Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Outcome
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruderman, N.B.; Saha, A.K.; Vavvas, D.; Heydrick, S.J.; Kurowski, T.G. Lipid Abnormalities in Muscle of Insulin-resistant Rodents the Malonyl CoA Hypothesisa. Ann. N. Y. Acad. Sci. 1997, 827, 221–230. [Google Scholar] [CrossRef]
- Gougeon, R.; Styhler, K.; Morais, J.A.; Jones, P.J.; Marliss, E.B. Effects of oral hypoglycemic agents and diet on protein metabolism in type 2 diabetes. Diabetes Care 2000, 23, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O′Brien, T.; Nguyen, T.T.; Zimmerman, B.R. Hyperlipidemia and Diabetes Mellitus. Mayo Clin. Proc. 1998, 73, 969–976. [Google Scholar] [CrossRef]
- Howard, B.V.; Robbins, D.C.; Sievers, M.L.; Lee, E.T.; Rhoades, D.; Devereux, R.B.; Cowan, L.D.; Gray, R.S.; Welty, T.K.; Go, O.T.; et al. LDL Cholesterol as a Strong Predictor of Coronary Heart Disease in Diabetic Individuals with Insulin Resistance and Low LDL. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 830–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, D.M.; Singer, D.E.; Godine, J.E.; Harrington, C.H.; Perlmuter, L.C. Retinopathy in older type II diabetics. Association with glucose control. Diabetes 1986, 35, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Cowie, C.C.; Port, F.K.; Wolfe, R.A.; Savage, P.J.; Moll, P.P.; Hawthorne, V.M. Disparities in Incidence of Diabetic End-Stage Renal Disease According to Race and Type of Diabetes. N. Engl. J. Med. 1989, 321, 1074–1079. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Estimates 2016 Summary Tables: DEATHS by Cause, Age and Sex, by World Bank Income Group, 2000–2015. Available online: http://www.who.int/healthinfo/global_burden_disease/en/ (accessed on 18 September 2020).
- Sone, H.; Tanaka, S.; Tanaka, S.; Suzuki, S.; Seino, H.; Hanyu, O.; Sato, A.; Toyonaga, T.; Okita, K.; Ishibashi, S.; et al. Leisure-Time physical activity is a significant predictor of stroke and total mortality in Japanese patients with type 2 diabetes: Analysis from the Japan Diabetes Complications Study (JDCS). Diabetologia 2013, 56, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- The Diabetes Control and Complications Trial Research Group (DCCT). The absence of a glycemic threshold for the development of long-term complications: The perspective of the Diabetes Control and Complications Trial. Diabetes 1996, 45, 1289–1298. [Google Scholar] [CrossRef]
- Office of Nutrition, Health Service Division, Health Service Bureau, Ministry of Health, Labour and Welfare, Japan (2017). The National Health and Nutrition Survey in Japan, 2016. Ministry of Health, Labour and Welfare. Available online: http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h28-houkoku.pdf (accessed on 10 October 2020).
- Kosaka, K.; Noda, M.; Kuzuya, T. Prevention of type 2 diabetes by lifestyle intervention: A Japanese trial in IGT males. Diabetes Res. Clin. Pract. 2005, 67, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Takahashi, K.; Inazu, T.; Arao, T.; Kawahara, C.; Tabata, T.; Moriyama, H.; Okada, Y.; Morita, E.; Tanaka, Y. Reduced progression to type 2 diabetes from impaired glucose tolerance after a 2-day in-hospital diabetes educational program: The Joetsu Diabetes Prevention Trial. Diabetes Care 2008, 31, 1949–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Watanabe, M.; Nishida, J.; Izumi, T.; Omura, M.; Takagi, T.; Fukunaga, R.; Bandai, Y.; Tajima, N.; Nakamura, Y.; et al. Lifestyle Modification and Prevention of Type 2 Diabetes in Overweight Japanese With Impaired Fasting Glucose Levels: A Randomized Controlled Trial. Arch. Intern. Med. 2011, 171, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Maskarinec, G.; Erber, E.; Grandinetti, A.; Verheus, M.; Oum, R.; Hopping, B.N.; Schmidt, M.M.; Uchida, A.; Juarez, D.T.; Hodges, K.; et al. Diabetes incidence based on linkages with health plans: The multiethnic cohort. Diabetes 2009, 58, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Kabeya, Y.; Goto, A.; Kato, M.; Matsushita, Y.; Takahashi, Y.; Isogawa, A.; Inoue, M.; Mizoue, T.; Tsugane, S.; Kadowaki, T.; et al. Time Spent Walking and Risk of Diabetes in Japanese Adults: The Japan Public Health Center-Based Prospective Diabetes Study. J. Epidemiol. 2016, 26, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Smith, A.D.; Crippa, A.; Woodcock, J.; Brage, S. Physical activity and incident type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia 2016, 59, 2527–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, A.; Wang, Y.; Talaei, M.; Hu, F.B.; Wu, T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 958–967. [Google Scholar] [PubMed] [Green Version]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef] [Green Version]
- Knott, C.; Bell, S.; Britton, A. Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals From 38 Observational Studies. Diabetes Care 2015, 38, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.; Matsuda, M.; Hasegawa, G.; Fukui, M.; Obayashi, H.; Ozasa, N.; Kajiyama, S. A simple meal plan of ‘eating vegetables before carbohydrate’ was more effective for achieving glycemic control than an exchange-based meal plan in Japanese patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2011, 20, 161–168. [Google Scholar] [PubMed]
- Shukla, A.P.; Andono, J.; Touhamy, S.H.; Casper, A.; Iliescu, R.G.; Mauer, E.; Shan Zhu, Y.; Ludwig, D.S.; Aronne, L.J. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000440. [Google Scholar]
- Pan, A.; Schernhammer, E.S.; Sun, Q.; Hu, F.B. Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. PLoS Med. 2011, 8, e1001141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, R.; Tamakoshi, K.; Yatsuya, H.; Wada, K.; Matsushita, K.; OuYang, P.; Hotta, Y.; Takefuji, S.; Mitsuhashi, H.; Sugiura, K.; et al. Eating fast leads to insulin resistance: Findings in middle-aged Japanese men and women. Prev. Med. 2008, 46, 154–159. [Google Scholar] [CrossRef]
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Nagasawa, S.Y.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; et al. Self-Reported speed of eating and 7-year risk of type 2 diabetes mellitus in middle-aged Japanese men. Metabolism 2012, 61, 1566–1571. [Google Scholar] [CrossRef] [Green Version]
- Kudo, A.; Asahi, K.; Satoh, H.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Fujimoto, S.; Narita, I.; Konta, T.; et al. Fast eating is a strong risk factor for new-onset diabetes among the Japanese general population. Sci. Rep. 2019, 9, 8210. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Yoshimura, C.; Takahashi, K.; Ito, K.; Yasuno, T.; Abe, Y.; Masutani, K.; Nakashima, H.; Mukoubara, S.; Arima, H. Usefulness of the blood pressure classification in the new 2017 ACC/AHA hypertension guidelines for the prediction of new-onset chronic kidney disease. J. Hum. Hypertens. 2019, 33, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, T.; Maeda, T.; Tada, K.; Takahashi, K.; Ito, K.; Abe, Y.; Mukoubara, S.; Masutani, K.; Arima, H.; Nakashima, H. Effects of HbA1c on the Development and Progression of Chronic Kidney Disease in Elderly and Middle-Aged Japanese: Iki Epidemiological Study of Atherosclerosis and Chronic Kidney Disease (ISSA-CKD). Intern. Med. 2020, 59, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyabayashi, I.; Mori, S.; Satoh, A.; Kawazoe, M.; Funakoshi, S.; Ishida, S.; Maeda, T.; Yoshimura, C.; Tada, K.; Takahashi, K.; et al. Uric Acid and Prevalence of Hypertension in a General Population of Japanese: ISSA-CKD Study. J. Clin. Med. Res. 2020, 12, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Maeda, T.; Tada, K.; Takahashi, K.; Yasuno, T.; Masutani, K.; Mukoubara, S.; Arima, H.; Nakashima, H. The role of cigarette smoking on new-onset of chronic kidney disease in a Japanese population without prior chronic kidney disease: Iki epidemiological study of atherosclerosis and chronic kidney disease (ISSA-CKD). Clin. Exp. Nephrol. 2020, 24, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Radzeviciene, L.; Ostrauskas, R. Fast eating and the risk of type 2 diabetes mellitus: A case-control study. Clin. Nutr. 2013, 32, 232–235. [Google Scholar] [CrossRef]
- Totsuka, K.; Maeno, T.; Saito, K.; Kodama, S.; Asumi, M.; Yachi, Y.; Hiranuma, Y.; Shimano, H.; Yamada, N.; Ono, Y.; et al. Self-reported fast eating is a potent predictor of development of impaired glucose tolerance in Japanese men and women: Tsukuba Medical Center Study. Diabetes Res. Clin. Pract. 2011, 94, e72–e74. [Google Scholar] [CrossRef]
- Sasaki, S.; Katagiri, A.; Tsuji, T.; Shimoda, T.; Amano, K. Self-Reported rate of eating correlates with body mass index in 18-y-old Japanese women. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, R.; Tamakoshi, K.; Yatsuya, H.; Murata, C.; Sekiya, A.; Wada, K.; Zhang, H.M.; Matsushita, K.; Sugiura, K.; Takefuji, S.; et al. Eating Fast Leads to Obesity: Findings Based on Self-administered Questionnaires among Middle-aged Japanese Men and Women. J. Epidemiol. 2006, 16, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Tanihara, S.; Imatoh, T.; Miyazaki, M.; Babazono, A.; Momose, Y.; Baba, M.; Uryu, Y.; Une, H. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. Appetite 2011, 57, 179–183. [Google Scholar] [CrossRef]
- Takayama, S.; Akamine, Y.; Okabe, T.; Koya, Y.; Haraguchi, M.; Miyata, Y.; Sakai, T.; Sakura, H.; Sasaki, T. Rate of eating and body weight in patients with type 2 diabetes or hyperlipidaemia. J. Int. Med. Res. 2002, 30, 442–444. [Google Scholar] [CrossRef]
- Zhu, B.; Haruyama, Y.; Muto, T.; Yamazaki, T. Association between eating speed and metabolic syndrome in a three-year population-based cohort study. J. Epidemiol. 2015, 25, 332–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashizawa, E.; Katano, S.; Harada, A.; Yanagibori, R.; Kobayashi, Y.; Sato, S.; Eguchi, H. Exploring the link between standard lifestyle questionnaires administered during specific medical check-ups and incidence of metabolic syndrome in Chiba Prefecture. Nihon Koshu Eisei Zasshi. 2014, 61, 176–185. [Google Scholar] [PubMed]
- Shigeta, H.; Shigeta, M.; Nakazawa, A.; Nakamura, N.; Yoshikawa, T. Lifestyle, Obesity, and Insulin Resistance. Diabetes Care 2001, 24, 608. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Fukushima, M.; Okamoto, S.; Takahashi, O.; Shimbo, T.; Kurose, T.; Yamada, Y.; Inagaki, N.; Seino, Y.; Fukui, T. Effects of thorough mastication on postprandial plasma glucose concentrations in nonobese Japanese subjects. Metabolism 2005, 54, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Merovci, A.; Tripathy, D.; Chen, X.; Valdez, I.; Abdul-Ghani, M.; Solis-Herrera, C.; Gastaldelli, A.; DeFronzo, R.A. Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance and Insulin Sensitivity in Healthy Glucose Tolerant Subjects. Diabetes 2020, 70, 204–231, db200039. [Google Scholar] [CrossRef] [PubMed]
- Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic neuronal histamine: Implications of its homeostatic control of energy metabolism. Nutrition 1997, 13, 403–411. [Google Scholar] [CrossRef]
- Kokkinos, A.; le Roux, C.W.; Alexiadou, K.; Tentolouris, N.; Vincent, R.P.; Kyriaki, D.; Perrea, D.; Ghatei, M.A.; Bloom, S.R.; Katsilambros, N. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J. Clin. Endocrinol. Metab. 2010, 95, 333–337. [Google Scholar] [CrossRef]
- Galhardo, J.; Hunt, L.P.; Lightman, S.L.; Sabin, M.A.; Bergh, C.; Sodersten, P.; Shield, J.P. Normalizing eating behavior reduces body weight and improves gastrointestinal hormonal secretion in obese adolescents. J. Clin. Endocrinol. Metab. 2012, 97, E193–E201. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Agosti, F.; Compri, E.; Giunta, M.; Marazzi, N.; Muller, E.E.; Cella, S.G.; Sartorio, A. Anorexigenic postprandial responses of PYY and GLP1 to slow ice cream consumption: Preservation in obese adolescents, but not in obese adults. Eur. J. Endocrinol. 2013, 168, 429–436. [Google Scholar] [CrossRef]
- Woodward, E.; Haszard, J.; Worsfold, A.; Venn, B. Comparison of Self-Reported Speed of Eating with an Objective Measure of Eating Rate. Nutrients 2020, 12, 599. [Google Scholar] [CrossRef] [Green Version]
- Melton, L.J.; Palumbo, P.J.; Chu, C.-P. Incidence of Diabetes Mellitus by Clinical Type. Diabetes Care 1983, 6, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., 3rd; Palumbo, P.J.; Dwyer, M.S.; Chu, C.P. Impact of recent changes in diagnostic criteria on the apparent natural history of diabetes mellitus. Am. J. Epidemiol. 1983, 117, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Wenger, H.A.; Bell, G.J. The Interactions of Intensity, Frequency and Duration of Exercise Training in Altering Cardiorespiratory Fitness. Sports Med. 1986, 3, 346–356. [Google Scholar] [CrossRef] [PubMed]
Self-Reported Eating Speed | ||||
---|---|---|---|---|
Slow | Medium | Fast | p Value for Trend | |
(N = 510) | (N = 2993) | (N = 1350) | ||
Age, mean (SD), years | 61.6 (±10.7) | 59.8 (±10.5) | 58.5 (±10.8) | *** < 0.001 |
Male, N/total N (%) | 180/510 (35.3%) | 1271/2993 (42.5%) | 709/1350 (52.5%) | *** < 0.001 |
Smoking status, N/total N (%) | ||||
Never smoker | 423/510 (82.9%) | 2275/2993 (76.0%) | 975/1350 (72.2%) | *** < 0.001 |
Ex-smoker | 19/510 (3.7%) | 151/2993 (5.0%) | 89/1350 (6.6%) | |
Current smoker, <20 cigarettes/day | 17/510 (3.3%) | 134/2993 (4.5%) | 72/1350 (5.3%) | |
Current smoker, ≥20 cigarettes/day | 22/510 (4.3%) | 226/2993 (7.6%) | 129/1350 (9.6%) | |
Current smoker, missing information on the number of cigarettes/day | 29/510 (5.7%) | 207/2993 (6.9%) | 85/1350 (6.3%) | |
Alcohol intake †, N/total N (%) | ||||
No | 305/505 (60.4%) | 1609/2970 (54.2%) | 649/1342 (48.4%) | ** 0.004 |
Occasional alcohol drinking | 100/505 (19.8%) | 680/2970 (22.9%) | 347/1342 (25.9%) | |
Daily current alcohol drinking, <20 g/day | 43/505 (8.5%) | 221/2970 (7.4%) | 97/1342 (7.2%) | |
Daily current alcohol drinking, 20–39.9 g/day | 39/505 (7.7%) | 318/2970 (10.7%) | 182/1342 (13.6%) | |
Daily current alcohol drinking, ≥40 g/day | 18/505 (3.6%) | 142/2970 (4.8%) | 67/1342 (5.0%) | |
Regular exercise ‡, N/total N (%) | 120/510 (23.5%) | 809/2993 (27.0%) | 357/1350 (26.4%) | 0.451 |
Body mass index, mean (SD), kg/m2 | 22.7 (±3.3) | 23.3 (±3.3) | 24.5 (±3.6) | *** < 0.001 |
Obesity §, N/total N (%) | 101/510 (19.8%) | 815/2993 (27.2%) | 554/1350 (41.0%) | *** < 0.001 |
Systolic blood pressure, mean (SD), mmHg | 128.7 (±19.6) | 129.0 (±18.3) | 128.9 (±19.0) | 0.987 |
Diastolic blood pressure, mean (SD), mmHg | 73.8 (±10.8) | 74.8 (±11.1) | 75.6 (±11.3) | ** 0.002 |
High-density lipoprotein cholesterol, mean (SD), mmol/L | 1.63 (±0.41) | 1.62 (±0.42) | 1.55 (±0.41) | *** < 0.001 |
Low density lipoprotein cholesterol, mean (SD), mmol/L | 3.10 (±0.82) | 3.18 (±0.81) | 3.20 (±0.82) | 0.06 |
Triglyceride, mean (SD), mmol/L | 1.29 (±0.93) | 1.28 (±0.84) | 1.44 (±1.03) | *** < 0.001 |
Dyslipidemia ¶, N/total N (%) | 194/510 (38.0%) | 1244/2993 (41.6%) | 642/1350 (47.6%) | *** < 0.001 |
Hypertension ††, N/total N (%) | 209/510 (41.0%) | 1272/2993 (42.5%) | 588/1350 (43.6%) | 0.308 |
HbA1c, mean (SD),% | 5.1 (±0.3) | 5.1 (±0.4) | 5.1 (±0.4) | 0.669 |
Fasting blood glucose (SD), mmol/L ††† | 5.0 (±0.5) | 5.0 (±0.5) | 5.1 (±0.6) | ** 0.0013 |
Self-Reported Eating Speed | ||||
---|---|---|---|---|
Slow | Medium | Fast | p Value for Trend | |
(N = 510) | (N = 2993) | (N = 1350) | ||
N of events/person-years | 12/2468 | 134/15,234 | 88/7034 | |
Incidence rate (per 1000 person-years) | 4.9 | 8.8 | 12.5 | |
Crude hazard ratio | 1 | 1.82 | 2.61 | *** < 0.001 |
(95% Confidence interval) | (Reference) | (1.01–3.29) | (1.43–4.77) | |
Adjusted hazard ratio † | 1 | 1.69 | 2.08 | ** 0.014 |
(95% Confidence interval) | (Reference) | (0.94–3.06) | (1.13–3.84) |
Self-Reported Eating Speed | ||||
---|---|---|---|---|
Slow | Medium | Fast | p Value for Interaction | |
(N = 510) | (N = 2993) | (N = 1350) | ||
Age | ||||
<65 years | 1 (reference) | 1.04 (0.48–2.29) | 1.52 (0.68–3.36) | 0.105 |
≥65 years | 1 (reference) | 2.64 (1.06–6.55) | 2.61 (1.01–6.79) | |
Sex | ||||
Male | 1 (reference) | 2.48 (0.91–6.80) | 3.03 (1.09–8.42) | 0.617 |
Female | 1 (reference) | 1.28 (0.61–2.68) | 1.57 (0.72–3.43) | |
Obesity | ||||
Yes | 1 (reference) | 1.35 (0.54–3.37) | 1.94 (0.77–4.87) | 0.462 |
No | 1 (reference) | 1.97 (0.91–4.29) | 2.02 (0.88–4.61) | |
Hypertension | ||||
Yes | 1 (reference) | 1.91 (0.83–4.40) | 2.31 (0.98–5.45) | 0.895 |
No | 1 (reference) | 1.47 (0.63–3.41) | 1.74 (0.73–4.17) | |
Dyslipidemia | ||||
Yes | 1 (reference) | 1.77 (0.71–4.41) | 2.39 (0.95–6.02) | 0.402 |
No | 1 (reference) | 1.76 (0.80–3.84) | 1.88 (0.82–4.31) | |
Current smoking | ||||
Yes | 1 (reference) | 1.26 (0.38–4.12) | 1.10 (0.31–3.84) | 0.349 |
No | 1 (reference) | 1.82 (0.92–3.61) | 2.48 (1.23–5.00) | |
Daily alcohol intake | ||||
Yes | 1 (reference) | 5.20 (0.71–37.88) | 5.33 (0.71–39.81) | 0.298 |
No | 1 (reference) | 1.33 (0.71–2.49) | 1.81 (0.94–3.46) | |
Regular exercise | ||||
Yes | 1 (reference) | 1.63 (0.50–5.31) | 2.63 (0.79–8.70) | 0.662 |
No | 1 (reference) | 1.63 (0.82–3.25) | 1.81 (0.89–3.69) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, H.; Funakoshi, S.; Maeda, T.; Satoh, A.; Kawazoe, M.; Ishida, S.; Yoshimura, C.; Yokota, S.; Tada, K.; Takahashi, K.; et al. Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD. J. Clin. Med. 2021, 10, 1949. https://doi.org/10.3390/jcm10091949
Fujii H, Funakoshi S, Maeda T, Satoh A, Kawazoe M, Ishida S, Yoshimura C, Yokota S, Tada K, Takahashi K, et al. Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD. Journal of Clinical Medicine. 2021; 10(9):1949. https://doi.org/10.3390/jcm10091949
Chicago/Turabian StyleFujii, Hideyuki, Shunsuke Funakoshi, Toshiki Maeda, Atsushi Satoh, Miki Kawazoe, Shintaro Ishida, Chikara Yoshimura, Soichiro Yokota, Kazuhiro Tada, Koji Takahashi, and et al. 2021. "Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD" Journal of Clinical Medicine 10, no. 9: 1949. https://doi.org/10.3390/jcm10091949
APA StyleFujii, H., Funakoshi, S., Maeda, T., Satoh, A., Kawazoe, M., Ishida, S., Yoshimura, C., Yokota, S., Tada, K., Takahashi, K., Ito, K., Yasuno, T., Okutsu, S., Mukoubara, S., Nakashima, H., Nabeshima, S., Kondo, S., Fujita, M., Masutani, K., ... Kawanami, D. (2021). Eating Speed and Incidence of Diabetes in a Japanese General Population: ISSA-CKD. Journal of Clinical Medicine, 10(9), 1949. https://doi.org/10.3390/jcm10091949