Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients
2.2. Intraoperative B-Mode and SWE Image Acquisition
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Patient Demographics
3.2. SWE Findings and Lesion Characteristics
3.3. Factors Asscoiated with FCD Detection
3.4. Postoperative Outcomes
4. Discussion
4.1. Shear-Wave Elastography Feedback and Interobserver Reproducibility
4.2. SWE Safety
4.3. SWE in the Intraoperative Ultrasound Technique Armamentarium
4.4. SWE Compared to Other Intraoperative Tools
4.5. Future Perspectives
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falco-Walter, J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020. [Google Scholar] [CrossRef]
- Hauptman, J.S.; Mathern, G.W. Surgical Treatment of Epilepsy Associated with Cortical Dysplasia: 2012 Update. Epilepsia 2012, 53 (Suppl. 4), 98–104. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.C.; Falconer, M.A.; Bruton, C.J.; Corsellis, J.A. Focal Dysplasia of the Cerebral Cortex in Epilepsy. J. Neurol. Neurosurg. Psychiatry 1971, 34, 369–387. [Google Scholar] [CrossRef] [Green Version]
- Tahta, A.; Turgut, M. Focal Cortical Dysplasia: Etiology, Epileptogenesis, Classification, Clinical Presentation, Imaging, and Management. Childs Nerv. Syst. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yao, S.; Li, X.; Zhang, H. Value of Shear Wave Elastography in Discriminating Malignant and Benign Breast Lesions: A Meta-Analysis. Medicine 2017, 96, e7412. [Google Scholar] [CrossRef] [PubMed]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics 2017, 37, 855–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.W.; Pressler, R.; Uff, C.; Gunny, R.; St Piers, K.; Cross, H.; Bamber, J.; Dorward, N.; Harkness, W.; Chakraborty, A. A Novel Technique of Detecting MRI-Negative Lesion in Focal Symptomatic Epilepsy: Intraoperative ShearWave Elastography. Epilepsia 2014, 55, e30–e33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauvet, D.; Imbault, M.; Capelle, L.; Demene, C.; Mossad, M.; Karachi, C.; Boch, A.-L.; Gennisson, J.-L.; Tanter, M. In Vivo Measurement of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography. Ultraschall. Med. 2016, 37, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Prada, F.; Del Bene, M.; Rampini, A.; Mattei, L.; Casali, C.; Vetrano, I.G.; Gennari, A.G.; Sdao, S.; Saini, M.; Sconfienza, L.M.; et al. Intraoperative Strain Elastosonography in Brain Tumor Surgery. Oper. Neurosurg. 2019, 17, 227–236. [Google Scholar] [CrossRef]
- Cepeda, S.; Barrena, C.; Arrese, I.; Fernandez-Pérez, G.; Sarabia, R. Intraoperative Ultrasonographic Elastography: A Semi-Quantitative Analysis of Brain Tumor Elasticity Patterns and Peritumoral Region. World Neurosurg. 2020, 135, e258–e270. [Google Scholar] [CrossRef] [PubMed]
- Mathon, B.; Amelot, A.; Carpentier, A.; Clemenceau, S. Intraoperative Real-Time Guidance Using ShearWave Elastography for Epilepsy Surgery. Seizure 2019, 71, 24–27. [Google Scholar] [CrossRef]
- Wieser, H.G.; Blume, W.T.; Fish, D.; Goldensohn, E.; Hufnagel, A.; King, D.; Sperling, M.R.; Lüders, H.; Pedley, T.A.; Commission on Neurosurgery of the International League Against Epilepsy (ILAE) ILAE Commission Report. Proposal for a New Classification of Outcome with Respect to Epileptic Seizures Following Epilepsy Surgery. Epilepsia 2001, 42, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Prada, F.; Gennari, A.G.; Quaia, E.; D’Incerti, L.; de Curtis, M.; DiMeco, F.; Tringali, G. Advanced Intraoperative Ultrasound (IoUS) Techniques in Focal Cortical Dysplasia (FCD) Surgery: A Preliminary Experience on a Case Series. Clin. Neurol. Neurosurg. 2020, 198, 106188. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Selbekk, T.; Brekken, R.; Indergaard, M.; Solheim, O.; Unsgård, G. Comparison of Contrast in Brightness Mode and Strain Ultrasonography of Glial Brain Tumours. BMC Med. Imaging 2012, 12, 11. [Google Scholar] [CrossRef]
- Ferraioli, G.; Filice, C.; Castera, L.; Choi, B.I.; Sporea, I.; Wilson, S.R.; Cosgrove, D.; Dietrich, C.F.; Amy, D.; Bamber, J.C.; et al. WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 3: Liver. Ultrasound Med. Biol. 2015, 41, 1161–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ali, A.M.; Subramanian, S.; Krofchik, L.M.; Kephart, M.C.; Squires, J.H. Feasibility and Reproducibility of Shear Wave Elastography in Pediatric Cranial Ultrasound. Pediatr. Radiol. 2020, 50, 990–996. [Google Scholar] [CrossRef]
- Friedrich-Rust, M.; Schoelzel, F.; Linzbach, S.; Bojunga, J.; Zeuzem, S.; Seeger, F. Safety of Transient Elastography in Patients with Implanted Cardiac Rhythm Devices. Dig. Liver Dis. 2017, 49, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Cosgrove, D.; Brock, M.; Cantisani, V.; Correas, J.M.; Postema, A.W.; Salomon, G.; Tsutsumi, M.; Xu, H.-X.; Dietrich, C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 5. Prostate. Ultrasound Med. Biol. 2017, 43, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Barr, R.G.; Nakashima, K.; Amy, D.; Cosgrove, D.; Farrokh, A.; Schafer, F.; Bamber, J.C.; Castera, L.; Choi, B.I.; Chou, Y.-H.; et al. WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 2: Breast. Ultrasound Med. Biol. 2015, 41, 1148–1160. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Dighe, M.; Vinayak, S.; Xu, J.-M.; Dietrich, C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 2017, 43, 4–26. [Google Scholar] [CrossRef]
- Ferraioli, G. Review of Liver Elastography Guidelines. J. Ultrasound Med. 2019, 38, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraioli, G.; Wong, V.W.-S.; Castera, L.; Berzigotti, A.; Sporea, I.; Dietrich, C.F.; Choi, B.I.; Wilson, S.R.; Kudo, M.; Barr, R.G. Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med. Biol. 2018, 44, 2419–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowlkes, J.B. Safety Considerations for Shear-Wave Elastography of the Infant Brain. Pediatr. Radiol. 2020, 50, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yang, H.; Yu, J.; Liang, X.; Chen, Z. Progress in the Application of Ultrasound Elastography for Brain Diseases. J. Ultrasound Med. 2020, 39, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, C.; Li, J.; Cao, X.; Song, D. An Experimental Study of the Potential Biological Effects Associated with 2-D Shear Wave Elastography on the Neonatal Brain. Ultrasound Med. Biol. 2016, 42, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, N.; Li, C.; Li, J. A Safety Study of the Effects of 2-Dimensional Shear Wave Elastography on Synaptic Morphologic Characteristics and Function in the Hippocampus of Neonatal Mice. J. Ultrasound Med. 2021, 40, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Toms, D.A. The Mechanical Index, Ultrasound Practices, and the ALARA Principle. J. Ultrasound Med. 2006, 25, 561–562. [Google Scholar] [CrossRef]
- Prada, F.; Gennari, A.G.; Del Bene, M.; Bono, B.C.; Quaia, E.; D’Incerti, L.; Villani, F.; Didato, G.; Tringali, G.; DiMeco, F. Intraoperative Ultrasonography (IoUS) Characteristics of Focal Cortical Dysplasia (FCD) Type II b. Seizure 2019, 69, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Knake, S.; Menzler, K.; Krakow, K.; Rosenow, F.; Sure, U. Intraoperative Ultrasound in Malformations of Cortical Development. Ultraschall. Med. 2011, 32 (Suppl. 2), E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Tringali, G.; Bono, B.; Dones, I.; Cordella, R.; Didato, G.; Villani, F.; Prada, F. Multimodal Approach for Radical Excision of Focal Cortical Dysplasia by Combining Advanced Magnetic Resonance Imaging Data to Intraoperative Ultrasound, Electrocorticography, and Cortical Stimulation: A Preliminary Experience. World Neurosurg. 2018, 113, e738–e746. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Dorobisz, U.; Kaczorowski, K.; Pawluś, A.; Puchalska, A.; Inglot, M. Ultrasound Elastography—Review of Techniques and Its Clinical Applications. Adv. Clin. Exp. Med. 2014, 23, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Dorobisz, U.; Pawluś, A.; Szymańska, K.; Łasecki, M.; Ziajkiewicz, M. Ultrasound Elastography--Review of Techniques and Its Clinical Applications in Pediatrics--Part 2. Adv. Clin. Exp. Med. 2015, 24, 725–730. [Google Scholar] [CrossRef]
- Gennisson, J.-L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound Elastography: Principles and Techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; García-García, S.; Arrese, I.; Fernández-Pérez, G.; Velasco-Casares, M.; Fajardo-Puentes, M.; Zamora, T.; Sarabia, R. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Front. Oncol. 2020, 10, 590756. [Google Scholar] [CrossRef] [PubMed]
- Ohue, S.; Kumon, Y.; Nagato, S.; Kohno, S.; Harada, H.; Nakagawa, K.; Kikuchi, K.; Miki, H.; Ohnishi, T. Evaluation of Intraoperative Brain Shift Using an Ultrasound-Linked Navigation System for Brain Tumor Surgery. Neurol. Med. Chir. 2010, 50, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Riva, M.; Hennersperger, C.; Milletari, F.; Katouzian, A.; Pessina, F.; Gutierrez-Becker, B.; Castellano, A.; Navab, N.; Bello, L. 3D Intra-Operative Ultrasound and MR Image Guidance: Pursuing an Ultrasound-Based Management of Brainshift to Enhance Neuronavigation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Šteňo, A.; Hollý, V.; Mendel, P.; Šteňová, V.; Petričková, Ľ.; Timárová, G.; Jezberová, M.; Belan, V.; Rychlý, B.; Šurkala, J.; et al. Navigated 3D-Ultrasound versus Conventional Neuronavigation during Awake Resections of Eloquent Low-Grade Gliomas: A Comparative Study at a Single Institution. Acta Neurochir. 2018, 160, 331–342. [Google Scholar] [CrossRef]
- Ishibashi, H.; Simos, P.G.; Wheless, J.W.; Baumgartner, J.E.; Kim, H.L.; Castillo, E.M.; Davis, R.N.; Papanicolaou, A.C. Localization of Ictal and Interictal Bursting Epileptogenic Activity in Focal Cortical Dysplasia: Agreement of Magnetoencephalography and Electrocorticography. Neurol. Res. 2002, 24, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Sacino, M.F.; Ho, C.-Y.; Murnick, J.; Keating, R.F.; Gaillard, W.D.; Oluigbo, C.O. The Role of Intraoperative MRI in Resective Epilepsy Surgery for Peri-Eloquent Cortex Cortical Dysplasias and Heterotopias in Pediatric Patients. Neurosurg. Focus 2016, 40, E16. [Google Scholar] [CrossRef]
- Aichele, J.; Giammarinaro, B.; Reinwald, M.; Le Moign, G.; Catheline, S. Capturing the Shear and Secondary Compression Waves: High-Frame-Rate Ultrasound Imaging in Saturated Foams. Phys. Rev. Lett. 2019, 123, 148001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Giammarinaro, B.; Birer, A.; Liu, G.; Catheline, S. Shear Wave Generation by Remotely Stimulating Aluminum Patches with a Transient Magnetic Field and Its Preliminary Application in Elastography. IEEE Trans. Biomed. Eng. 2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-C.; Abbasi, M.; Ding, Y.H.; Roy, T.; Capriotti, M.; Liu, Y.; Fitzgerald, S.; Doyle, K.M.; Guddati, M.N.; Urban, M.W.; et al. Characterizing Blood Clots Using Acoustic Radiation Force Optical Coherence Elastography and Ultrasound Shear Wave Elastography. Phys. Med. Biol. 2020. [Google Scholar] [CrossRef]
FCDs | n | B-Mode Sensitivity % (n) | SWE Sensitivity % (n) | FCD/Healthy Brain Stiness Ratio |
---|---|---|---|---|
MRI + FCD | 8 | 25% (2) | 100% (8) | 3.6 ± 0.4 |
MRI − FCD | 10 | 0% (0) | 60% (6) | 2.2 ± 0.6 |
Total | 18 | 11.1% (2) | 77.8% (14) | 2.8 ± 0.9 |
Characteristics | All Patients n = 18 | FCD Detected by SWE n = 14 | FCD Not Detected by SWE n = 4 | p-Value |
---|---|---|---|---|
Females | 11 (61.1) | 11 (100) | 0 (0) | 0.004 |
Age on surgery day, years | 25.7 ± 7.3 | 26.5 ± 8 | 22.8 ± 3.3 | 0.19 |
Epilepsy history | ||||
Age at epilepsy onset, years | 13.9 ± 5 | 14.4 ± 5.3 | 12.5 ± 4.4 | 0.50 |
3 or more antiepileptic drugs | 13 (72.2) | 10 (71.4) | 3 (75) | 0.89 |
Epileptogenic-zone location | ||||
Left hemisphere | 11 (61.1) | 9 (64.3) | 2 (50) | 0.61 |
Frontal lobe | 11 (61.1) | 8 (57.1) | 3 (75) | 0.52 |
Parietal lobe | 5 (27.8) | 4 (28.6) | 1 (25) | 0.89 |
Temporal lobe | 1 (5.6) | 1 (7.1) | 0 (0) | 0.58 |
Occipital lobe | 1 (5.6) | 1 (7.1) | 0 (0) | 0.58 |
FCD radiological characteristics | ||||
MRI + (iEEG−) | 8 (44.4) | 8 (57.1) | 0 (0) | 0.04 |
Intraoperative characteristics | ||||
SWE acquisition duration, min | 6.6 ± 1.7 | 6.4 ± 1.6 | 7.5 ± 1.9 | 0.33 |
Characteristic | All Patients n = 18 | Good Seizure Outcome at 1 Year n = 18 | p-Value | Good Seizure Outcome at Last Follow-Up n = 4 | p-Value |
---|---|---|---|---|---|
Females | 11 (61.1) | 9 (62.9) | 0.26 | 7 (70) | 0.39 |
Age on surgery day, years | 25.7 ± 7.3 | 27 ± 8.2 | 0.07 | 28.6 ± 8.7 | 0.053 |
Epilepsy history | |||||
Age at epilepsy onset, years | 13.9 ± 5 | 15.3 ± 4.9 | 0.06 | 15.3 ± 5.6 | 0.19 |
3 or more antiepileptic drugs | 13 (72.2) | 10 (76.9) | 0.47 | 8 (80) | 0.41 |
Epileptogenic-zone location | |||||
Left hemisphere | 11 (61.1) | 9 (69.2) | 0.26 | 6 (60) | 0.91 |
Frontal lobe | 11 (61.1) | 7 (53.8) | 0.31 | 5 (50) | 0.28 |
Parietal lobe | 5 (27.8) | 4 (30.8) | 0.65 | 3 (30) | 0.81 |
Temporal lobe | 1 (5.6) | 1 (7.7) | 0.52 | 1 (10) | 0.36 |
Occipital lobe | 1 (5.6) | 1 (7.7) | 0.52 | 1 (10) | 0.36 |
FCD radiological characteristics | |||||
MRI + (iEEG−) | 8 (44.4) | 7 (53.8) | 0.20 | 6 (60) | 0.14 |
Intraoperative characteristics | |||||
SWE acquisition duration, min | 6.6 ± 1.7 | 6.5 ± 1.8 | 0.76 | 6.8 ± 1.9 | 0.6 |
FCD detected by B-mode | 2 (11.1) | 2 (15.4) | 0.35 | 2 (20) | 0.18 |
FCD detected by SWE | 14 (77.8) | 11 (84.6) | 0.26 | 8 (80) | 0.8 |
Postoperative characteristics | |||||
Complete FCD resection | 7/8 (87.5) | 7 (100) | 0.005 | 6 (100) | 0.06 |
Advantages | Disadvantages | Considerations |
---|---|---|
Real-time imaging technique | Low sensitivity to evaluate completeness of FCD resection | Need to train on easy cases (e.g., meningiomas and high-grade gliomas) before using on FCD patients |
High sensitivity for detecting FCDs | Significant learning curve | Need to know limits of SWE technique |
Easy and fast to use | Operator-dependent tool | Need to assess interobserver reproducibility |
Safe technique (no related complications) | Not adapted for deep-seated FCDs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathon, B.; Clemenceau, S.; Carpentier, A. Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery. J. Clin. Med. 2021, 10, 1049. https://doi.org/10.3390/jcm10051049
Mathon B, Clemenceau S, Carpentier A. Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery. Journal of Clinical Medicine. 2021; 10(5):1049. https://doi.org/10.3390/jcm10051049
Chicago/Turabian StyleMathon, Bertrand, Stéphane Clemenceau, and Alexandre Carpentier. 2021. "Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery" Journal of Clinical Medicine 10, no. 5: 1049. https://doi.org/10.3390/jcm10051049
APA StyleMathon, B., Clemenceau, S., & Carpentier, A. (2021). Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery. Journal of Clinical Medicine, 10(5), 1049. https://doi.org/10.3390/jcm10051049