Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Statistical Analysis
2.4. Aim of the Study
3. Results
3.1. Baseline Demographics and Patient Characteristics
3.2. Impact of AKI on Outcomes
4. Discussion
- (1)
- Some clinical components (e.g., vital signs and laboratory values) are not captured. Thus, we cannot classify the patients based on the severity of CK level or the stage of AKI. Also, CK level was not routinely checked in all patients seeking treatment at the hospital, therefore, a number of patients may have developed rhabdomyolysis without being diagnosed.
- (2)
- The extracted data are based on diagnostic codes from each hospitalization. Thus, we are unable to determine the causal inference of the electrolyte imbalance and rhabdomyolysis.
- (3)
- The NIS and HCUP database did not recruit patient-level data. Thus, we are unable to exclude patients with multiple admissions.
- (4)
- The database represents only hospitalized patients, including patients with mild rhabdomyolysis treated in the emergency room or outpatient setting.
- (5)
- Even after adjusting for the potential confounders, it is impossible to establish causality due to the possibility of residual confounding. Further randomized trials are needed to allow definitive conclusions concerning the relationships between AKI and outcomes.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavez, L.O.; Leon, M.; Einav, S.; Varon, J. Beyond muscle destruction: A systematic review of rhabdomyolysis for clinical practice. Crit. Care 2016, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, D.; Basile, C.; di Maggio, A.; Sebastio, A.; Introna, F.; Rizzi, R.; Scatizzi, A.; de Marco, S.; Smialek, J.E. Clinical Spectrum of Accidental Hemlock Poisoning: Neurotoxic Manifestations, Rhabdomyolysis and Acute Tubular Necrosis. Nephrol. Dial. Transplant. 1991, 6, 939–943. [Google Scholar] [CrossRef]
- Sauret, J.M.; Marinides, G.; Wang, G.K. Rhabdomyolysis. Am. Fam. Physician 2002, 65, 907–912. [Google Scholar]
- Bagley, W.H.; Yang, H.; Shah, K.H. Rhabdomyolysis. Intern. Emerg. Med. 2007, 2, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.A.; Helmstetter, J.A.; Kaye, A.M.; Kaye, A.D. Rhabdomyolysis: Pathogenesis, diagnosis, and treatment. Ochsner J. 2015, 15, 58–69. [Google Scholar]
- Melli, G.; Chaudhry, V.; Cornblath, D.R. Rhabdomyolysis: An evaluation of 475 hospitalized patients. Medicine 2005, 84, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Chatzizisis, Y.S.; Misirli, G.; Hatzitolios, A.I.; Giannoglou, G.D. The syndrome of rhabdomyolysis: Complications and treatment. Eur. J. Intern. Med. 2008, 19, 568–574. [Google Scholar] [CrossRef]
- Fernandez, W.G.; Hung, O.; Bruno, G.R.; Galea, S.; Chiang, W.K. Factors predictive of acute renal failure and need for hemodialysis among ED patients with rhabdomyolysis. Am. J. Emerg. Med. 2005, 23, 1–7. [Google Scholar] [CrossRef]
- Gabow, P.A.; Kaehny, W.D.; Kelleher, S.P. The Spectrum of Rhabdomyolysis. Medicine 1982, 61, 141–152. [Google Scholar] [CrossRef]
- Holt, S.; Moore, K. Pathogenesis of Renal Failure in Rhabdomyolysis: The Role of Myoglobin. Nephron 2000, 8, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Safari, S.; Yousefifard, M.; Hashemi, B.; Baratloo, A.; Forouzanfar, M.M.; Rahmati, F.; Motamedi, M.; Najafi, I. The Role of Scoring Systems and Urine Dipstick in Prediction of Rhabdomyolysis-induced Acute Kidney Injury: A Systematic Review. Iran. J. Kidney Dis. 2016, 10, 101–106. [Google Scholar]
- McMahon, G.M.; Zeng, X.; Waikar, S.S. A Risk Prediction Score for Kidney Failure or Mortality in Rhabdomyolysis. JAMA Intern. Med. 2013, 173, 1821–1828. [Google Scholar] [CrossRef]
- Safari, S.; Yousefifard, M.; Hashemi, B.; Baratloo, A.; Forouzanfar, M.M.; Rahmati, F.; Motamedi, M.; Najafi, I. The value of serum creatine kinase in predicting the risk of rhabdomyolysis-induced acute kidney injury: A systematic review and meta-analysis. Clin. Exp. Nephrol. 2016, 20, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.E.; Cordtz, J.J.; Rasmussen, T.B.; Christiansen, C.F. The Association Between Rhabdomyolysis, Acute Kidney Injury, Renal Replacement Therapy, and Mortality. Clin. Epidemiol. 2020, 12, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.J.; Torio, C.M. Acute Renal Failure Hospitalizations, 2005–2014: Statistical Brief #231. 2017. Agency for Healthcare Research and Quality: Rockville, MD, USA. Available online: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb231-Acute-Renal-Failure-Hospitalizations.pdf (accessed on 27 January 2021).
- HCUP National Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP), 2012. Agency for Healthcare Research and Quality: Rockville, MD, USA. Available online: https://www.hcup-us.ahrq.gov/nisoverview.jsp (accessed on 27 January 2021).
- Candela, N.; Silva, S.; Georges, B.; Cartery, C.; Robert, T.; Moussi-Frances, J.; Rondeau, E.; Rebibou, J.-M.; Lavayssiere, L.; Belliere, J.; et al. Short- and long-term renal outcomes following severe rhabdomyolysis: A French multicenter retrospective study of 387 patients. Ann. Intensiv. Care 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Soler, M.J.; Rap, O.; Barrios, C.; Orfila, M.A.; Pascual, J. Risk Factors for Acute Kidney Injury in Severe Rhabdomyolysis. PLoS ONE 2013, 8, e82992. [Google Scholar] [CrossRef] [Green Version]
- Wongrakpanich, S.; Kallis, C.; Prasad, P.; Rangaswami, J.; Rosenzweig, A. The Study of Rhabdomyolysis in the Elderly: An Epidemiological Study and Single Center Experience. Aging Dis. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babak, K.; Mohammad, A.; Mazaher, G.; Samaneh, A.; Fatemeh, T. Clinical and laboratory findings of rhabdomyolysis in opioid overdose patients in the intensive care unit of a poisoning center in 2014 in Iran. Epidemiol. Health 2017, 39, e2017050. [Google Scholar] [CrossRef] [Green Version]
- Gangahar, D. A case of rhabdomyolysis associated with severe opioid withdrawal. Am. J. Addict. 2015, 24, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, J.A.; Kimmel, P.L. Chronic Nephropathies of Cocaine and Heroin Abuse: A Critical Review. Clin. J. Am. Soc. Nephrol. 2006, 1, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.; Alarcón, F.J.; Fernandez, J.A.; Preston, R.A.; Bourgoignie, J.J. Acute Rhabdomyolysis Associated with Cocaine Intoxication. N. Engl. J. Med. 1988, 319, 673–677. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.M.; Isakova, T.; Rennke, H.G.; Mottola, A.M.; Laliberte, K.A.; Niles, J.L. Contaminated Cocaine and Antineutrophil Cytoplasmic Antibody-Associated Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Pendergraft, W.F., 3rd; Herlitz, L.C.; Thornley-Brown, D.; Rosner, M.; Niles, J.L. Nephrotoxic effects of common and emerging drugs of abuse. Clin. J. Am. Soc. Nephrol. 2014, 9, 1996–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau Hing Yim, C.; Wong, E.W.W.; Jellie, L.J.; Lim, A.K.H. Illicit drug use and acute kidney injury in patients admitted to hospital with rhabdomyolysis. Intern. Med. J. 2019, 49, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Liu, K. Pathophysiology of AKI. Best Pract. Res. Clin. Anaesthesiol. 2017, 31, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Lv, L.-L.; Liu, B.-C.; Tang, R.-N. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Prolif. 2020, 53, e12763. [Google Scholar] [CrossRef]
- Pathirana, T.I.; Jackson, C.A. Socioeconomic status and multimorbidity: A systematic review and meta-analysis. Aust. N. Z. J. Public Health 2018, 42, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Baeza-Trinidad, R.; Brea-Hernando, A.; Morera-Rodriguez, S.; Brito-Diaz, Y.; Sanchez-Hernandez, S.; El Bikri, L.; Ramalle-Gomara, E.; Garcia-Alvarez, J.L. Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern. Med. J. 2015, 45, 1173–1178. [Google Scholar] [CrossRef]
- Stewart, I.J.; Faulk, T.I.; Sosnov, J.A.; Clemens, M.S.; Elterman, J.; Ross, J.D.; Howard, J.T.; Fang, R.; Zonies, D.H.; Chung, K.K. Rhabdomyolysis among critically ill combat casualties: Associations with acute kidney injury and mortality. J. Trauma Acute Care Surg. 2016, 80, 492–498. [Google Scholar] [CrossRef]
- Wolkewitz, M.; Schumacher, M.; Rücker, G.; Harbarth, S.; Beyersmann, J. Estimands to quantify prolonged hospital stay associated with nosocomial infections. BMC Med. Res. Methodol. 2019, 19, 111. [Google Scholar] [CrossRef]
- Wolberg, A.S.; Rosendaal, F.R.; Weitz, J.I.; Jaffer, I.H.; Agnelli, G.; Baglin, T.; Macman, N. Venous thrombosis. Nat. Rev. Dis. Primers 2015, 1. [Google Scholar] [CrossRef]
- Spalding, M.C.; Cripps, M.W.; Minshall, C.T. Ventilator-Associated Pneumonia: New Definitions. Crit. Care Clin. 2017, 33, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.J.; Shariff, S.Z.; Gandhi, S.; Wald, R.; Clark, E.; Fleet, J.L.; Garg, A.X. Validity of the International Classification of Diseases, Tenth Revision code for acute kidney injury in elderly patients at presentation to the emergency department and at hospital admission. BMJ Open 2012, 2, e001821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, H.; Li, B.; Saunders, L.D.; Parsons, G.A.; Nilsson, C.I.; Alibhai, A.; Ghali, W.A. Assessing Validity of ICD-9-CM and ICD-10 Administrative Data in Recording Clinical Conditions in a Unique Dually Coded Database. Health Serv. Res. 2008, 43, 1424–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Rhabdomyolysis (n =) (100%) | With Acute Kidney Injury (n =) (%) | Without Acute Kidney Injury (n =) (%) | p-Value |
---|---|---|---|---|
Age, y, mean ± SD | 54.8 ± 22.9 | 58.2 ± 21.6 | 53.8 ± 22.2 | <0.001 |
Age, [n (%)] | <0.001 | |||
18−44 | 43,160 (38.9) | 8280 (31.1) | 34,880 (41.3) | |
45−64 | 24,815 (22.3) | 6775 (25.4) | 18,040 (21.4) | |
≥65 | 43,110 (38.8) | 11,595 (43.5) | 31,515 (37.3) | |
Female gender [n (%)] | 39,955 (36.0) | 7775 (29.2) | 32,180 (38.1) | <0.001 |
Race [n (%)] | 0.1121 | |||
White | 64,470 (59.7) | 15,290 (59.4) | 49,180 (59.8) | |
Black | 26,280 (24.3) | 6600 (25.6) | 19,680 (23.9) | |
Hispanic | 11,550 (10.7) | 2620 (10.2) | 8930 (10.9) | |
Asian or Pacific Islander | 1985 (1.8) | 425 (1.7) | 1560 (1.9) | |
Native American | 490 (0.5) | 100 (0.4) | 390 (0.5) | |
Other | 3225 (3.0) | 725 (2.8) | 2500 (3.0) | |
Primary payer [n (%)] | <0.001 | |||
Medicare | 49,350 (44.5) | 12,920 (48.5) | 36,430 (43.2) | |
Medicaid | 20,965 (18.9) | 5320 (20.0) | 15,645 (18.6) | |
Private | 26,035 (23.5) | 4705 (17.7) | 21,330 (25.3) | |
Self-pay | 9390 (8.5) | 2495 (9.4) | 6895 (8.2) | |
Other | 5200 (4.7) | 1180 (4.4) | 4020 (4.8) | |
Median household income in the patient’s zip code [n (%)] | <0.001 | |||
First quartile | 36,610 (34.0) | 9150 (35.5) | 27,460 (33.5) | |
Second quartile | 27,595 (25.6) | 6730 (26.1) | 20,865 (25.5) | |
Third quartile | 23,685 (22.0) | 5655 (21.9) | 18,030 (22.0) | |
Fourth quartile | 19,855 (18.4) | 4250 (16.5) | 15,605 (19.0) | |
Hospital bed size [n (%)] | <0.001 | |||
Small | 27,575 (24.8) | 6240 (23.4) | 21,335 (25.3) | |
Medium | 35,615 (32.1) | 8310 (31.2) | 27,305 (32.3) | |
Large | 47,895 (43.1) | 12,100 (45.4) | 35,795 (42.4) | |
Hospital region [n (%)] | <0.001 | |||
Northeast | 23,180 (20.9) | 4940 (18.5) | 18,240 (21.6) | |
Midwest | 21,535 (19.4) | 5575 (20.9) | 15,960 (18.9) | |
South | 46,765 (42.1) | 11,320 (42.5) | 35,445 (42.0) | |
West | 19,605 (17.7) | 4815 (18.1) | 14,790 (17.5) | |
Teaching Hospital [n (%)] | 69,275 (62.4) | 16,675 (62.6) | 52,600 (62.3) | 0.7321 |
Hospital urban location [n (%)] | 97,825 (88.1) | 23,425 (88.0) | 74,400 (88.1) | 0.6737 |
Charlson Comorbidity Index score [n (%)] | <0.001 | |||
0–2 | 101,005 (90.9) | 22,075 (82.8) | 78,930 (93.5) | |
3–5 | 8685 (7.8) | 4025 (15.1) | 4660 (5.5) | |
≥6 | 1395 (1.3) | 550 (2.1) | 845 (1.0) | |
Length of stay, d, mean ± SD | 4.3 ± 4.6 | 5.4 ± 6.0 | 4.0 ± 4.0 | <0.001 |
Length of stay group [n (%)] | <0.001 | |||
0–3 | 60,335 (54.3) | 12,100 (45.4) | 48,235 (57.1) | |
4–7 | 38,595 (34.7) | 9700 (36.4) | 28,895 (34.2) | |
≥8 | 12,155 (10.9) | 4850 (18.2) | 7305 (8.7) | |
Charge of hospitalization in U.S. $, mean ± SD | 31,489.3 ± 40672.9 | 41,296.0 ± 62,633.5 | 28,399.6 ± 29,994.7 | <0.001 |
Cost of hospitalization in U.S. $, mean ± SD | 7659.6 ± 8655.9 | 10,122.8 ± 13,134.6 | 6883.5 ± 6454.8 | <0.001 |
Disposition [n (%)] | <0.001 | |||
Routine discharge | 58,270 (52.5) | 12,835 (48.2) | 45,435 (53.9) | |
Transfer to Short-term Hospital | 2095 (1.9) | 665 (2.5) | 1430 (1.7) | |
Transfer to Facility | 35,100 (31.6) | 8960 (33.6) | 26,140 (31.0) | |
Discharge with Home Health Care (HHC) | 9555 (8.6) | 2580 (9.7) | 6975 (8.3) | |
Against Medical Advice (AMA) | 5320 (4.8) | 1235 (4.6) | 4085 (4.8) | |
Died | 675 (0.6) | 360 (1.4) | 315 (0.4) | |
Chronic kidney disease [n (%)] | 11,470 (10.3) | 6400 (24.0) | 5070 (6.0) | <0.001 |
Hypertension [n (%)] | 40,945 (36.9) | 9130 (34.3) | 31,815 (37.7) | <0.001 |
Congestive heart failure [n (%)] | 8415 (7.6) | 3030 (11.4) | 5385 (6.4) | <0.001 |
Coronary artery disease [n (%)] | 13,645 (12.3) | 4175 (15.7) | 9470 (11.2) | <0.001 |
Diabetes mellitus [n (%)] | 20,120 (18.1) | 6505 (24.4) | 13,615 (16.1) | <0.001 |
Atrial fibrillation [n (%)] | 9645 (8.7) | 3060 (11.5) | 6585 (7.8) | <0.001 |
Hyperlipidemia [n (%)] | 27,210 (24.5) | 7685 (28.8) | 19,525 (23.1) | <0.001 |
Dementia [n (%)] | 8415 (7.6) | 1920 (7.2) | 6495 (7.7) | 0.2347 |
HIV infection [n (%)] | 455 (0.4) | 150 (0.6) | 305 (0.4) | 0.0476 |
Alcohol use [n (%)] | 12,885 (11.6) | 3090 (11.6) | 9795 (11.6) | 0.9908 |
Opioid use [n (%)] | 4835 (4.4) | 1685 (6.3) | 3150 (3.7) | <0.001 |
Cannabis use [n (%)] | 7940 (7.2) | 2060 (7.7) | 5880 (7.0) | 0.0634 |
Cocaine use [n (%)] | 6140 (5.5) | 2000 (7.5) | 4140 (4.9) | <0.001 |
Trauma [n (%)] | 15,975 (14.4) | 4125 (15.5) | 11,850 (14.0) | 0.0099 |
Variables | Crude Odds Ratio (95% Confidence Interval) | p-Value | Adjusted Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|---|---|
In-hospital Mortality | 3.66 (2.61–5.13) | <0.001 | 3.33 (2.33–4.75) | <0.001 |
Hyperkalemia | 6.12 (5.24–7.15) | <0.001 | 5.14 (4.34–6.09) | <0.001 |
Electrolyte disorder | 1.94 (1.82–2.07) | <0.001 | 1.97 (1.83–2.11) | <0.001 |
Disseminated intravascular coagulation | 6.88 (2.61–18.12) | <0.001 | 6.79 (2.65–17.39) | <0.001 |
Compartment syndrome | 6.85 (3.52–13.34) | <0.001 | 8.78 (4.41–17.47) | <0.001 |
Hypovolemic shock | 6.35 (2.56–15.74) | <0.001 | 5.66 (2.25–14.25) | <0.001 |
Mechanical ventilation | 5.78 (3.94–8.49) | <0.001 | 5.42 (3.65–8.05) | <0.001 |
Variables | Crude Coefficient (95% Confidence Interval) | p-Value | Adjusted Coefficient (95% Confidence Interval) | p-Value |
---|---|---|---|---|
Additional length of hospital stays (d) | 1.40 (1.23–1.57) | <0.001 | 1.17 (1.00–1.34) | <0.001 |
Additional total hospitalization charges | 12,896.32 (11,134.27–14,658.37) | <0.001 | 11,315.05(9493.02–13,137.07) | <0.001 |
Additional total hospitalization costs | 3239.33 (2862.80–3615.87) | <0.001 | 2785.00 (2394.05–3175.95) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-W.; Li, S.; Dong, Y.; Paliwal, N.; Wang, Y. Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis. J. Clin. Med. 2021, 10, 1950. https://doi.org/10.3390/jcm10091950
Yang C-W, Li S, Dong Y, Paliwal N, Wang Y. Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis. Journal of Clinical Medicine. 2021; 10(9):1950. https://doi.org/10.3390/jcm10091950
Chicago/Turabian StyleYang, Chien-Wen, Si Li, Yishan Dong, Nitpriya Paliwal, and Yichen Wang. 2021. "Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis" Journal of Clinical Medicine 10, no. 9: 1950. https://doi.org/10.3390/jcm10091950
APA StyleYang, C.-W., Li, S., Dong, Y., Paliwal, N., & Wang, Y. (2021). Epidemiology and the Impact of Acute Kidney Injury on Outcomes in Patients with Rhabdomyolysis. Journal of Clinical Medicine, 10(9), 1950. https://doi.org/10.3390/jcm10091950