Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. Preclinical Data
3. Clinical Data
3.1. Adjuvant Setting
3.2. Recurrent Setting—Monotherapy Trials
3.3. Recurrent Setting—Combination Trials
3.3.1. Checkpoint Blockade and Antiangiogenic Treatments
3.3.2. Checkpoint Blockade and Radiation Therapy
3.3.3. Co-Targeting of Different Immune Checkpoints
3.4. Neoadjuvant Setting
4. Biomarkers
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stupp, R.; Hegi, M.E.; Mason, W.P.; Bent, M.J.V.D.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Wang, M.; Aldape, K.D.; Stupp, R.; Hegi, M.E.; Jaeckle, K.A.; Armstrong, T.S.; Wefel, J.S.; Won, M.; Blumenthal, D.T.; et al. Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial. J. Clin. Oncol. 2013, 31, 4085–4091. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Lebrun, D.G.; Yang, J.; Zhu, V.F.; Li, M. Deregulated Signaling Pathways in Glioblastoma Multiforme: Molecular Mechanisms and Therapeutic Targets. Cancer Investig. 2012, 30, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. Erratum: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaszewski, W.; Sanchez-Perez, L.; Gajewski, T.F.; Sampson, J.H. Brain Tumor Microenvironment and Host State: Implications for Immunotherapy. Clin. Cancer Res. 2019, 25, 4202–4210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locarno, C.V.; Simonelli, M.; Bonecchi, R.; Locati, M.; Savino, B.; Carenza, C.; Capucetti, A.; Stanzani, E.; Lorenzi, E.; Persico, P.; et al. Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology 2020, 225, 151853. [Google Scholar] [CrossRef] [PubMed]
- Weenink, B.; French, P.J.; Smitt, P.A.S.; Debets, R.; Geurts, M. Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. Cancers 2020, 12, 751. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L. Targeting Immune Checkpoints in Cancer Therapy. JAMA 2017, 318, 1647–1648. [Google Scholar] [CrossRef]
- Reardon, D.A.; Gokhale, P.C.; Klein, S.R.; Ligon, K.L.; Rodig, S.J.; Ramkissoon, S.H.; Jones, K.L.; Conway, A.S.; Liao, X.; Zhou, J.; et al. Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Cancer Immunol. Res. 2016, 4, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 1–3. [Google Scholar] [CrossRef]
- Soffietti, R.; Ahluwalia, M.; Lin, N.; Rudà, R. Management of brain metastases according to molecular subtypes. Nat. Rev. Neurol. 2020, 16, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Fecci, P.E.; Ochiai, H.; Mitchell, D.A.; Grossi, P.M.; Sweeney, A.E.; Archer, G.E.; Cummings, T.; Allison, J.P.; Bigner, D.D.; Sampson, J.H. Systemic CTLA-4 Blockade Ameliorates Glioma-Induced Changes to the CD4+ T Cell Compartment without Affecting Regulatory T-Cell Function. Clin. Cancer Res. 2007, 13, 2158–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, J.; See, A.P.; Phallen, J.; Jackson, C.M.; Belcaid, Z.; Ruzevick, J.; Durham, N.; Meyer, C.; Harris, T.J.; Albesiano, E.; et al. Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice with Intracranial Gliomas. Int. J. Radiat. Oncol. 2013, 86, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, B.; Qi, N.; Li, J.; Zhang, G. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model. Biochem. Biophys. Res. Commun. 2018, 501, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, C.G.; Shim, J.-K.; Kim, J.H.; Lee, H.; Lee, J.E.; Kim, M.H.; Haam, K.; Jung, I.; Park, S.-H.; et al. Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. OncoImmunology 2019, 8, e1525243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainwright, D.A.; Chang, A.L.; Dey, M.; Balyasnikova, I.V.; Kim, C.K.; Tobias, A.; Cheng, Y.; Kim, J.W.; Qiao, J.; Zhang, L.; et al. Durable Therapeutic Efficacy Utilizing Combinatorial Blockade against IDO, CTLA-4, and PD-L1 in Mice with Brain Tumors. Clin. Cancer Res. 2014, 20, 5290–5301. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Patel, M.A.; Mangraviti, A.; Kim, E.S.; Theodros, D.; Velarde, E.; Liu, A.; Sankey, E.W.; Tam, A.; Xu, H.; et al. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clin. Cancer Res. 2017, 23, 124–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, A.L.; Maxwell, R.; Theodros, D.; Belcaid, Z.; Mathios, D.; Luksik, A.S.; Kim, E.; Wu, A.; Xia, Y.; Garzon-Muvdi, T.; et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology 2018, 7, e1466769. [Google Scholar] [CrossRef]
- Khasraw, M.; Reardon, D.A.; Weller, M.; Sampson, J.H. PD-1 Inhibitors: Do they have a Future in the Treatment of Glioblastoma? Clin. Cancer Res. 2020, 26, 5287–5296. [Google Scholar] [CrossRef]
- Majc, B.; Novak, M.; Jerala, N.; Jewett, A.; Breznik, B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells 2021, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Omuro, A.; Vlahovic, G.; Baehring, J.; Butowski, N.; Reardon, D.; Cloughesy, T.; Sahebjam, S.; Lim, M.; Zwirtes, R.; Sampson, J. OS07.3 Nivolumab in Combination with Radiotherapy with or without Temozolomide in Patients with Newly Diagnosed Glioblastoma: Updated Results from CheckMate 143. Neuro-Oncology 2017, 19, iii13. [Google Scholar] [CrossRef] [Green Version]
- Weathers, S.-P.S.; Kamiya-Matsuoka, C.; Harrison, R.A.; Liu, D.D.; Dervin, S.; Yun, C.; Loghin, M.E.; Penas-Prado, M.; Majd, N.; Yung, W.K.A.; et al. Phase I/II study to evaluate the safety and clinical efficacy of atezolizumab (atezo; aPDL1) in combination with temozolomide (TMZ) and radiation in patients with newly diagnosed glioblastoma (GBM). J. Clin. Oncol. 2020, 38, 2511. [Google Scholar] [CrossRef]
- Jacques, F.H.; Nicholas, G.; Lorimer, I.; Sikatifoko, V.; Prévost, J. Avelumab in newly diagnosed glioblastoma multiforme: The SEJ study. J. Clin. Oncol. 2019, 37, e13571. [Google Scholar] [CrossRef]
- Reardon, D.A.; Kaley, T.J.; Dietrich, J.; Clarke, J.L.; Dunn, G.; Lim, M.; Cloughesy, T.F.; Gan, H.K.; Park, A.J.; Schwarzenberger, P.; et al. Phase II study to evaluate safety and efficacy of MEDI4736 (durvalumab) + radiotherapy in patients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). J. Clin. Oncol. 2019, 37, 2032. [Google Scholar] [CrossRef]
- Bristol-Myers Squibb Announces Phase 3 CheckMate -498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (Nivolumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multiforme. Available online: https://news.bms.com/news/details/2019/Bristol-Myers-Squibb-Announces-Phase-3-CheckMate--498-Study-Did-Not-Meet-Primary-Endpoint-of-Overall-Survival-with-Opdivo-nivolumab-Plus-Radiation-in-Patients-with-Newly-Diagnosed-MGMT-Unmethylated-Glioblastoma-Multiforme/default.aspx (accessed on 10 February 2021).
- Bristol Myers Squibb Announces Update on Phase 3 CheckMate -548 Trial Evaluating Patients with Newly Diagnosed MGMT-Methylated Glioblastoma Multiforme. Available online: https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Announces-Update-on-Phase-3-CheckMate--548-Trial-Evaluating-Patients-with-Newly-Diagnosed-MGMT-Methylated-Glioblastoma-Multiforme/default.aspx (accessed on 10 February 2021).
- Omuro, A.; Vlahovic, G.; Lim, M.; Sahebjam, S.; Baehring, J.; Cloughesy, T.; Voloschin, A.; Ramkissoon, S.H.; Ligon, K.L.; Latek, R.; et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology 2018, 20, 674–686. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs. Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef]
- Reardon, D.A.; Kim, T.M.; Frenel, J.; Simonelli, M.; Lopez, J.; Subramaniam, D.S.; Siu, L.L.; Wang, H.; Krishnan, S.; Stein, K.; et al. Treatment with pembrolizumab in programmed death ligand 1–positive recurrent glioblastoma: Results from the multicohort phase 1 KEYNOTE-028 trial. Cancer 2021. [Google Scholar] [CrossRef]
- Lukas, R.V.; Rodon, J.; Becker, K.; Wong, E.T.; Shih, K.; Touat, M.; Fassò, M.; Osborne, S.; Molinero, L.; O’Hear, C.; et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J. Neuro-Oncol. 2018, 140, 317–328. [Google Scholar] [CrossRef]
- Reardon, D.A.; Kaley, T.J.; Dietrich, J.; Clarke, J.L.; Dunn, G.P.; Lim, M.; Cloughesy, T.F.; Gan, H.K.; Park, A.J.; Schwarzenberger, P.; et al. Phase 2 study to evaluate safety and efficacy of MEDI4736 (durvalumab [DUR]) in glioblastoma (GBM) patients: An update. J. Clin. Oncol. 2017, 35, 2042. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.; Kaley, T.; Dietrich, J.; Clarke, J.; Dunn, G.; Lim, M.; Cloughesy, T.; Gan, H.; Park, A.; Schwarzenberger, P.; et al. Atim-38. Phase 2 study to evaluate the clinical efficacy and safety of medi4736 (durvalumab, durva) + bevacizumab (bev) in bev-naïve patients with recurrent glioblastoma (gbm). Neuro-Oncology 2018, 20, vi10. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.; Kaley, T.; Dietrich, J.; Clarke, J.L.; Dunn, G.P.; Lim, M.; Cloughesy, T.; Gan, H.K.; Park, A.; Schwarzenberger, P.; et al. Atim-12. Phase 2 study to evaluate the clinical efficacy and safety of medi4736 (durvalumab [dur]) in patients with bevacizumab (bev)-refractory recurrent glioblastoma (gbm). Neuro-Oncology 2017, 19, vi28. [Google Scholar] [CrossRef]
- Nayak, L.; Molinaro, A.M.; Peters, K.B.; Clarke, J.L.; Jordan, J.T.; de Groot, J.F.; Nghiemphu, P.L.; Kaley, T.J.; Colman, H.; McCluskey, C.; et al. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef]
- Awada, G.; Ben Salama, L.; De Cremer, J.; Schwarze, J.K.; Fischbuch, L.; Seynaeve, L.; Du Four, S.; Vanbinst, A.-M.; Michotte, A.; Everaert, H.; et al. Axitinib plus avelumab in the treatment of recurrent glioblastoma: A stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J. Immunother. Cancer 2020, 8, e001146. [Google Scholar] [CrossRef]
- Sahebjam, S.; A Forsyth, P.; Tran, N.D.; Arrington, J.A.; Macaulay, R.; Etame, A.B.; Walko, C.M.; Boyle, T.; Peguero, E.N.; Jaglal, M.; et al. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high-grade gliomas: Results from a phase I study. Neuro-Oncology 2020. [Google Scholar] [CrossRef]
- Pouessel, D.; Mervoyer, A.; Larrieu-Ciron, D.; Cabarrou, B.; Robert, M.; Frenel, J.; Olivier, P.; Mounier, M.; Moyal, E.C.-J. OS4.4 Hypofractionated stereotactic radiotherapy and anti-PDL1 Durvalumab combination in recurrent glioblastoma: Results of the phase I part of the phase I/II STERIMGLI trial. Neuro-Oncology 2019, 21, iii10–iii11. [Google Scholar] [CrossRef]
- Kurz, S.; Silverman, J.S.; Hochman, T.; Nayak, L.; Arrillaga-Romany, I.; Lee, E.; Patel, A.; Delara, M.; Hsu, F.; Imtiaz, T.; et al. Atim-37. Phase II, open-label, single arm, multicenter study of avelumab with hypofractionated radiation (hfrt) for adult patients with secondarily transformed IDH-mutant glioblastoma (gbm). Neuro-Oncology 2019, 21, vi9–vi10. [Google Scholar] [CrossRef]
- Grommes, C.; Mehta, M.; Miller, A.; Daras, M.; Piotrowski, A.; Boire, A.; Butler, B.; Stone, J.; Pentsova, E.; Ko-techa, R.; et al. CTIM-15-Preliminary results of a phase II study of nivolumab with hypofractionated re-radiation and bevacizumab for recurrent MGMT methylated glioblastoma. Presented at the SNO Virtual Meeting, Austin, TX, USA, 19–21 November 2020; Available online: https://www.eventscribe.net/2020/SNO/fsPopup.asp?Mode=posterinfo&PosterID=318911 (accessed on 10 February 2021).
- Lim, M.; Ye, X.; Piotrowski, A.F.; Desai, A.S.; Ahluwalia, M.S.; Walbert, T.; Fisher, J.D.; Desideri, S.; Nabors, L.B.; Wen, P.Y.; et al. Updated safety phase I trial of anti-LAG-3 alone and in combination with anti-PD-1 in patients with recurrent GBM. J. Clin. Oncol. 2020, 38, 2512. [Google Scholar] [CrossRef]
- Lin, C.-C.; Gil-Martin, M.; Bauer, T.M.; Naing, A.; Lim, D.W.-T.; Sarantopoulos, J.; Geva, R.; Ando, Y.; Fan, L.; Choudhury, S.; et al. Abstract CT171: Phase I Study of BLZ945 Alone and with Spartalizumab (PDR001) in Patients (Pts) with Advanced Solid Tumors. In Proceedings of the Tumor Biology, American Association for Cancer Research, Philadelphia, PA, USA, 15 August 2020; p. CT171. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.; Rytlewski, J.A.; Sanders, C.M.; et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Schalper, K.A.; Rodriguez-Ruiz, M.E.; Diez-Valle, R.; López-Janeiro, A.; Porciuncula, A.; Idoate, M.A.; Inogés, S.; De Andrea, C.; De Cerio, A.L.-D.; Tejada, S.; et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 2019, 25, 470–476. [Google Scholar] [CrossRef]
- De Groot, J.; Penas-Prado, M.; Alfaro-Munoz, K.; Hunter, K.; Pei, B.L.; O’Brien, B.; Weathers, S.-P.; Loghin, M.; Matsouka, C.K.; Yung, W.K.A.; et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-Oncology 2019, 22, 539–549. [Google Scholar] [CrossRef]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Dunn-Pirio, A.M.; Vlahovic, G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2017, 123, 734–750. [Google Scholar] [CrossRef]
- Diaz, R.J.; Ali, S.; Qadir, M.G.; De La Fuente, M.I.; Ivan, M.E.; Komotar, R.J. The role of bevacizumab in the treatment of glioblastoma. J. Neuro-Oncology 2017, 133, 455–467. [Google Scholar] [CrossRef]
- Iorgulescu, J.B.; Gokhale, P.C.; Speranza, M.C.; Eschle, B.K.; Poitras, M.J.; Wilkens, M.K.; Soroko, K.M.; Chhoeu, C.; Knott, A.; Gao, Y.; et al. Concurrent Dexamethasone Limits the Clinical Benefit of Immune Checkpoint Blockade in Glioblastoma. Clin. Cancer Res. 2021, 27, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Ramakrishna, R.; Magge, R.; Wernicke, A.G. Advances in Radiotherapy for Glioblastoma. Front. Neurol. 2018, 8, 748. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat. Immunol. 2019, 20, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Kiesel, B.; Widhalm, G.; Rajky, O.; Ricken, G.; Wöhrer, A.; Dieckmann, K.; Filipits, M.; Brandstetter, A.; Weller, M.; et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology 2015, 17, 1064–1075. [Google Scholar] [CrossRef] [Green Version]
- Garber, S.T.; Hashimoto, Y.; Weathers, S.-P.; Xiu, J.; Gatalica, Z.; Verhaak, R.G.W.; Zhou, S.; Fuller, G.N.; Khasraw, M.; De Groot, J.; et al. Immune checkpoint blockade as a potential therapeutic target: Surveying CNS malignancies. Neuro-Oncology 2016, 18, 1357–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghoff, A.S.; Kiesel, B.; Widhalm, G.; Wilhelm, D.; Rajky, O.; Kurscheid, S.; Kresl, P.; Wöhrer, A.; Marosi, C.; Hegi, M.E.; et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro-Oncology 2017, 19, 1460–1468. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Chen, G.; Zhao, H.; Li, Y.; Chen, J.; Zhang, H.; Li, S.; Zhao, Y.; Chen, F.; Li, W.; et al. PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Front. Oncol. 2020, 10, 1015. [Google Scholar] [CrossRef] [PubMed]
- Liau, L.M.; Ashkan, K.; Tran, D.D.; Campian, J.L.; Trusheim, J.E.; Cobbs, C.S.; Heth, J.A.; Salacz, M.; Taylor, S.; D’Andre, S.D.; et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 2018, 16, 142. [Google Scholar] [CrossRef] [Green Version]
- McDonald, K.L.; Tabone, T.; Nowak, A.K.; Erber, W.N. Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol. Lett. 2015, 9, 2063–2067. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, A.X.; Gartrell, R.D.; Silverman, A.M.; Aparicio, L.; Chu, T.; Bordbar, D.; Shan, D.; Samanamud, J.; Mahajan, A.; et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 2019, 25, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Hodges, T.R.; Ott, M.; Xiu, J.; Gatalica, Z.; Swensen, J.; Zhou, S.; Huse, J.T.; De Groot, J.; Li, S.; Overwijk, W.W.; et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: Implications for immune checkpoint immunotherapy. Neuro-Oncology 2017, 19, 1047–1057. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.S.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.-J.; et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 2016, 48, 768–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; De Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. J. Clin. Oncol. 2016, 34, 2206–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johanns, T.M.; Miller, C.A.; Dorward, I.G.; Tsien, C.; Chang, E.; Perry, A.; Uppaluri, R.; Ferguson, C.; Schmidt, R.E.; Dahiya, S.; et al. Immunogenomics of Hypermutated Glioblastoma: A Patient with Germline POLE Deficiency Treated with Checkpoint Blockade Immunotherapy. Cancer Discov. 2016, 6, 1230–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touat, M.; Li, Y.Y.; Boynton, A.N.; Spurr, L.F.; Iorgulescu, J.B.; Bohrson, C.L.; Cortes-Ciriano, I.; Birzu, C.; Geduldig, J.E.; Pelton, K.; et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nat. Cell Biol. 2020, 580, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Gromeier, M.; Brown, M.C.; Zhang, G.; Lin, X.; Chen, Y.; Wei, Z.; Beaubier, N.; Yan, H.; E Herndon, J.; Desjardins, A.; et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Barresi, V.; Indraccolo, S.; Simbolo, M.; Fassan, M.; Mandruzzato, S.; Simonelli, M.; Caccese, M.; Pizzi, M.; Fassina, A.; et al. Pembrolizumab Activity in Recurrent High-Grade Gliomas with Partial or Complete Loss of Mismatch Repair Protein Expression: A Monocentric, Observational and Prospective Pilot Study. Cancers 2020, 12, 2283. [Google Scholar] [CrossRef]
- Daubon, T.; Hemadou, A.; Garmendia, I.R.; Saleh, M. Glioblastoma Immune Landscape and the Potential of New Immunotherapies. Front. Immunol. 2020, 11, 585616. [Google Scholar] [CrossRef] [PubMed]
Study Identifier | Study Design | Target Population (n) | Intervention | Primary Endpoint(s) | Results | Status | References |
---|---|---|---|---|---|---|---|
Adjuvant | |||||||
NCT02017717 | Multicohort phase I/III | Cohort 1c, 1d: ndGBM (n = 113) | Nivo + RT +/− TMZ | Safety and tolerability | No new safety signals | Active, not recruiting | [24] |
NCT03174197 | Open label phase I/II | ndGBM (n = 60) | Atezo + RT + TMZ | Phase I: safety Phase II: OS | No new safety signals mPFS 10.6 mo mOS 19 mo G3–G4 TRAEs 55% | Active, not recruiting | [25] |
NCT03047473 | Open label phase II | ndGBM (n = 24) | Avelumab + RT + TMZ | Safety and tolerability | No new safety signals ORR 50% mPFS 11.9 mo | Active, not recruiting | [26] |
NCT02336165 | Open label multicohort phase II | Cohort A: ndGBM, unmethylated MGMT (n = 40) | DUR + RT | OS-12 | mOS 15.1 mo G3–G4 TRAEs 35% | Active, not recruiting | [27] |
NCT02617589 | Open label phase III | ndGBM unmethylated MGMT (n = 550) | RT + nivo vs RT + TMZ | OS | Primary endpoint not met | Active, not recruiting | [28] |
NCT02667587 | Triple-blind phase III | ndGBM, methylated MGMT (n = 693) | RT + TMZ + nivo vs RT + TMZ + placebo | PFS, OS | Primary endpoints not met | Active, not recruiting | [29] |
Recurrent—monotherapies | |||||||
NCT02017717 | Multicohort phase I/III | Cohort 1, 1b: rGBM (n = 40) (NIVO3 = 10; NIVO1 + IPI3 = 10; NIVO3 + IP1 = 20) | Nivo +/− Ipi | Safety and tolerability | No new safety signals NIVO3 better tolerated mOS NIVO3: 10.4 mo NIVO1+IPI3: 9.2 mo NIVO3+IPI1: 7.3 mo | Active, not-recruiting | [30,31] |
Cohort 2 rGBM (n = 184 vs. 185) | Nivo vs. BEV | OS | mPFS 1.5 vs. 3.5 mo mOS 9.8 vs. 10 mo ORR 8% vs. 23% mDOR 11.1 vs. 5.3 mo G3–G4 TRAEs 18% vs. 15% | ||||
NCT02054806 | Multicohort phase Ib | rGBM PD-L1 expression ≥ 1% by IHC (n = 26) | Pembro | ORR | ORR 8% mPFS 2.8 mo mOS 13.1 mo G3–G4 TRAEs 19% | Active, not recruiting | [32] |
NCT01375842 | Phase Ia | rGBM (n = 16) | Atezolizumab | Safety and tolerability MTD and RP2D | No G3–G4 TRAEs mOS 4.2 mo | Completed | [33] |
NCT02336165 | Open label multicohort phase II | Cohort B: rGBM, BEV-naïve (n = 31) | DUR | PFS-6 | PFS-6 20% OS-6 59% OS-12 44% G3-4 TRAEs 10% | Active, not recruiting | [34] |
NCT02628067 | Open label multicohort phase II | dMMR/MSI-H recurrent glioma (n = 13) | Pembro | ORR | ORR 0% mPFS 1.1 mo mOS 5.6 mo | Recruiting | [35] |
Recurrent—combinations | |||||||
NCT02336165 | Open label multicohort phase II | Cohort B2-B3: rGBM, BEV-naïve (n = 66) | DUR + BEV | PFS-6 | Cohort B2 PFS-6: 15.2% G3-4 TRAEs 24% Cohort B3 PFS-6: 21% G3-4 TRAEs 6% | Active, not recruiting | [36,37] |
Cohort C: rGBM, BEV-refractory (n = 22) | DUR + BEV | OS-6 | 36% of pts OS ≥ 22 wks 50% of pts PFS ≥ 8 weeks G3-4 TRAEs 4.5% | ||||
NCT02337491 | Randomized phase II | rGBM (n = 50 vs. 30) | Pembro + BEV vs. Pembro | PFS-6 | PFS-6 26% vs. 6.7% mOS 8.8 mo vs. 10.3 mo ORR 20% vs. 0% G3-4 TRAEs 36% vs. 20% | Completed | [38] |
NCT03291314 | Open label phase II | rGBM (n = 54) Cohort 1: DEXA ≤1.5 mg Cohort 2: DEXA ≥ 1.5 mg | Avelumab + Axitinib | PFS-6 | Cohort 1 PFS-6 22.2% mOS 26.6 wks ORR 33.3% OS-12 22.2% Cohort 2 PFS-6 18.5% mOS 18 wks ORR 22.2% OS-12 11.1% | Completed | [39] |
NCT02313272 | Phase I | rGBM or rAA (n = 32) | Pembro + HFSRT + BEV | Safety and tolerability MTD and RP2D | G3-4 TRAEs 34.4% BEVA- naïve pts ORR 83% mDOR 8.44 mo mPFS 7.92 mo mOS 13.45 m OS-12 58.3% BEVA-resistant pts ORR 62% mDOR 5.83 mo mPFS 6.54 mo mOS 9.3 mo OS-12 25% | Active, not recruiting | [40] |
NCT02866747 | Randomized phase I/II | rGBM (n = 6, phase I) | Duvalumab + HFSRT | Safety and tolerability OS | No new safety signals | Recruiting | [41] |
NCT02968940 | Open label phase II | IDH-mutated GBM (n = 6) | Avelumab + HFSRT | Safety and tolerability PFS-6 | No new safety signals mPFS 4.2 mo mOS 10.1 mo | Completed | [42] |
NCT03743662 | Open label phase II | rGBM, methylated MGMT (n = 22) | Nivo + Hypo-RT +/− BEV +/− surgery | OS | mPFS 6.7 mo mOS 16 mo PFS-6 50% OS-12 59% | Recruiting | [43] |
NCT02658981 | Phase I | rGBM (n = 33) | BMS 986016 (anti-LAG-3 mAb) +/− Nivo | Safety and tolerability MTD | mOS 8 mo 80% of DLTs occurred after cycle 2 | Active, not recruiting | [44] |
NCT02829723 | Open label phase I/II | rGBM (n = 18) | BLZ945 (CSF-1R inhibitor) +/− spartalizumab (anti-PD-1 mAb) | Safety and tolerability MTD and RP2D | ORR 11% Acceptable safety pattern | Recruiting | [45] |
Neoadjuvant | |||||||
NCT02337686 | Open label, randomized, phase II | rGBM (n = 16 vs. 19) | Neoadjuvant + Adjuvant Pembro vs. Adjuvant Pembro | Immune effector function analysis and correlation with PFS-6 | mPFS 3.3 vs. 2.4 mo mOS 13.7 vs. 7.5 mo | Active, not recruiting | [46] |
NCT02550249 | Open label phase II | ndGBM (n = 3) rGBM (n = 27) | Neoadjuvant Nivo | Changes in percentage and level of PD-L1 | mPFS 4.1 mo mOS 7.3 mo | Completed | [47] |
NCT02852655 | Phase I | rGBM (n = 15) | Neoadjuvant Pembro | TIL density Safety and tolerability | mOS 20 mo OS-12 63% | Recruiting | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persico, P.; Lorenzi, E.; Dipasquale, A.; Pessina, F.; Navarria, P.; Politi, L.S.; Santoro, A.; Simonelli, M. Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives. J. Clin. Med. 2021, 10, 1367. https://doi.org/10.3390/jcm10071367
Persico P, Lorenzi E, Dipasquale A, Pessina F, Navarria P, Politi LS, Santoro A, Simonelli M. Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives. Journal of Clinical Medicine. 2021; 10(7):1367. https://doi.org/10.3390/jcm10071367
Chicago/Turabian StylePersico, Pasquale, Elena Lorenzi, Angelo Dipasquale, Federico Pessina, Pierina Navarria, Letterio S. Politi, Armando Santoro, and Matteo Simonelli. 2021. "Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives" Journal of Clinical Medicine 10, no. 7: 1367. https://doi.org/10.3390/jcm10071367
APA StylePersico, P., Lorenzi, E., Dipasquale, A., Pessina, F., Navarria, P., Politi, L. S., Santoro, A., & Simonelli, M. (2021). Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives. Journal of Clinical Medicine, 10(7), 1367. https://doi.org/10.3390/jcm10071367