DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants and Location for Collection
2.3. Sample Collection
2.4. IUI Treatment
2.5. Principles for the DNA Fragmentation Assay
2.5.1. Reagents and Utensils
2.5.2. Reference Sample
2.5.3. Sample Preparation
2.5.4. Flow Cytometric Analysis of DNA Fragmentation
2.6. Statistical Analysis
3. Results
3.1. Baseline DFI and the Chance of Pregnancy per Cycle from the Subsequent Fertility Treatment
3.2. Baseline DFI and the Chance of Pregnancy per Patient from the Subsequent Fertility Treatment
3.3. Fluctuation of DFI within the Same Individual
4. Discussion
Strength and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ioannou, D.; Miller, D.; Griffin, D.K.; Tempest, H.G. Impact of sperm DNA chromatin in the clinic. J. Assist. Reprod. Genet. 2016, 33, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Evenson, D.P.; Jost, L.K.; Marshall, D.; Zinaman, M.J.; Clegg, E.; Purvis, K.; de Angelis, P.; Claussen, O.P. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum. Reprod. 1999, 14, 1039–1049. [Google Scholar] [CrossRef]
- Evenson, D.P. Sperm Chromatin Structure Assay (SCSA®): 30 Years of Experience with the SCSA®. In Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction; Zini, A., Agarwal, A., Eds.; Springer: New York, NY, USA, 2011; pp. 125–149. [Google Scholar] [CrossRef]
- Evenson, D.P.; Larson, K.L.; Jost, L.K. Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 2002, 23, 25–43. [Google Scholar] [CrossRef]
- Rex, A.S.; Wu, C.; Aagaard, J.; Fedder, J. Implementation of an in-house flow cytometric analysis of DNA fragmentation in spermatozoa. Asian J. Androl. 2020, 22, 246–251. [Google Scholar] [CrossRef]
- Sharma, R.; Ahmad, G.; Esteves, S.C.; & Agarwal, A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: Protocol, reference values, and quality control. J. Assist. Reprod. Genet. 2016, 33, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Evenson, D.P.; Wixon, R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 2006, 65, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Zini, A. Are sperm chromatin and DNA defects relevant in the clinic? Syst. Biol. Reprod. Med. 2011, 57, 78–85. [Google Scholar] [CrossRef]
- Boe-Hansen, G.B.; Fedder, J.; Ersboll, A.K.; Christensen, P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum. Reprod. 2006, 21, 1576–1582. [Google Scholar] [CrossRef] [Green Version]
- Bungum, M.; Humaidan, P.; Axmon, A.; Spano, M.; Bungum, L.; Erenpreiss, J.; Giwercman, A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 2007, 22, 174–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bungum, M.; Humaidan, P.; Spano, M.; Jepson, K.; Bungum, L.; Giwercman, A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum. Reprod. 2004, 19, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, G.; Jin, H.; Guo, Y.; Sun, Y. The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl. Urol. 2019, 8, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, A.; Van Avermaete, F.; Roelant, E.; Punjabi, U.; De Neubourg, D. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: A systematic review and meta-analysis. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 244, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zini, A.; Sigman, M. Are tests of sperm DNA damage clinically useful? Pros. Cons. J. 2009, 30, 219–229. [Google Scholar] [CrossRef]
- Giwercman, A.; Lindstedt, L.; Larsson, M.; Bungum, M.; Spano, M.; Levine, R.J.; Rylander, L. Sperm chromatin structure assay as an independent predictor of fertility in vivo: A case-control study. Int. J. 2010, 33, e221–e227. [Google Scholar] [CrossRef]
- Evenson, D.; Jost, L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000, 22, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Souter, I.; Baltagi, L.M.; Kuleta, D.; Meeker, J.D.; Petrozza, J.C. Women, weight, and fertility: The effect of body mass index on the outcome of superovulation/intrauterine insemination cycles. Fertil. Steril. 2011, 95, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- de Angelis, C.; Nardone, A.; Garifalos, F.; Pivonello, C.; Sansone, A.; Conforti, A.; Di Dato, C.; Sirico, F.; Alviggi, C.; Isidori, A.; et al. Smoke, alcohol and drug addiction and female fertility. Reprod. Biol. Endocrinol. 2020, 18, 21. [Google Scholar] [CrossRef]
- Cissen, M.; Wely, M.V.; Scholten, I.; Mansell, S.; Bruin, J.P.; Mol, B.W.; Braat, D.; Repping, S.; Hamer, G. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165125. [Google Scholar] [CrossRef] [Green Version]
- Bungum, M.; Bungum, L.; Giwercman, A. Sperm chromatin structure assay (SCSA): A tool in diagnosis and treatment of infertility. Asian J. 2011, 13, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.; Gallos, I.D.; Conner, S.J.; Rajkhowa, M.; Miller, D.; Lewis, S.; Kirkman-Brown, J.; Coomarasamy, A. The effect of sperm DNA fragmentation on miscarriage rates: A systematic review and meta-analysis. Hum. Reprod. 2012, 27, 2908–2917. [Google Scholar] [CrossRef] [Green Version]
- Esteves, S.C.; Santi, D.; Simoni, M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020, 8, 53–81. [Google Scholar] [CrossRef] [PubMed]
Females Mean (SD) | Males Mean (SD) | ||
---|---|---|---|
Mean age | 31.4 (4.6) | ||
BMI | 24.2 (4.5) | ||
Missing | 35 | ||
Smoking | No | 170 (80.6) | 158 (78.9) |
Yes | 13 (6.2) | 22 (10.4) | |
Missing | 28 (13.2) | 31 (14.7) | |
Alcohol | No | 70 (33.2) | 34 (16.1) |
Yes | 112 (53.1) | 146 (69.2) | |
missing | 29 (13.7) | 31 (14.7) |
Females Mean (SD) | Males Mean (SD) | ||
---|---|---|---|
Mean age | 30.8 (4.6) | ||
BMI | 24.4 (4.7) | ||
Missing | 29 | ||
Smoking | No | 118 (80.8) | 108 (74.0) |
Yes | 4 (2.7) | 13 (8.9) | |
Missing | 24 (16.4) | 25 (17.1) | |
Alcohol | No | 48 (32.9) | 23 (15.8) |
Yes | 72 (49.3) | 98 (67.1) | |
Missing | 26 (17.8) | 25 (17.1) | |
Motile sperm (mio/mL) (Il 25%/50%/75%) | 32 (±27) (10/25/50) | ||
Total spermatozoa (mio/mL) (Il 25%/50%/75%) | 47 (±28) (20/35/75) |
1.IUI | 2.IUI | 3.IUI | Total | Crude OR (95% CI) | Adjusted OR (95% CI) | |||||
---|---|---|---|---|---|---|---|---|---|---|
(%) | p | (%) | p | (%) | p | (%) | p | |||
Pregnancy Rate | ||||||||||
Total | ||||||||||
DFI ≤ 10 | 13 | 15.6 | 14 | 14.2 | 0.79 | 0.67 | ||||
DFI > 10 | 9.4 | 0.54 | 8.9 | 0.27 | 17 | 0.68 | 11.5 | 0.47 | (0.41–1.47) | (0.28–1.61) |
Non-stimulated cycles | ||||||||||
DFI ≤ 10 | 12.1 | 23.8 | 12.1 | 14.8 | ||||||
DFI > 10 | 9.4 | 1 | 7.7 | 0.22 | 9.4 | 1 | 9.6 | 0.36 | ||
Stimulated cycles | ||||||||||
DFI ≤ 10 | 13.9 | 11.6 | 13.9 | 13.9 | ||||||
DFI > 10 | 9.5 | 1 | 10 | 1 | 9.5 | 1 | 13.1 | 0.89 | ||
Live Birth Rate | ||||||||||
Total | ||||||||||
DFI ≤ 10 | 11.6 | 10.9 | 10 | 10.9 | 0.75 | 0.78 | ||||
DFI > 10 | 5.9 | 0.35 | 7.1 | 0.54 | 12.8 | 0.67 | 8.4 | 0.44 | (0.36–1.57) | (0.32–1.94) |
Non-stimulated cycles | ||||||||||
DFI ≤ 10 | 9.1 | 14.3 | 9.1 | 9.8 | ||||||
DFI > 10 | 6.5 | 1 | 73.9 | 0.31 | 6.5 | 1 | 6.9 | 0.55 | ||
Stimulated cycles | ||||||||||
DFI ≤ 10 | 13.9 | 9.3 | 13.9 | 11.5 | ||||||
DFI > 10 | 5 | 0.40 | 10 | 1 | 5 | 0.40 | 9.8 | 0.70 |
N Cycles | N Pregnancies | (%) | p-Value | Crude OR (95% CI) | Adjusted OR (95% CI) | |
---|---|---|---|---|---|---|
Pregnancy Rate | ||||||
Total | 352 | 50 | 14.2 | |||
DFI ≤ 10 at baseline | 129 | 28 | 21.7 | 0.39 | 0.24 | |
DFI > 10 at baseline | 223 | 22 | 9.9 | <0.005 | (0.21–0.75) | (0.10–0.57) |
Stimulated cycles | ||||||
DFI ≤ 10 at baseline | 79 | 13 | 16.5 | |||
DFI > 10 at baseline | 137 | 13 | 9.5 | 0.13 | ||
Non-stimulated cycles | ||||||
DFI ≤ 10 at baseline | 47 | 12 | 25.5 | |||
DFI > 10 at baseline | 82 | 5 | 6.1 | <0.005 | ||
Female age < 35 | ||||||
DFI ≤ 10 at baseline | 110 | 26 | 23.6 | |||
DFI > 10 at baseline | 182 | 18 | 9.9 | <0.005 | ||
Live Birth Rate | ||||||
Total | 348 | 29 | 8.3 | |||
DFI ≤ 10 at baseline | 127 | 18 | 14.2 | 0.32 | 0.20 | |
DFI > 10 at baseline | 221 | 11 | 5 | <0.005 | (0.15–0.69) | (0.07–0.56) |
Stimulated cycles | ||||||
DFI ≤ 10 at baseline | 78 | 9 | 11.5 | |||
DFI > 10 at baseline | 136 | 8 | 5.9 | 0.14 | ||
Non-stimulated cycles | ||||||
DFI ≤ 10 at baseline | 47 | 9 | 19.2 | |||
DFI > 10 at baseline | 82 | 3 | 3.7 | <0.01 | ||
Female age < 35 | ||||||
DFI ≤ 10 at baseline | 109 | 17 | 15.6 | |||
DFI > 10 at baseline | 180 | 11 | 6.1 | <0.01 |
N Patients | N Pregnancies | (%) | p-Value | Crude OR (95% CI) | Adjusted OR (95% CI) | |
---|---|---|---|---|---|---|
Pregnancy Rate | ||||||
Total | 146 | 46 | 31.5 | |||
DFI ≤ 10 at baseline | 55 | 25 | 45.5 | 0.36 (0.18–0.74) | 0.30 (0.11–0.78) | |
DFI > 10 at baseline | 91 | 21 | 23.1 | <0.005 | ||
Female age < 35 | 120 | 40 | 33.3 | |||
DFI ≤ 10 at baseline | 47 | 23 | 48.9 | 0.31 (0.14–0.70) | 0.26 (0.08–0.78) | |
DFI > 10 at baseline | 73 | 17 | 23.3 | <0.005 | ||
Live Birth Rate | ||||||
Total | 142 | 29 | 20.4 | |||
DFI ≤ 10 at baseline | 53 | 18 | 34 | 0.27 (0.12–0.64) | 0.14 (0.04–0.49) | |
DFI > 10 at baseline | 89 | 11 | 12.4 | <0.005 | ||
Female age < 35 | 117 | 28 | 23.9 | |||
DFI ≤ 10 at baseline | 46 | 17 | 37 | 0.31 (0.13–0.75) | 0.14 (0.04–0.51) | |
DFI > 10 at baseline | 71 | 11 | 15.5 | <0.01 |
N Patients | N Pregnancies | (%) | p-Value | |
---|---|---|---|---|
Pregnancy Rate | ||||
Total | ||||
DFI ≤ 10 | 38 | 14 | 36.8 | |
DFI > 10 | 33 | 8 | 24.2 | |
mixed | 55 | 18 | 32.7 | 0.51 |
Live birth Rate | ||||
Total | ||||
DFI ≤ 10 | 38 | 11 | 29 | |
DFI > 10 | 34 | 4 | 11.8 | |
mixed | 54 | 15 | 27.8 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rex, A.S.; Wu, C.; Aagaard, J.; Fedder, J. DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered? J. Clin. Med. 2021, 10, 1310. https://doi.org/10.3390/jcm10061310
Rex AS, Wu C, Aagaard J, Fedder J. DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered? Journal of Clinical Medicine. 2021; 10(6):1310. https://doi.org/10.3390/jcm10061310
Chicago/Turabian StyleRex, Anne Sofie, Chunsen Wu, Jørn Aagaard, and Jens Fedder. 2021. "DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered?" Journal of Clinical Medicine 10, no. 6: 1310. https://doi.org/10.3390/jcm10061310
APA StyleRex, A. S., Wu, C., Aagaard, J., & Fedder, J. (2021). DNA Fragmentation in Human Spermatozoa and Pregnancy Rates after Intrauterine Insemination. Should the DFI Threshold Be Lowered? Journal of Clinical Medicine, 10(6), 1310. https://doi.org/10.3390/jcm10061310