]) | 70.4 | 64.3 | 5.6 | 98.6 |
CHADS2 > 2 (187 [10.1%]) | 24.1 | 90.3 | 7 | 97.5 |
CHADS265 > 1 (1211 [65.5%]) | 90.7 | 35.2 | 4 | 99.2 |
CHADS265 > 2 (327 [17.7%]) | 38.9 | 82.9 | 6.4 | 97.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boriani, G.; Palmisano, P.; Malavasi, V.L.; Fantecchi, E.; Vitolo, M.; Bonini, N.; Imberti, J.F.; Valenti, A.C.; Schnabel, R.B.; Freedman, B. Clinical Factors Associated with Atrial Fibrillation Detection on Single-Time Point Screening Using a Hand-Held Single-Lead ECG Device. J. Clin. Med. 2021, 10, 729. https://doi.org/10.3390/jcm10040729
Boriani G, Palmisano P, Malavasi VL, Fantecchi E, Vitolo M, Bonini N, Imberti JF, Valenti AC, Schnabel RB, Freedman B. Clinical Factors Associated with Atrial Fibrillation Detection on Single-Time Point Screening Using a Hand-Held Single-Lead ECG Device. Journal of Clinical Medicine. 2021; 10(4):729. https://doi.org/10.3390/jcm10040729
Chicago/Turabian StyleBoriani, Giuseppe, Pietro Palmisano, Vincenzo Livio Malavasi, Elisa Fantecchi, Marco Vitolo, Niccolo’ Bonini, Jacopo F. Imberti, Anna Chiara Valenti, Renate B. Schnabel, and Ben Freedman. 2021. "Clinical Factors Associated with Atrial Fibrillation Detection on Single-Time Point Screening Using a Hand-Held Single-Lead ECG Device" Journal of Clinical Medicine 10, no. 4: 729. https://doi.org/10.3390/jcm10040729
APA StyleBoriani, G., Palmisano, P., Malavasi, V. L., Fantecchi, E., Vitolo, M., Bonini, N., Imberti, J. F., Valenti, A. C., Schnabel, R. B., & Freedman, B. (2021). Clinical Factors Associated with Atrial Fibrillation Detection on Single-Time Point Screening Using a Hand-Held Single-Lead ECG Device. Journal of Clinical Medicine, 10(4), 729. https://doi.org/10.3390/jcm10040729