C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment, CRP and WBC Measurements
2.2. Statistics
3. Results
3.1. Patient Characteristics, Serum CRP Levels and WBC 12–24 h after IVT
3.2. Serum CRP Levels and WBC 12–24 h after IVT and Poor Functional Outcome on Discharge and at Day 90 after Stroke
3.3. Serum CRP Levels and WBC 12–24 h after IVT and Early Neurological Deterioration and Bleeding
3.4. Serum CRP Levels and WBC 12–24 h after IVT and In-Hospital and 90-Day Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wnuk, M.; Pera, J.; Jagiełła, J.; Szczygieł, E.; Ferens, A.; Spisak, K.; Wołkow, P.; Kmieć, M.; Burkot, J.; Chrzanowska-Waśko, J.; et al. The rs2200733 variant on chromosome 4q25 is a risk factor for cardioembolic stroke related to atrial fibrillation in Polish patients. Neurol. Neurochir. Pol. 2011, 45, 148–152. [Google Scholar] [CrossRef]
- Drabik, L.; Konieczyńska, M.; Undas, A. Clot Lysis Time Predicts Stroke During Anticoagulant Therapy in Patients with Atrial Fibrillation. Can. J. Cardiol. 2020, 36, 119–126. [Google Scholar] [CrossRef]
- Soeki, T.; Sata, M. Inflammatory Biomarkers and Atherosclerosis. Int. Heart J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Milwidsky, A.; Ziv-Baran, T.; Letourneau-Shesaf, S.; Keren, G.; Taieb, P.; Berliner, S.; Shacham, Y. CRP velocity and short-term mortality in ST segment elevation myocardial infarction. Biomarkers 2017, 22, 383–386. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, L.; Xu, L.; Tian, J.; Xu, Y.; Zhao, Y.; Feng, X.; Wu, Y.; Zhang, Y.; Wang, D.; et al. Predictive value of in-hospital white blood cell count in Chinese patients with triple-vessel coronary disease. Eur. J. Prev. Cardiol. 2019, 26, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, R.; Ago, T.; Hata, J.; Wakisaka, Y.; Kuroda, J.; Kuwashiro, T.; Kitazono, T.; Kamouchi, M.; on behalf of the Fukuoka Stroke Registry Investigators. Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study. PLoS ONE 2016, 11, e0156790. [Google Scholar] [CrossRef]
- Qu, X.; Shi, J.; Cao, Y.; Zhang, M.; Xu, J. Prognostic Value of White Blood Cell Counts and C-reactive Protein in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. Curr. Neurovasc. Res. 2018, 15, 10–17. [Google Scholar] [CrossRef]
- Montaner, J.; Fernandez-Cadenas, I.; Molina, C.A.; Ribó, M.; Huertas, R.; Rosell, A.; Penalba, A.; Ortega, L.; Chacón, P.; Alvarez-Sabín, J. Poststroke C-Reactive Protein Is a Powerful Prognostic Tool Among Candidates for Thrombolysis. Stroke 2006, 37, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Topakian, R.; Strasak, A.M.; Nussbaumer, K.; Haring, H.-P.; Aichner, F.T. Prognostic value of admission C-reactive protein in stroke patients undergoing IV thrombolysis. J. Neurol. 2008, 255, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Winbeck, K.; Poppert, H.; Etgen, T.; Conrad, B.; Sander, D. Prognostic Relevance of Early Serial C-Reactive Protein Measurements After First Ischemic Stroke. Stroke 2002, 33, 2459–2464. [Google Scholar] [CrossRef]
- Lee, S.; Song, I.-U.; Na, S.-H.; Jeong, D.-S.; Chung, S.-W. Association Between Long-term Functional Outcome and Change in hs-CRP Level in Patients With Acute Ischemic Stroke. Neurologist 2020, 25, 122–125. [Google Scholar] [CrossRef]
- Mendes de Sá, F.; Mendes Bertoncello Fontes, C.; Lia Mondelli, A. Major infections in hospitalized patients with stroke: A pro-spective study. Int. Arch. Med. 2016, 9, 1–8. [Google Scholar]
- Derbisz, J.; Nowak, K.; Wnuk, M.; Pulyk, R.; Jagiella, J.; Slowik, J.; Dziedzic, T.; Slowik, A. Prognostic Significance of Stroke-Associated Infection and other Readily Available Parameters in Acute Ischemic Stroke Treated by Intravenous Thrombolysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105525. [Google Scholar] [CrossRef]
- Weimar, C.; Roth, M.P.; Zillessen, G.; Glahn, J.; Wimmer, M.L.; Busse, O.; Haberl, R.L.; Diener, H.-C.; on behalf of the German Stroke Date Bank Collaborators. Complications following Acute Ischemic Stroke. Eur. Neurol. 2002, 48, 133–140. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Karlinski, M.; Bembenek, J.; Grabska, K.; Kobayashi, A.; Baranowska, A.; Litwin, T.; Czlonkowska, A. Routine serum C-reactive protein and stroke outcome after intravenous thrombolysis. Acta Neurol. Scand. 2014, 130, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Gul, R.; Chong, J.; Tan, C.T.Y.; Chin, H.X.; Wong, G.; Doggui, R.; Larbi, A. Recurrent circadian fasting (RCF) improves blood pressure, bi-omarkers of cardiometabolic risk and regulates inflammation in men. J. Transl. Med. 2019, 17, 272. [Google Scholar] [CrossRef] [PubMed]
- Tarp, S.; Bartels, E.M.; Bliddal, H.; Furst, D.E.; Boers, M.; Danneskiold-Samsøe, B.; Rasmussen, M.; Christensen, R. Effect of nonsteroidal antiinflammatory drugs on the C-reactive protein level in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Arthritis Rheum. 2012, 64, 3511–3521. [Google Scholar] [CrossRef]
- Kościelniak, M.B.K.; Charchut, M.A.; Wójcik, M.M.; Sztefko, K.; Tomasik, P.J. Impact of Fasting on Complete Blood Count Assayed in Capillary Blood Samples. Lab. Med. 2017, 48, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Clua-Espuny, J.L.; Abilleira, S.; Queralt-Tomas, L.; Gonzalez-Henares, A.; Gil-Guillen, V.; Muria-Subirats, E.; Ballesta-Ors, J. Long-Term Survival After Stroke According to Reperfusion Therapy, Cardiovascular Therapy and Gender. Cardiol. Res. 2019, 10, 89–97. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Boren, J.; et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points—A joint con-sensus statement from the European Atherosclerosis Society and European Fede. Eur. Heart J. 2016, 37, 1944–1958. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, M.; Popiela, T.; Drabik, L.; Brzegowy, P.; Lasocha, B.; Wloch-Kopec, D.; Pulyk, R.; Jagiella, J.; Wiacek, M.; Kaczorowski, R.; et al. Fasting Hyperglycemia and Long-term Outcome in Patients with Acute Ischemic Stroke Treated with Mechanical Thrombectomy. J. Stroke Cerebrovasc. Dis. 2020, 29, 104774. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, P.; Von Kummer, R. Classification and Pathogenesis of Cerebral Hemorrhages After Thrombolysis in Ischemic Stroke. Stroke 2006, 37, 556–561. [Google Scholar] [CrossRef]
- Undas, A.; Drabik, L.; Potpara, T. Bleeding in anticoagulated patients with atrial fibrillation: Practical considerations. Pol. Arch. Intern. Med. 2020, 130, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Kwan, J.; Hand, P. Early neurological deterioration in acute stroke: Clinical characteristics and impact on outcome. QJM 2006, 99, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, L.; Lang, Y.; Wu, D.; Chen, J.; Zhao, W.; Li, C.; Ji, X. Association between high-sensitivity C-reactive protein levels and clinical outcomes in acute ischemic stroke patients treated with endovascular therapy. Ann. Transl. Med. 2020, 8, 1379. [Google Scholar] [CrossRef]
- Huber, T.; Kleine, J.F.; Kaesmacher, J.; Bette, S.; Poppert, H.; Zimmer, C.; Boeckh-Behrens, T. Blood Leukocytes as Prognostic Parameter in Stroke Thrombectomy. Cerebrovasc. Dis. 2016, 42, 32–40. [Google Scholar] [CrossRef]
- Yue, Y.-H.; Li, Z.-Z.; Hu, L.; Zhu, X.-Q.; Xu, X.-S.; Sun, H.-X.; Wan, Z.-W.; Xue, J.; Yu, D.-H. Clinical characteristics and risk score for poor clinical outcome of acute ischemic stroke patients treated with intravenous thrombolysis therapy. Brain Behav. 2019, 9, e01251. [Google Scholar] [CrossRef]
- Gill, D.; Sivakumaran, P.; Wilding, P.; Love, M.; Veltkamp, R.; Kar, A. Trends in C-Reactive Protein Levels Are Associated with Neurological Change Twenty-Four Hours after Thrombolysis for Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2016, 25, 1966–1969. [Google Scholar] [CrossRef]
- Rocco, A.; Ringleb, P.A.; Grittner, U.; Nolte, C.H.; Schneider, A.; Nagel, S. Follow-up C-reactive protein level is more strongly associ-ated with outcome in stroke patients than admission levels. Neurol. Sci. 2015, 36, 2235–2241. [Google Scholar] [CrossRef]
- Seo, W.-K.; Seok, H.-Y.; Kim, J.H.; Park, M.-H.; Yu, S.-W.; Oh, K.; Koh, S.-B.; Park, K.-W. C-Reactive Protein is a Predictor of Early Neurologic Deterioration in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2012, 21, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Cai, R.; Yang, M.; Qian, J.; Hong, Z. Reduction of the systemic inflammatory induced by acute cerebral infarction through ultra-early thrombolytic therapy. Exp. Ther. Med. 2015, 10, 1493–1498. [Google Scholar] [CrossRef][Green Version]
- Yu, Q.; Lin, Y.; Yang, P.; Wang, Y.; Zhao, S.; Yang, P.; Fan, J.; Liu, E. C-reactive protein is associated with the progression of acute embolic stroke in rabbit model. J. Thromb. Thrombol. 2011, 33, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qiu, D.-X.; Fu, R.-L.; Xu, T.-F.; Jing, M.-J.; Zhang, H.-S.; Geng, H.-H.; Zheng, L.-C.; Wang, P.-X. H-Type Hypertension and C Reactive Protein in Recurrence of Ischemic Stroke. Int. J. Environ. Res. Public Health 2016, 13, 477. [Google Scholar] [CrossRef]
- Drieu, A.; Levard, D.; Vivien, D.; Rubio, M. Anti-inflammatory treatments for stroke: From bench to bedside. Ther. Adv. Neurol. Disord. 2018, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; Simon, A.; Van Der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 2012, 11, 633–652. [Google Scholar] [CrossRef]
- Xue, J.; Huang, W.; Chen, X.; Li, Q.; Cai, Z.; Yu, T.; Shao, B. Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 650–657. [Google Scholar] [CrossRef]
Q1 CRP < 1.71 (n = 32) | Q2 CRP 1.71–3.11 (n = 32) | Q3 CRP 3.12–5.09 (n = 31) | Q4 CRP 5.10–8.64 (n = 32) | Q5 CRP ≥ 8.65 (n = 31) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 68 (58–76) | 73 (68–80) | 73 (69–80) | 72 (64–83) | 77 (62–86) | 0.246 |
Women, n (%) | 15 (46.9) | 15 (46.9) | 14 (45.2) | 19 (59.4) | 21 (67.8) | 0.292 |
BMI (kg/m2) | 24.7 (22.8–27.7) | 24.8 (23.3–27.7) | 27.5 (24.2–29.3) | 27.1 (25.2–29.9) | 26.8 (25.0–29.7) | 0.006 |
Hypertension, n (%) | 22 (68.8) | 23 (71.2) | 27 (87.1) | 26 (81.2) | 30 (96.8) | 0.031 |
Hypercholesterolemia, n (%) | 12 (37.5) | 8 (25.0) | 11 (35.5) | 11 34.4) | 6 (19.4) | 0.461 |
Diabetes mellitus, n (%) | 9 (28.1) | 8 (25.0) | 7 (22.6) | 7 (21.9) | 11 (35.5) | 0.744 |
Smoking, n (%) | 6 (18.8) | 2 (6.3) | 2 (6.5) | 8 (25.8) | 5 (16.1) | 0.151 |
Ischemic heart disease, n (%) | 7 (21.9) | 3 (9.4) | 7 (22.6) | 10 (31.2) | 8 (25.8) | 0.307 |
Atrial fibrillation, n (%) | 6 (18.8) | 10 (31.3) | 11 (35.5) | 8 (25.0) | 9 (29.0) | 0.635 |
Previous stroke, n (%) | 7 (21.9) | 3 (9.4) | 8 (25.8) | 6 (18.8) | 4 (12.9) | 0.432 |
mRS score before stroke >0 | 3 (9.4) | 1 (3.1) | 1 (3.2) | 4 (12.5) | 2 (6.4) | 0.523 |
Stroke etiology, n (%) -large-vessel disease -small-vessel disease -cardioembolic -other - undetermined | 5 (15.6) 1 (3.1) 6 (18.8) 19 (59.4) 1 (3.1) | 5 (15.6) 1 (3.1) 11 (34.4) 14 (43.8) 1 (3.1) | 5 (16.1) 0 (0.0) 12 (38.7) 13 (41.9) 1 (3.2) | 3 (9.4) 0 (0.0) 11 (34.4) 18 (56.3) 0 (0.0) | 5 (16.1) 0 (0.0) 10 (32.3) 15 (48.4) 1 (3.2) | 0.932 |
Mechanical thrombectomy, n (%) | 5 (15.60 | 8 (25.0) | 10 (32.3) | 11 (34.4) | 13 (41.9) | 0.198 |
Time from stroke onset to thrombolysis (min) | 119 (94–175) | 145 (93–174) | 117 (85–174) | 90 (76–176) | 121 (83–160) | 0.556 |
NIHSS score on admission | 9.7 ± 6.3 | 9.2 ± 6.7 | 12.5 ± 6.9 | 11.6 ± 6.3 | 14.6 ± 6.4 | 0.013 |
NIHSS score after r-tPA | 4.4 ± 4.6 | 5.3 ± 5.5 | 8.1 ± 9.7 | 5.7 ± 6.9 | 11.9 ± 8.7 | <0.001 |
Post-IVT hemorrhagic brain complications, n (%) -no complication -HI type 1 -HI type 2 -PH type 1 -PH type 2 | 29 (90.6) 1 (3.1) 1 (3.1) 1 (3.1) 0 (0.0) | 27 (84.4) 3 (9.4) 1 (3.1) 1 93.1) 0 (0.0) | 25 (80.7) 2 (6.5) 1 (3.2) 2 (6.5) 1 (3.2) | 27 (84.4) 2 (6.3) 2 (6.3) 0 (0.0) 1 (3.1) | 22 (71.0) 3 (9.7) 3 (9.7) 1 (3.2) 2 96.5) | 0.874 |
Maximal SBP within 24 h after r-tPA (mmHg) | 144 (123–156) | 145 (125–160) | 145 (134–166) | 151 (139–169) | 143 (134–160) | 0.536 |
Maximal DBP within 24 h after r-tPA (mmHg) | 80 (72–90) | 80 (72–89) | 80 (70–90) | 80 (70–85) | 77 (70–80) | 0.694 |
Fasting glucose (mmol/L) | 6.5 (5.5–7.3) | 6.2 (5.4–7.0) | 6.1 (5.4–8.2) | 6.8 (5.5–7.9) | 6.9 (5.9–8.2) | 0.491 |
Creatinine (µmol/L) | 82 (65–94) | 74 (63–100) | 77 (69–97) | 82 (71–91) | 76 (65–93) | 0.892 |
WBC (×109/L) | 7.1 (6.0–8.7) | 7.8 (6.6–8.8) | 7.5 (5.4–9.2) | 8.2 (6.9–10.9) | 8.9 (6.4–11.5) | 0.145 |
On Discharge | Model 1 | Model 2A | |||
---|---|---|---|---|---|
Events n, (%) | OR (95% CI) | p-value | OR (95% CI) | p-value | |
Q1 (<1.71, n = 32) | 6 (18.8) | 1.00 (reference) | - | 1.00 (reference) | - |
Q2 (1.71–3.11, n = 32) | 6 (18.8) | 1.00 (0.28–3.56) | 1.00 | 1.28 (0.27–5.96) | 0.756 |
Q3 (3.12–5.09, n = 31) | 10 (32.3) | 2.13 (0.66–6.94) | 0.209 | 1.65 (0.40–6.86) | 0.493 |
Q4 (5.10–8.64, n = 32) | 8 (25.0) | 1.33 (0.40–4.45) | 0.647 | 1.02 (0.24–4.29) | 0.982 |
Q5 (≥8.65, n = 31) | 22 (71.0) | 9.70 (2.94–31.98) | <0.001 | 10.68 (2.54–44.83) | 0.001 |
P for trend | <0.001 | 0.004 | |||
AIC | 182.19 | 132.89 | |||
AUC | 0.744 ± 0.05 | 0.895 ± 0.03 | |||
R2 Nagelkerke | 0.241 | 0.560 | |||
Hosmer–Lemeshow test p-value | 0.369 | 0.057 | |||
At day 90 after stroke | Model 1 | Model 2B | |||
Events n, (%) | OR (95% CI) | p-value | OR (95% CI) | p-value | |
Q1 (<1.71, n = 32) | 3 (9.4) | 1.00 (reference) | - | 1.00 (reference) | - |
Q2 (1.71–3.11, n = 32) | 7 (21.9) | 2.90 (0.65–13.0) | 0.165 | 4.11 (0.73–23.7) | 0.109 |
Q3 (3.12–5.09, n = 31) | 7 (22.5) | 3.18 (0.71–14.4) | 0.132 | 1.86 (0.33–10.63) | 0.484 |
Q4 (5.10–8.64, n = 32) | 5 (15.7) | 1.64 (0.34–7.83) | 0.535 | 0.75 (0.12–4.53) | 0.754 |
Q5 (≥ 8.65, n = 31) | 17 (54.8) | 12.56 (2.95–53.5) | 0.001 | 7.21 (1.44–36.0) | 0.016 |
P for trend | 0.022 | 0.021 | |||
AIC | 152.42 | 125.16 | |||
AUC | 0.776 ± 0.04 | 0.887 ± 0.03 | |||
R2 Nagelkerke | 0.291 | 0.521 | |||
Hosmer–Lemeshow test p-value | 0.169 | 0.569 |
On Discharge | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
---|---|---|---|---|---|---|
Age (per 1 year) | 1.00 | 0.96–10.5 | 0.861 | - | - | - |
Sex (female) | 4.32 | 0.90–20.68 | 0.067 | - | - | - |
BMI (per 1 unit) | 1.05 | 0.92–1.21 | 0.441 | - | - | - |
Baseline NIHSS score (per 1 point) | 1.15 | 1.03–1.28 | 0.012 | - | - | - |
Mechanical thrombectomy | 3.10 | 0.90–10.73 | 0.074 | - | - | - |
Hemorrhagic brain complications (ECASS 1–3 score) | 6.82 | 1.91–24.28 | 0.003 | 5.66 | 1.52–21.11 | 0.010 |
CRP ≥ 8.65 mg/L | 5.86 | 1.66–20.70 | 0.006 | 4.79 | 1.29–17.88 | 0.020 |
WBC < 6.4 ×109/L | 2.48 | 0.71–8.59 | 0.152 | - | - | - |
AIC AUC | 72.21 0.794 ± 0.07 | |||||
R2 Nagelkerke | 0.208 | |||||
Hosmer–Lemeshow test p-value | 0.689 | |||||
At day 90 after stroke | OR | 95% CI | p-value | OR | 95% CI | p-value |
Age (per 1 year) | 1.03 | 0.99–1.08 | 0.161 | - | - | - |
Sex (female) | 3.50 | 1.10–11.18 | 0.034 | - | - | - |
BMI (per 1 unit) | 1.04 | 0.93–1.16 | 0.523 | - | - | - |
Baseline NIHSS score (per 1 point) | 1.17 | 1.07–1.28 | <0.001 | 1.13 | 1.01–1.25 | 0.036 |
Hemorrhagic brain complications (ECASS 1–3 score) | 8.19 | 2.86–23.50 | <0.001 | 5.53 | 1.59–19.25 | 0.007 |
CRP ≥ 8.65 mg/L | 4.38 | 1.55–12.39 | 0.005 | - | - | - |
WBC < 6.4 ×109/L | 4.06 | 1.48–11.16 | 0.007 | 5.00 | 1.49–16.78 | 0.009 |
AIC AUC | 87.03 0.877 ± 0.04 | |||||
R2 Nagelkerke | 0.406 | |||||
Hosmer–Lemeshow test p-value | 0.420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnuk, M.; Derbisz, J.; Drabik, L.; Slowik, A. C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. J. Clin. Med. 2021, 10, 1610. https://doi.org/10.3390/jcm10081610
Wnuk M, Derbisz J, Drabik L, Slowik A. C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Clinical Medicine. 2021; 10(8):1610. https://doi.org/10.3390/jcm10081610
Chicago/Turabian StyleWnuk, Marcin, Justyna Derbisz, Leszek Drabik, and Agnieszka Slowik. 2021. "C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis" Journal of Clinical Medicine 10, no. 8: 1610. https://doi.org/10.3390/jcm10081610
APA StyleWnuk, M., Derbisz, J., Drabik, L., & Slowik, A. (2021). C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Clinical Medicine, 10(8), 1610. https://doi.org/10.3390/jcm10081610