The Biochemical Diagnosis of Acromegaly
Abstract
:1. Introduction
2. Insulin-Like Growth Factor-1
3. Basal Growth Hormone
4. Nadir Growth Hormone after OGTT
5. Discordant GH and IGF-1 Values
5.1. Elevated IGF-1, Normal GH
5.2. Normal IGF-1, Elevated GH
- If there is a significant discrepancy between GH and IGF-1 levels, repeat testing may be warranted, particularly if the clinical scenario is suggestive of acromegaly.
- Diagnosis of acromegaly in pregnancy is confounded by GH secretion by the placenta and increased IGF-1 values, as available commercial assays are not able to discriminate between the source of GH secretion [36].
- Acute critical illness can cause physiological higher peak in GH secretion and low concentrations of IGF-1 and when acromegaly is suspected, testing should be done after recovery [37].
- In patients on oral estrogens, GH levels may be falsely elevated, and it is recommended to stop the estrogen for three months before retesting [38].
- Low IGF-1 in the presence of clinical acromegaly could represent a later stage of a disease process that was initially associated with elevated IGF-1, resulting in burnt-out acromegaly, which may be associated with other features of hypopiuitarism [14].
- Uncontrolled diabetes may be associated with low IGF-1 levels and hamper the diagnosis of acromegaly, but a rise in IGF-1 levels following glycemic control may support the diagnosis [23].
6. Additional Tests
- IGFBP-3—the most abundant IGF-1 binding protein that binds 80–90% of circulating IGF-1 in a trimeric complex that also includes the acid-labile subunit. IGFBP-3 levels may assist in the diagnosis and monitoring of acromegaly as there is a direct correlation between IGFBP-3 levels with IGF-1 [41].
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dineen, R.; Stewart, P.M.; Sherlock, M. Acromegaly. QJM 2017, 110, 411–420. [Google Scholar]
- O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006, 66, 1500–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melmed, S. Acromegaly. N. Engl. J. Med. 2006, 355, 2558–2573. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Ragnarsson, O.; Johannsson, G. Prolonged diagnostic delay in acromegaly is associated with increased morbidity and mortality. Eur. J. Endocrinol. 2020, 182, 523–531. [Google Scholar] [CrossRef]
- Caron, P.; Brue, T.; Raverot, G.; Tabarin, A.; Cailleux, A.; Delemer, B.; Renoult, P.P.; Houchard, A.; Elaraki, F.; Chanson, P. Signs and symptoms of acromegaly at diagnosis: The physician’s and the patient’s perspectives in the ACRO-POLIS study. Endocrine 2019, 63, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Dal, J.; Skov, B.G.; Andersen, M.; Feldt-Rasmussen, U.; Feltoft, C.L.; Karmisholt, J.; Nielsen, E.H.; Dekkers, O.M.; Jørgensen, J.O.L. Sex differences in acromegaly at diagnosis: A nationwide cohort study and meta-analysis of the literature. Clin. Endocrinol. 2020. [Google Scholar] [CrossRef]
- Reid, T.J.; Post, K.D.; Bruce, J.N.; Kanibir, M.N.; Reyes-vidal, C.M.; Freda, P.U. Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: Acromegaly remains under-recognized and under-diagnosed. Clin. Endocrinol. 2010, 72, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, E.; Wass, J.A.H. Investigation protocol: Acromegaly and its investigation. Clin. Endocrinol. 1999, 285–293. [Google Scholar] [CrossRef]
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Acromegaly: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef]
- Melmed, S.; Casanueva, F.F.; Klibanski, A.; Bronstein, M.D.; Chanson, P.; Lamberts, S.W.; Strasburger, C.J.; Wass, J.A.H.; Giustina, A. A consensus on the diagnosis and treatment of acromegaly complications. Pituitary 2013, 16, 294–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustina, A.; Chanson, P.; Bronstein, M.D.; Klibanski, A.; Lamberts, S.; Casanueva, F.F.; Trainer, P.; Ghigo, E.; Ho, K.; Melmed, S. A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 2010, 95, 3141–3148. [Google Scholar] [CrossRef] [Green Version]
- Giustina, A.; Barkhoudarian, G.; Beckers, A.; Ben-shlomo, A.; Biermasz, N.; Biller, B. Multidisciplinary management of acromegaly: A consensus. Rev. Endocr. Metab. Disord. 2020, Dec, 667–678. [Google Scholar] [CrossRef]
- Bonert, V.; Carmichael, J.; Wu, Z.; Mirocha, J.; Perez, D.A.; Clarke, N.J.; Reitz, R.E.; Mcphaul, M.J.; Mamelak, A. Discordance between mass spectrometry and immunometric IGF-1 assay in pituitary disease: A prospective study. Pituitary 2018, 21, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Wijayaratne, D.R.; Arambewela, M.H.; Dalugama, C.; Wijesundera, D.; Somasundaram, N.; Katulanda, P. Acromegaly presenting with low insulin-like growth factor-1 levels and diabetes: A case report. J. Med. Case Rep. 2015, 9, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freda, P.U. Current concepts in the biochemical assessment of the patient with acromegaly. Growth Horm. IGF Res. 2003, 13, 171–184. [Google Scholar] [CrossRef]
- Freda, P.U. Pitfalls in the biochemical assessment of acromegaly. Pituitary 2003, 6, 135–140. [Google Scholar] [CrossRef]
- Day, P.F.; Fagin, J.A.; Vaglio, R.M.; Litwak, L.E.; Picasso, M.F.R.; Gutman, R.A. Growth hormone-insulin-like growth factor-I axis in adult insulin-dependent diabetic patients: Evidence for central hypersensitivity to growth hormone—Releasing hormone and peripheral resistance to growth hormone. Horm. Metab. Res. 1998, 30, 737–742. [Google Scholar] [CrossRef]
- Regazzo, D.; Losa, M.; Albiger, N.M.; Terreni, M.R.; Vazza, G.; Ceccato, F.; Emanuelli, E.; Denaro, L.; Scaroni, C.; Occhi, G. The GIP/GIPR axis is functionally linked to GH-secretion increase in a significant proportion of gsp-somatotropinomas. Eur. J. Endocrinol. 2017, 176, 543–553. [Google Scholar] [CrossRef]
- Mukai, K.; Otsuki, M.; Tamada, D.; Kitamura, T.; Hayashi, R.; Saiki, A.; Goto, Y.; Arita, H.; Oshino, S.; Morii, E.; et al. Clinical characteristics of acromegalic patients with paradoxical GH response to oral glucose load. J. Clin. Endocrinol. Metab. 2019, 104, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Hage, M.; Kamenický, P.; Chanson, P. Growth Hormone Response to Oral Glucose Load: From Normal to Pathological Conditions. Neuroendocrinology 2019, 108, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Rosario, P.W.; Calsolari, M.R. Safety and specificity of the growth hormone suppression test in patients with diabetes. Endocrine 2014, 48, 329–333. [Google Scholar] [CrossRef]
- Dobri, G.; Niwattisaiwong, S.; Bena, J.F.; Gupta, M.; Kirwan, J.; Kennedy, L.; Hamrahian, A.H. Is GH nadir during OGTT a reliable test for diagnosis of acromegaly in patients with abnormal glucose metabolism? Endocrine 2019, 64, 139–146. [Google Scholar] [CrossRef]
- de Pablos-Velasco, P.; Venegas, E.M.; Álvarez Escolá, C.; Fajardo, C.; de Miguel, P.; González, N.; Bernabéu, I.; Valdés, N.; Paja, M.; Díez, J.J.; et al. Diagnosis, treatment and follow-up of patients with acromegaly in a clinical practice setting in Spain: The ACROPRAXIS program Delphi survey. Pituitary 2020, 23, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Kreutzer, J.; Vance, M.L.; Lopes, M.S.; Laws, E.R. Surgical management of GH-secreting pituitary adenomas: An outcome study using modern remission criteria. J. Clin. Endocrinol. Metab. 2001, 86, 4072–4077. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Bronstein, M.D.; Chanson, P.; Klibanski, A.; Casanueva, F.F.; Wass, J.A.H.; Strasburger, C.J.; Luger, A.; Clemmons, D.R.; Giustina, A. A Consensus Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 2018, 14, 552–561. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, J.D.; Bonert, V.S.; Mirocha, J.M.; Melmed, S. The Utility of Oral Glucose Tolerance Testing for Diagnosis and Assessment of Treatment Outcomes in 166 Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2009, 94, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Reimondo, G.; Bondanelli, M.; Ambrosio, M.R.; Grimaldi, F.; Zaggia, B.; Zatelli, M.C.; Allasino, B.; Laino, F.; Aroasio, E.; Termine, A.; et al. Growth hormone values after an oral glucose load do not add clinically useful information in patients with acromegaly on long-term somatostatin receptor ligand treatment. Endocrine 2014, 45, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Dimaraki, E.V.; Jaffe, C.A.; Demott-Friberg, R.; Chandler, W.F.; Barkan, A.L. Acromegaly with apparently normal GH secretion: Implications for diagnosis and follow-up. J. Clin. Endocrinol. Metab. 2002, 87, 3537–3542. [Google Scholar] [CrossRef]
- Ribeiro-Oliveira, A.; Faje, A.T.; Barkan, A.L. Limited utility of oral glucose tolerance test in biochemically active acromegaly. Eur. J. Endocrinol. 2011, 164, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Espinosa De Los Monteros, A.L.; Sosa-Eroza, E.; Gonzalez, B.; Mendoza, V.; Mercado, M. Prevalence, clinical and biochemical spectrum, and treatment outcome of acromegaly with normal basal GH at diagnosis. J. Clin. Endocrinol. Metab. 2018, 103, 3919–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbarayan, S.K.; Fleseriu, M.; Gordon, M.B.; Brzana, J.A.; Kennedy, L.; Faiman, C.; Hatipoglu, B.A.; Prayson, R.A.; Delashaw, J.B.; Weil, R.J.; et al. Serum IGF-1 in the diagnosis of acromegaly and the profile of patients with elevated IGF-1 but normal glucose-suppressed growth hormone. Endocr. Pract. 2012, 18, 817–825. [Google Scholar] [CrossRef]
- Rosario, P.W.; Calsolari, M.R. Elevated IGF-1 with GH suppression after an oral glucose overload: Incipient acromegaly or false-positive IGF-1? Arch. Endocrinol. Metab. 2016, 60, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Butz, L.B.; Sullivan, S.E.; Chandler, W.F.; Barkan, A.L. “Micromegaly”: An update on the prevalence of acromegaly with apparently normal GH secretion in the modern era. Pituitary 2016, 19, 547–551. [Google Scholar] [CrossRef]
- Schilbach, K.; Strasburger, C.J.; Bidlingmaier, M. Biochemical investigations in diagnosis and follow up of acromegaly. Pituitary 2017, 20, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W.; Calsolari, M.R. Laboratory investigation of acromegaly: Is basal or random GH > 0.4 µg/L in the presence of normal serum IGF-1 an important result? Arch Endocrinol. Metab. 2015, 59, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Kannan, S.; Kennedy, L. Diagnosis of acromegaly: State of the art. Expert Opin. Med. Diagn. 2013, 7, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Elijah, I.; Branski, L.K.; Finnerty, C.F.; Herndon, D.N. The GH/IGF-1 System in Critical Illness. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 759–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heald, A.; Kaushal, K.; Anderson, S.; Redpath, M.; Durrington, P.N.; Selby, P.L.; Gibson, M.J. Effects of hormone replacement therapy on insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-1 to IGFBP-4: Implications for cardiovascular risk. Gynecol. Endocrinol. 2005, 20, 176–182. [Google Scholar] [CrossRef]
- LUNT, H.; TUCKER, J.; BULLEN, H.; GIBBS, C.; WILKIN, T.J. Overnight Urinary Growth Hormone Measurement in the Diagnosis of Acromegaly. Clin. Endocrinol. 1990, 33, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.L.; Stred, S.E.; Reno, K.; Markovs, M.; Hopwood, N.J.; Kelch, R.P.; Beitins, I.Z. Increased growth hormone pulse frequency in acromegaly. J. Clin. Endocrinol. Metab. 1989, 69, 1225–1233. [Google Scholar] [CrossRef]
- Grinspoon, S.; Clemmons, D.; Swearingen, B.; Klibanski, A. Serum insulin-like growth factor-binding protein-3 levels in the diagnosis of acromegaly. J. Clin. Endocrinol. Metab. 1995, 80, 927–932. [Google Scholar] [PubMed]
Condition | IGF-1 | Basal GH | Nadir GH |
---|---|---|---|
Puberty | High | High | High |
Pregnancy | High * | High | High |
Diabetes Mellitus | Low/Normal | High | High |
Renal Failure | Low/Normal | High | High |
Liver Disease | Low/Normal | High | High |
Malnutrition/Anorexia | Low/Normal | High | High |
Oral Estrogen | Low/Normal | High | High |
Critical Illness | Low/Normal | High | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akirov, A.; Masri-Iraqi, H.; Dotan, I.; Shimon, I. The Biochemical Diagnosis of Acromegaly. J. Clin. Med. 2021, 10, 1147. https://doi.org/10.3390/jcm10051147
Akirov A, Masri-Iraqi H, Dotan I, Shimon I. The Biochemical Diagnosis of Acromegaly. Journal of Clinical Medicine. 2021; 10(5):1147. https://doi.org/10.3390/jcm10051147
Chicago/Turabian StyleAkirov, Amit, Hiba Masri-Iraqi, Idit Dotan, and Ilan Shimon. 2021. "The Biochemical Diagnosis of Acromegaly" Journal of Clinical Medicine 10, no. 5: 1147. https://doi.org/10.3390/jcm10051147
APA StyleAkirov, A., Masri-Iraqi, H., Dotan, I., & Shimon, I. (2021). The Biochemical Diagnosis of Acromegaly. Journal of Clinical Medicine, 10(5), 1147. https://doi.org/10.3390/jcm10051147