The Relationship between Cardiovascular Risk Scores and Several Markers of Subclinical Atherosclerosis in an Asymptomatic Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. CVD Risk Scores
2.3. Subclinical Atherosclerosis Evaluation
2.4. Statistical Analysis
3. Results
- For cIMT—SCORE is more sensitive (33% of the variance in cIMT was predictable from SCORE); each increase of SCORE with 1.16 signifies a further increase of cIMT with 0.1 mm. The prediction was closely followed by Framingham (29% variance) and QRISK (28% variance).
- For PWV—Framingham score is more sensitive (21% of the variance in PWV was predictable from Framingham score). This result can be translated that for each increase of Framingham value with 2.1, PWV increases as well with 1 m/s. The prediction was closely followed by QRISK (19% variance) and SCORE (17% variance).
- For AIXbr—QRISK and PROCAM are more sensitive, but all risk scores present a variance <10%.
- For AIXao—QRISK is more sensitive, but all risk scores present a variance <10%.
- For SBPao—SCORE is more sensitive (23% of the variance of SBPao was predictable from SCORE); each increase of SCORE with 0.6 signifies a further increase of SBPao with 10 mmHg. The prediction was closely followed by Framingham (21% variance) and QRISK (18% variance).
- For ABI—PROCAM score is more sensitive, but the overall prediction values are ≤0.1%.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. Guidelines: Editor’s choice: 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315. [Google Scholar] [PubMed]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. 2), S1–S45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. 2), S49–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.A.; Gillman, M.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2016, 316, 1997–2007. [Google Scholar] [PubMed]
- Singh, S.S.; Pilkerton, C.S.; Shrader, C.D.; Frisbee, S.J. Subclinical atherosclerosis, cardiovascular health, and disease risk: Is there a case for the Cardiovascular Health Index in the primary prevention population? BMC Public Health 2018, 18, 429. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, X. Relationship between Framingham risk score and subclinical atherosclerosis in carotid plaques: An in vivo study using multi-contrast MRI. Sci. China Life Sci. 2017, 60, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Levenson, J. May subclinical arterial disease help to better detect and treat high-risk asymptomatic individuals? J. Hypertens. 2005, 23, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The framingham heart study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Chironi, G.; Levenson, J. Performance of subclinical arterial disease detection as a screening test for coronary heart disease. Hypertension 2006, 48, 392–396. [Google Scholar] [CrossRef]
- Plantinga, Y.; Dogan, S.; Grobbee, D.E.; Bots, M.L. Carotid intima-media thickness measurement in cardiovascular screening programmes. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 639–644. [Google Scholar] [CrossRef]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Executive summary: Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012, 125, 188–197. [Google Scholar] [PubMed]
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Frostegard, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resnick, H.E.; Lindsay, R.S.; McDermott, M.M.; Devereux, R.B.; Jones, K.L.; Fabsitz, R.R.; Howard, B.V. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: The Strong Heart Study. Circulation 2004, 109, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Muntendam, P.; McCall, C.; Sanz, J.; Falk, E.; Fuster, V.; Fuster, V. The BioImage Study: Novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am. Heart J. 2010, 160, 49–57.e1. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Cullen, P.; Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002, 105, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Horvath, I.G.; Nemeth, A.; Lenkey, Z.; Alessandri, N.; Tufano, F.; Kis, P.; Balázs, G.; Attila, C. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J. Hypertens. 2010, 28, 2068–2075. [Google Scholar] [CrossRef] [Green Version]
- Rajzer, M.W.; Wojciechowska, W.; Klocek, M.; Palka, I.; Brzozowska-Kiszka, M.; Kawecka-Jaszcz, K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J. Hypertens. 2008, 26, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Falk, E.; Hecht, H.S.; Jamieson, M.J.; Kaul, S.; Berman, D.; Fayad, Z.; Budoff, M.J.; Rumberger, J.; Naqvi, T.Z.; et al. From vulnerable plaque to vulnerable patient–Part III: Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am. J. Cardiol. 2006, 98, 2H–15H. [Google Scholar] [CrossRef] [PubMed]
- Romanens, M.; Sudano, I.; Adams, A.; Warmuth, W. Advanced carotid atherosclerosis in middle-aged subjects: Comparison with PROCAM and SCORE risk categories, the potential for reclassification and cost-efficiency of carotid ultrasound in the setting of primary care. SWISS Med. Wkly. 2019, 149, w20006. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Rundek, T.; Sciacca, R.R.; Jin, Z.; Sacco, R.L.; Homma, S.; Di Tullio, M.R. Ultrasound assessment of subclinical cardiovascular disease in a community-based multiethnic population and comparison to the framingham score. Am. J. Cardiol. 2006, 98, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, U.; Yorgun, H.; Aytemir, K.; Hazrolan, T.; Kaya, E.B.; Ateş, A.H.; Dural, M.; Gürses, K.M.; Sunman, H.; Tokgözoğlu, L.; et al. Cardiovascular risk and coronary atherosclerotic plaques detected by multidetector computed tomography. Coron. Artery Dis. 2012, 23, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Friera, L.; Peñalvo, J.L.; Fernández-Ortiz, A.; Ibañez, B.; López-Melgar, B.; Laclaustra, M.; Olive, B.; Mocoroa, A.; Mendiguren, J.; de Vega Martínez, V.; et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 2015, 131, 2104–2113. [Google Scholar] [CrossRef] [Green Version]
- Bonarjee, V.V.S. Arterial Stiffness: A Prognostic Marker in Coronary Heart Disease. Available Methods and Clinical Application. Front. Cardiovasc. Med. 2018, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef] [Green Version]
- RH Raiko, J.; Magnussen, C.G.; Kivimäki, M.; Taittonen, L.; Laitinen, T.; Kähönen, M.; Hutri-Kähönen, N.; Jula, A.; Loo, B.M.; Thomson, R.J.; et al. Cardiovascular risk scores in the prediction of subclinical atherosclerosis in young adults: Evidence from the cardiovascular risk in a young Finns study. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 549–555. [Google Scholar] [CrossRef]
- Prati, P.; Tosetto, A.; Vanuzzo, D.; Bader, G.; Casaroli, M.; Canciani, L.; Castellani, S.; Touboul, P.J. Carotid intima media thickness and plaques can predict the occurrence of ischemic cerebrovascular events. Stroke 2008, 39, 2470–2476. [Google Scholar] [CrossRef] [Green Version]
- Mookadam, F.; Tanasunont, W.; Jalal, U.; Mookadam, M.; Wilansky, S. Carotid intima-media thickness and cardiovascular risk. Future Cardiol. 2011, 7, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hermida, A.; Novo, J.; Marcos Ortega, J.E. Distribution of carotid intima-media thickness based on cardiovascular risk stratification according to the Framingham-REGICOR and SCORE functions. Hypertens. Vasc. Risk 2016, 33, 51–57. [Google Scholar]
- Yao, F.; Liu, Y.; Liu, D.; Wu, S.; Lin, H.; Fan, R.; Li, C. Sex differences between vascular endothelial function and carotid intima-media thickness by Framingham Risk Score. J. Ultrasound Med. 2014, 33, 281–286. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100,667 Patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Dhangana, R.; Murphy, T.P.; Pencina, M.J.; Zafar, A.M. Prevalence of low ankle-brachial index, elevated plasma fibrinogen and CRP across Framingham risk categories: Data from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Atherosclerosis 2011, 216, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Woznicka-Leskiewicz, L.; Posadzy-Małaczyńska, A.; Juszkat, R. The impact of ankle brachial index and pulse wave velocity on cardiovascular risk according to SCORE and Framingham scales and sex differences. J. Hum. Hypertens. 2015, 29, 502–510. [Google Scholar] [CrossRef]
- Song, B.G.; Park, J.B.; Cho, S.J.; Lee, S.Y.; Kim, J.H.; Choi, S.M.; Park, J.H.; Park, Y.H.; Choi, J.-O.; Lee, S.-C.; et al. Pulse wave velocity is more closely associated with cardiovascular risk than augmentation index in the relatively low-risk population. Heart Vessels 2009, 24, 413. [Google Scholar] [CrossRef]
- Podolec, M.; Siniarski, A.; Pająk, A.; Rostoff, P.; Gajos, G.; Nessler, J.; Olszowska, M.; Nowakowski, M.; Szafraniec, K.; Kopeć, G. Association between carotid-femoral pulse wave velocity and overall cardiovascular risk score assessed by the SCORE system in urban Polish population. Kardiol. Pol. 2019, 77, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatelopoulos, K.S.; Kalpakos, D.; Protogerou, A.D.; Papamichael, C.M.; Ikonomidis, I.; Tsitsirikos, M.; Revela, I.; Papaioannou, T.G.; Lekakis, J.P. The combined effect of augmentation index and carotid intima-media thickness on cardiovascular risk in young and middle-aged men without cardiovascular disease. J. Hum. Hypertens. 2006, 20, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, S.Y.; Joo, S.J.; Kim, K.S. Augmentation index is associated with coronary revascularization in patients with high Framingham risk scores: A hospital-based observational study. BMC Cardiovasc. Disord. 2015, 15, 131. [Google Scholar] [CrossRef] [Green Version]
HeartScore® | Framingham | QRISK®3 | PROCAM | |
---|---|---|---|---|
Population assessed | European countries | USA | UK | Germany |
Time prediction | 10 years | 10 years | 10 years | 10 years |
Outcomes | Fatal CVD | Fatal and non-fatal CVD | Incident CVD | Fatal and non-fatal CVD |
Number of risk factors | 5 | 8 | 20 (8—non CVD major risk factors) | 9 |
Year of last developed model | 2003 | 2008 | 2017 | 2007 |
General Characteristics | Specific Characteristics | All Subjects (n = 120) | |
---|---|---|---|
Risk factors | Age, years | 52.01 ± 10.73 | |
Male, n (%) | 40 (33.3) | ||
Smoking status | Current smoker, n (%) | 26 (21.6) | |
Former smoker, n (%) | 22 (18.3) | ||
Never smoker, n (%) | 72 (60) | ||
Alcohol consumers, n (%) | 15 (12.5) | ||
Family history of CVD *, n (%) | 36 (30) | ||
Body mass index, kg/m² | 28.50 ± 5.34 | ||
Waist circumference, male, cm | 103.60 ± 10.29 | ||
Waist circumference, female, cm | 97.2 ± 13.62 | ||
Systolic blood pressure, mmHg | 127.30 ± 17.22 | ||
Diastolic blood pressure, mmHg | 81.27 ± 13.07 | ||
Cholesterol total, mg/dL | 209.77 ± 45.56 | ||
LDL cholesterol, mg/dL | 129.96 ± 40.71 | ||
HDL cholesterol, mg/dL | 52.49 ± 14.47 | ||
Non-HDL cholesterol, mg/dL | 157.27 ± 44.89 | ||
Triglycerides, mg/dL | 137.06 ± 81.42 | ||
Plasma glucose, mg/dL | 97.21 ± 12.75 | ||
eGFR, ml/min/1.73 m² | 89.35 ± 16.54 | ||
Subclinical atherosclerosis | cIMT, mm | 0.86 ± 0.13 | |
cIMT > 0.9 mm, n (%) | 44 (36.7) | ||
Carotid plaques, n (%) | 48 (40) | ||
ABI | 1.08 ± 0.13 | ||
PWV, m/s | 8.28 ± 1.79 | ||
PWV > 10 m/s, n (%) | 23 (20.9) | ||
Aortic systolic blood pressure, mmHg | 128.14 ± 21.05 | ||
AIXbr, % | −0.98 ± 31.03 | ||
AIXao, % | 37.04 ± 15.60 | ||
CVD risk charts | SCORE risk | 2.95 ± 2.71 | |
Framingham | 10.29 ± 8.38 | ||
QRISK | 7.23 ± 6.93 | ||
PROCAM | 5.49 ± 7.83 |
Test Result Variable(s) | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
SCORE | 0.812 | 0.044 | 0.000 | 0.726 | 0.897 |
Framingham | 0.845 | 0.036 | 0.000 | 0.774 | 0.916 |
QRISK | 0.825 | 0.038 | 0.000 | 0.749 | 0.900 |
PROCAM | 0.796 | 0.040 | 0.000 | 0.717 | 0.875 |
Test Result Variable(s) | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
SCORE | 0.803 | 0.043 | 0.000 | 0.719 | 0.887 |
Framingham | 0.799 | 0.041 | 0.000 | 0.720 | 0.879 |
QRISK | 0.811 | 0.040 | 0.000 | 0.733 | 0.889 |
PROCAM | 0.774 | 0.043 | 0.000 | 0.690 | 0.857 |
Test Result Variable(s) | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
SCORE | 0.666 | 0.062 | 0.015 | 0.545 | 0.787 |
Framingham | 0.715 | 0.052 | 0.002 | 0.613 | 0.817 |
QRISK | 0.733 | 0.050 | 0.001 | 0.635 | 0.832 |
PROCAM | 0.688 | 0.054 | 0.006 | 0.582 | 0.794 |
Risk Score | cIMT | PWV | Carotid Plaques | |
---|---|---|---|---|
SCORE | Cut-off value | 1.5 | 1.5 | 1.5 |
Sensitivity (%) | 81.8 | 78.3 | 81.3 | |
Specificity (%) | 64.5 | 51.7 | 66.7 | |
PPV (%) | 57.1 | 30 | 61.9 | |
NPV (%) | 86 | 90 | 84.2 | |
Framingham | Cut-off value | 7.95 | 8.8 | 4.75 |
Sensitivity (%) | 81.8 | 73.9 | 89.6 | |
Specificity (%) | 65.8 | 59.8 | 51.4 | |
PPV (%) | 58.1 | 32.7 | 55.1 | |
NPV (%) | 86.2 | 89.7 | 88.1 | |
QRISK | Cut-off value | 5.3 | 3.7 | 4.3 |
Sensitivity (%) | 81.8 | 95.7 | 83.3 | |
Specificity (%) | 68.4 | 46 | 63.9 | |
PPV (%) | 60 | 31.9 | 60.6 | |
NPV (%) | 86.7 | 97.6 | 85.2 | |
PROCAM | Cut-off value | 2.11 | 2.05 | 1.62 |
Sensitivity (%) | 77.3 | 82.6 | 81.2 | |
Specificity (%) | 63.2 | 54 | 58.3 | |
PPV (%) | 54.8 | 32.2 | 56.5 | |
NPV (%) | 82.8 | 92.2 | 82.4 |
Linear Regression | PWV (Increase with One Unit) | cIMT Max (Increase with 0.1) | ABI (Increase with 0.1) | AIXbr (Increase with 1%) | AIXao (Increase with 1%) | SBPao (Increase with 1 mmHg) | |
---|---|---|---|---|---|---|---|
SCORE | r | 0.41 | 0.57 | −0.10 | 0.27 | 0.28 | 0.48 |
p | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | |
Increase/decrease | 0.6 | 1.16 | 0.2 | 0.025 | 0.05 | 0.06 | |
R2 | 0.17 | 0.33 | 0.01 | 0.07 | 0.07 | 0.23 | |
Reg. ec. | y = −2.27 + 0.65 *x | y = −6.96 + 11.46 *x | Y = 5.32 − 2.19 *x | Y = 3.11 + 0.02 *x | Y = 1.23 + 0.05 *x | Y = −5.06 + 0.06 *x | |
Framingham | r | 0.45 | 0.54 | −0.11 | 0.25 | 0.25 | 0.46 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Increase/decrease | 2.1 | 3.3 | 0.6 | 0.069 | 0.14 | 0.18 | |
R2 | 0.21 | 0.29 | 0.01 | 0.06 | 0.06 | 0.21 | |
Reg. ec. | y = −7.49 + 2.19 *x | y = −18.64 + 33.48 *x | Y = 17.71 − 6.86 *x | Y = 10.71 + 0.07 *x | Y = 5.46 + 0.14 *x | Y = −13.47 + 0.19 *x | |
QRISK3 | r | 0.44 | 0.53 | −0.07 | 0.27 | 0.28 | 0.42 |
p | <0.01 | <0.01 | 0.04 | <0.01 | <0.01 | <0.01 | |
Increase/decrease | 1.75 | 2.7 | 0.3 | 0.063 | 0.12 | 0.14 | |
R2 | 0.19 | 0.28 | 0.005 | 0.07 | 0.08 | 0.18 | |
Reg. ec. | y = −7.06 + 1.76 *x | y = −16.11 + 27.01 *x | Y = 11.08 − 3.55 *x | Y = 2.75 + 0.13 *x | Y = 2.75 + 0.13 *x | Y = −10.84 + 0.14 *x | |
PROCAM | r | 0.37 | 0.42 | −0.15 | 0.27 | 0.28 | 0.29 |
p | <0.01 | <0.01 | 0.04 | <0.01 | <0.01 | <0.01 | |
Increase/decrease | 1.68 | 2.4 | 0.8 | 0.073 | 0.14 | 0.11 | |
R2 | 0.14 | 0.18 | 0.02 | 0.07 | 0.07 | 0.08 | |
Reg. ec. | y = −8.2 + 1.68 *x | y = −15.56 + 24.32 *x | Y = 14.92 − 8.71 *x | Y = 0.22 + 0.15 *x | Y = 0.22 + 0.15 *x | Y = −8.6 + 0.11 *x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitu, O.; Crisan, A.; Redwood, S.; Cazacu-Davidescu, I.-E.; Mitu, I.; Costache, I.-I.; Onofrei, V.; Miftode, R.-S.; Costache, A.-D.; Haba, C.M.S.; et al. The Relationship between Cardiovascular Risk Scores and Several Markers of Subclinical Atherosclerosis in an Asymptomatic Population. J. Clin. Med. 2021, 10, 955. https://doi.org/10.3390/jcm10050955
Mitu O, Crisan A, Redwood S, Cazacu-Davidescu I-E, Mitu I, Costache I-I, Onofrei V, Miftode R-S, Costache A-D, Haba CMS, et al. The Relationship between Cardiovascular Risk Scores and Several Markers of Subclinical Atherosclerosis in an Asymptomatic Population. Journal of Clinical Medicine. 2021; 10(5):955. https://doi.org/10.3390/jcm10050955
Chicago/Turabian StyleMitu, Ovidiu, Adrian Crisan, Simon Redwood, Ioan-Elian Cazacu-Davidescu, Ivona Mitu, Irina-Iuliana Costache, Viviana Onofrei, Radu-Stefan Miftode, Alexandru-Dan Costache, Cristian Mihai Stefan Haba, and et al. 2021. "The Relationship between Cardiovascular Risk Scores and Several Markers of Subclinical Atherosclerosis in an Asymptomatic Population" Journal of Clinical Medicine 10, no. 5: 955. https://doi.org/10.3390/jcm10050955
APA StyleMitu, O., Crisan, A., Redwood, S., Cazacu-Davidescu, I. -E., Mitu, I., Costache, I. -I., Onofrei, V., Miftode, R. -S., Costache, A. -D., Haba, C. M. S., & Mitu, F. (2021). The Relationship between Cardiovascular Risk Scores and Several Markers of Subclinical Atherosclerosis in an Asymptomatic Population. Journal of Clinical Medicine, 10(5), 955. https://doi.org/10.3390/jcm10050955