Developing a Novel Scoring System for Risk Stratification in Living Donor Liver Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. SOFA Score Calculation and SOFA Component Dichotomy
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Enrolled Patients
3.2. Comparison between the Survivor and Non-Survivor Groups
3.3. Validation of SOFA Scores at POD 7
3.4. Independent Risks for Predicting Mortality within 3 Months after Transplant
3.5. Development of a Novel Scoring Model
3.6. Performance Assessment of the Novel GRWR-SOFA Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, G.-C.; Song, G.-W.; Moon, D.-B.; Lee, S.-G. A review of current status of living donor liver transplantation. HepatoBiliary Surg. Nutr. 2016, 5, 107–117. [Google Scholar] [PubMed]
- Pillai, V.G.; Chen, C.-L. Living donor liver transplantation in Taiwan—Challenges beyond surgery. HepatoBiliary Surg. Nutr. 2016, 5, 145–150. [Google Scholar] [PubMed]
- Qian, Y.-B.; Cheng, G.-H.; Huang, J.-F. Multivariate regression analysis on early mortality after orthotopic liver transplantion. World J. Gastroenterol. 2002, 8, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.F.; Carithers, R.L. AASLD practice guidelines: Evaluation of the patient for liver transplantation. Hepatology 2005, 41, 1407–1432. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-S.; Lee, W.-C.; Jenq, C.-C.; Tian, Y.-C.; Chang, M.-Y.; Lin, C.-Y.; Fang, J.-T.; Yang, C.-W.; Tsai, M.-H.; Shih, H.-C.; et al. Scoring short-term mortality after liver transplantation. Liver Transplant. 2010, 16, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-J.; Dahiya, D.; Lee, C.-S.; Lee, C.-F.; Chou, H.-S.; Chan, K.-M.; Lee, W.-C. Impact of portal venous hemodynamics on indices of liver function and graft regeneration after right lobe living donor liver transplantation. Liver Transplant. 2011, 17, 1035–1045. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Hosmer, D.W. A goodness-of-fit test for the proportional odds regression model. Stat. Med. 2012, 32, 2235–2249. [Google Scholar] [CrossRef] [PubMed]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, A.E. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R J. 2016, 8, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.M.; Massaro, J.M.; D’Agostino, R.B.D., Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat. Med. 2004, 23, 1631–1660. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kiuchi, T.; Yamamoto, H.; Oike, F.; Ogura, Y.; Fujimoto, Y.; Hirohashi, K.; Tanaka, A.K. Changes in portal venous pressure in the early phase after living donor liver transplantation: Pathogenesis and clinical implications1,2. Transplantation 2003, 75, 1313–1317. [Google Scholar] [CrossRef]
- Ben-Haim, M.; Emre, S.; Fishbein, T.M.; Sheiner, P.A.; Bodian, C.A.; Kim-Schluger, L.; Schwartz, M.E.; Miller, C.M. Critical graft size in adult-to-adult living donor liver transplantation: Impact of the recipient’s disease. Liver Transpl. 2001, 7, 948–953. [Google Scholar] [CrossRef]
- Kiuchi, T.; Kasahara, M.; Uryuhara, K.; Inomata, Y.; Uemoto, S.; Asonuma, K.; Egawa, H.; Fujita, S.; Hayashi, M.; Tanaka, K. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors1,2. Transplantation 1999, 67, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Meduri, G.; Carratu, P.; Freire, A. Evidence of biological efficacy for prolonged glucocorticoid treatment in patients with unresolving ARDS. Eur. Respir. J. 2003, 22, 57s–64s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Ge, X.; Sun, K.; Agopian, V.G.; Wang, Y.; Yan, M.; Busuttil, R.W.; Steadman, R.H.; Xia, V.W. Acute respiratory distress syndrome after orthotopic liver transplantation. J. Crit. Care 2016, 31, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Máca, J.; Jor, O.; Holub, M.; Sklienka, P.; Burša, F.; Burda, M.; Janout, V.; Ševčík, P. Past and Present ARDS Mortality Rates: A Systematic Review. Respir. Care 2017, 62, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Joung, M.K.; Lee, J.-A.; Moon, S.-Y.; Cheong, H.S.; Joo, E.-J.; Ha, Y.-E.; Sohn, K.M.; Chung, S.M.; Suh, G.Y.; Chung, D.R.; et al. Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit. Care 2011, 15, R79. [Google Scholar] [CrossRef] [Green Version]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transplant. 2010, 16, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Ong, J.P.; Younossi, Z.M.; Nelson, D.R.; Hoffman-Hogg, L.; Arroliga, A.C. Predictors of mortality and resource utilization in cirrhotic patients admitted to the medical ICU. Chest 2001, 119, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; An, W.S. New clinical criteria for septic shock: Serum lactate level as new emerging vital sign. J. Thorac. Dis. 2016, 8, 1388–1390. [Google Scholar] [CrossRef]
- Okorie, O.N.; Dellinger, P. Lactate: Biomarker and Potential Therapeutic Target. Crit. Care Clin. 2011, 27, 299–326. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Cacciarelli, T.V.; Singh, N. Identifying a targeted population at high risk for infections after liver transplantation in the MELD era. Clin. Transplant. 2010, 25, 420–425. [Google Scholar] [CrossRef]
- Kim, S.I. Bacterial infection after liver transplantation. World J. Gastroenterol. 2014, 20, 6211–6220. [Google Scholar] [CrossRef]
- Wiesner, R.; Edwards, E.; Freeman, R.; Harper, A.; Kim, R.; Kamath, P.; Kremers, W.; Lake, J.; Howard, T.; Merion, R.M.; et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003, 124, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.K.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Goldhill, D.R.; Sumner, A. Outcome of intensive care patients in a group of British intensive care units. Crit. Care Med. 1998, 26, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.L.; Bota, D.P.; Bross, A.; Mélot, C.; Vincent, J.-L. Serial Evaluation of the SOFA Score to Predict Outcome in Critically Ill Patients. JAMA 2001, 286, 1754–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
General Information | Mean ± SD or Median (Minimun–Maximum Values) |
---|---|
Recipient age, year-old | 53.9 ± 8.8 (19.1–70.2) |
Recipient BMI, kg-m−2 | 25.0 ± 3.8 (16.4–42.1) |
Recipient gender, male | 388, 74.8% |
Child–Pugh classification (B/C) | 198/198, 38.2/38.2% |
MELD score | 16.9 ± 8.9 (8–40) |
Viral hepatitis either B or C (yes) | 382, 73.6% |
Alcoholic (yes) | 119, 22.9% |
HCC (yes) | 227, 43.7% |
Transplant parameters | |
Donor age, year-old | 32.3 ± 9.2 (18.1–59.3) |
Donor BMI, kg/m2 | 22.7 ± 2.8 (16.0–32.7) |
Donor gender, male | 226, 50.4% |
Graft lobe (Right) | 481, 92.7% |
GRWR, % | 0.98 ± 0.25 (0.51–2.02) |
Ascites, mL | 425 (0–28,800) |
Intraoperative blood loss, mL | 1625 (50–15,500) |
Cold ischemic time, minutes | 28 (5–246) |
Warm ischemic time, minutes | 36(15–232) |
OP time, minutes | 630.9 ± 140.0 (428–1219) |
SOFA categories at POD 7 | |
Total SOFA score | 5 (0–16) |
Cardiovascular | 0 (0–3) |
Coagulation | 2 (0–4) |
Respiratory | 1 (0–4) |
Renal | 0 (0–4) |
Liver | 2 (0–4) |
Neurologic | 0 (0–4) |
General Information | Survival, n = 477 | Non-Survival, n = 42 | p Value |
---|---|---|---|
Recipient age, year-old | 53.9 ± 8.7 | 54.0 ± 10.8 | 0.953 |
Recipient BMI, kg-m−2 | 25.1 ± 3.8 | 24.6 ± 3.6 | 0.418 |
Recipient gender, male | 360, 75.5% | 28, 66.7% | 0.208 |
Child–Pugh classification (B/C) | 176/180, 36.9/37.7% | 22/18, 52.4/42.9% | 0.008 |
MELD score | 16.5 ± 8.7 | 20.8 ± 10.6 | 0.013 |
Viral hepatitis infection (yes) | 358, 75.1% | 24, 57.1% | 0.012 |
Alcoholic (yes) | 106, 22.2% | 13, 31.0% | 0.197 |
HCC (yes) | 217, 45.5% | 10, 23.8% | 0.007 |
Transplant parameters | |||
Donor age, year-old | 32.0 ± 9.0 | 36.6 ± 9.8 | 0.002 |
Donor BMI, kg/m2 | 22.7 ± 2.8 | 23.4 ± 2.9 | 0.152 |
Donor gender, male | 13.5 ± 12.1 | 11.7 ± 13.6 | 0.515 |
ABO compatibility, incompatible | 80, 16.8% | 5, 11.9% | 0.414 |
GRWR, % | 0.99 ± 0.25 | 0.87 ± 0.19 | 0.001 |
<0.8 | 107, 22.4% | 20, 47.6% | <0.001 |
Ascites, mL | 350 (0–28,800) | 1800 (0–18,000) | 0.056 |
>3000 | 121, 25.4% | 20, 47.6% | 0.002 |
Intraoperative blood loss, mL | 1550 (50–15,500) | 2400 (200–14,500) | 0.026 |
>3000 | 92, 19.3% | 15, 35.7% | 0.012 |
Cold ischemic time, minutes | 27 (5–246) | 38 (8–228) | 0.260 |
>120 | 15, 3.1% | 4, 9.5% | 0.035 |
Warm ischemic time, minutes | 36 (15–232) | 34 (24–64) | 0.248 |
>60 | 13, 2.7% | 3, 7.1% | 0.112 |
OP time, minutes | 628.4 ± 100.2 | 659.6 ± 137.9 | 0.159 |
>720 | 71, 14.9% | 10, 23.8% | 0.127 |
SOFA score and corresponding components scores at POD 7 | |||
Total SOFA score | 5 (0–15) | 9 (2–16) | <0.001 |
>7 | 72, 15.1% | 30, 71.4% | <0.001 |
Cardiovascular >0 | 17, 3.6% | 7, 16.7% | <0.001 |
Coagulation >2 | 203, 42.6% | 32, 76.2% | <0.001 |
Respiratory >1 | 123, 25.8% | 15, 35.7% | 0.163 |
Renal >0 | 99, 20.8% | 26, 61.9% | <0.001 |
Liver >2 | 93, 19.5% | 35, 83.3% | <0.001 |
Neurologic >0 | 40, 8.4% | 14, 33.3% | <0.001 |
UV | MV | ||||||
---|---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95% CI | β | p-Value | |
Non-HCC | 2.67 | 1.28–5.56 | 0.009 | ||||
Non-Viral hepatitis | 2.26 | 1.18–4.30 | 0.013 | ||||
MELD score > 20 | 1.73 | 0.90–3.34 | 0.099 | ||||
GRWR < 0.8 | 3.14 | 1.65–5.98 | <0.001 | 3.11 | 1.40–6.89 | 1.134 | 0.005 |
Ascites > 3000 mL | 2.68 | 1.41–5.07 | 0.003 | ||||
Blood loss > 3000 mL | 2.33 | 1.19–4.55 | 0.014 | ||||
Cold ischemic time > 120 min | 3.24 | 1.03–10.25 | 0.045 | ||||
SOFA scores at POD 7 | |||||||
Cardiovascular > 0 | 5.41 | 2.10–13.92 | <0.001 | 5.31 | 1.62–17.49 | 1.670 | 0.006 |
Coagulation > 2 | 4.32 | 2.08–8.99 | <0.001 | 2.64 | 1.12–6.21 | 0.970 | 0.026 |
Renal > 0 | 6.21 | 3.20–12.02 | <0.001 | 2.69 | 1.23–5.86 | 0.989 | 0.013 |
Liver > 2 | 20.65 | 8.89–47.94 | <0.001 | 9.63 | 3.92–23.66 | 2.265 | <0.001 |
Neurologic > 0 | 5.46 | 2.66–11.21 | <0.001 | 2.75 | 1.15–6.61 | 1.012 | 0.024 |
Constitution of GRWR-SOFA Model | ||
---|---|---|
Variables | Condition | Score allocation |
Cardiovascular | MAP < 70mmHg | 3 |
Coagulation | PLT < 50 × 103/μL | 2 |
Renal | Cr > 1.2 mg/dL | 2 |
Liver | TB > 5.9 mg/dL | 5 |
Neurologic | GCS < 15 | 2 |
GRWR | <0.8% | 2 |
GRWR-SOFA Class obtained by adding score for each variable | ||
Class | Risk | Sum of six variables |
I | Very low | 0–4 |
II | Low | 5–8 |
III | Intermediate | 9–10 |
IV | High | ≥11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, H.-C.; Lee, C.-F.; Cheng, S.-M.; Lee, W.-C. Developing a Novel Scoring System for Risk Stratification in Living Donor Liver Transplantation. J. Clin. Med. 2021, 10, 2014. https://doi.org/10.3390/jcm10092014
Hung H-C, Lee C-F, Cheng S-M, Lee W-C. Developing a Novel Scoring System for Risk Stratification in Living Donor Liver Transplantation. Journal of Clinical Medicine. 2021; 10(9):2014. https://doi.org/10.3390/jcm10092014
Chicago/Turabian StyleHung, Hao-Chien, Chen-Fang Lee, Ssu-Min Cheng, and Wei-Chen Lee. 2021. "Developing a Novel Scoring System for Risk Stratification in Living Donor Liver Transplantation" Journal of Clinical Medicine 10, no. 9: 2014. https://doi.org/10.3390/jcm10092014
APA StyleHung, H. -C., Lee, C. -F., Cheng, S. -M., & Lee, W. -C. (2021). Developing a Novel Scoring System for Risk Stratification in Living Donor Liver Transplantation. Journal of Clinical Medicine, 10(9), 2014. https://doi.org/10.3390/jcm10092014