Noninvasive Prenatal Testing in Immunohematology—Clinical, Technical and Ethical Considerations
Abstract
:1. Introduction
2. Hemolytic Disease of the Fetus and Newborn
Clinical Considerations
3. Technical Considerations Related to Prediction of Fetal RhD Type
4. Fetal and Neonatal Alloimmune Thrombocytopenia
Clinical Considerations
5. Technical Considerations Related to Prediction of Fetal HPA-1 Type
6. Necessity of Noninvasive Prenatal Blood and Platelet Typing—Ethical Considerations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kjeldsen-Kragh, J.; Skogen, B. Mechanisms and prevention of alloimmunization in pregnancy. Obstet. Gynecol. Surv. 2013, 68, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.M. RhD hemolytic disease of the newborn. N. Engl. J. Med. 1998, 339, 1775–1777. [Google Scholar] [CrossRef] [PubMed]
- De Vos, T.W.; Winkelhorst, D.; de Haas, M.; Lopriore, E.; Oepkes, D. Epidemiology and management of fetal and neonatal alloimmune thrombocytopenia. Transfus. Apher. Sci. 2020, 59, 102704. [Google Scholar] [CrossRef] [PubMed]
- Porcelijn, L.; de Haas, M. Neonatal Alloimmune Neutropenia. Transfus. Med. Hemother. 2018, 45, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Lo, Y.M.; Hjelm, N.M.; Fidler, C.; Sargent, I.L.; Murphy, M.F.; Chamberlain, P.F.; Poon, P.M.; Redman, C.W.; Wainscoat, J.S. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl J. Med. 1998, 339, 1734–1738. [Google Scholar] [CrossRef]
- Clausen, F.B.; Christiansen, M.; Steffensen, R.; Jorgensen, S.; Nielsen, C.; Jakobsen, M.A.; Madsen, R.D.; Jensen, K.; Krog, G.R.; Rieneck, K.; et al. Report of the first nationally implemented clinical routine screening for fetal RHD in D-pregnant women to ascertain the requirement for antenatal RhD prophylaxis. Transfusion 2012, 52, 752–758. [Google Scholar] [CrossRef]
- Wikman, A.T.; Tiblad, E.; Karlsson, A.; Olsson, M.L.; Westgren, M.; Reilly, M. Noninvasive single-exon fetal RHD determination in a routine screening program in early pregnancy. Obstet. Gynecol. 2012, 120, 227–234. [Google Scholar] [CrossRef]
- Sorensen, K.; Kjeldsen-Kragh, J.; Husby, H.; Akkok, C.A. Determination of fetal RHD type in plasma of RhD negative pregnant women. Scand. J. Clin. Lab. Investig. 2018, 78, 411–416. [Google Scholar] [CrossRef]
- Antenatal Care. NICE Guideline. Published: 19 August 2021. Available online: http://www.nice.org.uk/guidance/ng201 (accessed on 31 March 2022).
- Kahrs, B.H.; Tiller, H.; Haugen, G.; Bakken, K.; Akkök, Ç.A. Alloimmunisering Mot Erytrocytt-Antigener Alloimmunization against Erythroyte Antigens. Den Norske Legeforening. Available online: http://www.legeforeningen.no/foreningsledd/fagmed/norsk-gynekologisk-forening/veiledere/veileder-i-fodselshjelp/alloimmunisering-mot-erytrocytt-antigener/ (accessed on 31 March 2022).
- Laboratoriumdiagnostiek Zwangerschap en Zwangerschapswens Laboratory Diagnostics Pregnancy and Pregnancy Wish. Nederlands Huisartsen Genootschap. Available online: http://www.nhg.org/themas/publicaties/laboratoriumdiagnostiek-zwangerschap-en-zwangerschapswens?tmp-no-mobile=1 (accessed on 31 March 2022).
- Mari, G.; Adrignolo, A.; Abuhamad, A.Z.; Pirhonen, J.; Jones, D.C.; Ludomirsky, A.; Copel, J.A. Diagnosis of fetal anemia with Doppler ultrasound in the pregnancy complicated by maternal blood group immunization. Ultrasound Obstet. Gynecol. 1995, 5, 400–405. [Google Scholar] [CrossRef]
- Clausen, F.B.; Hellberg, A.; Bein, G.; Bugert, P.; Schwartz, D.; Drnovsek, T.D.; Finning, K.; Guz, K.; Haimila, K.; Henny, C.; et al. Recommendation for validation and quality assurance of non-invasive prenatal testing for foetal blood groups and implications for IVD risk classification according to EU regulations. Vox. Sang. 2022, 117, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Ding, C.; Gerovassili, A.; Yeung, S.W.; Chiu, R.W.; Leung, T.N.; Lau, T.K.; Chim, S.S.; Chung, G.T.; Nicolaides, K.H.; et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 2006, 52, 2211–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.Y.; Holzgreve, W.; Hahn, S. Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma. Swiss. Med. Wkly. 2001, 131, 70–74. [Google Scholar]
- Legler, T.J.; Luhrig, S.; Korschineck, I.; Schwartz, D. Diagnostic performance of the noninvasive prenatal FetoGnost RhD assay for the prediction of the fetal RhD blood group status. Arch. Gynecol. Obstet. 2021, 304, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, P.G.; de Haas, M.; van der Schoot, C.E. The controversy about controls for fetal blood group genotyping by cell-free fetal DNA in maternal plasma. Curr. Opin. Hematol. 2011, 18, 467–473. [Google Scholar] [CrossRef]
- Papasavva, T.; Martin, P.; Legler, T.J.; Liasides, M.; Anastasiou, G.; Christofides, A.; Christodoulou, T.; Demetriou, S.; Kerimis, P.; Kontos, C.; et al. Prevalence of RhD status and clinical application of non-invasive prenatal determination of fetal RHD in maternal plasma: A 5 year experience in Cyprus. BMC Res. Notes 2016, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- NHS Blood and Transplant. Feral RHD Screening Test: Questions & Answers. Available online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/16585/fetal-rhd-screening-test-questions-and-answers.pdf (accessed on 22 March 2022).
- Clausen, F.B. Non-invasive foetal RhD genotyping in admixed populations. Blood Transfus. 2017, 15, 4–5. [Google Scholar] [CrossRef]
- Blanco, S.; Giacomi, V.S.; Slobodianiuk, L.G.; Frutos, M.C.; Carrizo, L.H.; Fanin, G.E.; Culasso, J.M.; Gallego, S.V. Usefulness of Non-Invasive Fetal RHD Genotyping towards Immunoprophylaxis Optimization. Transfus. Med. Hemother. 2018, 45, 423–428. [Google Scholar] [CrossRef]
- Boggione, C.T.; Lujan Brajovich, M.E.; Mattaloni, S.M.; Di Monaco, R.A.; Garcia Borras, S.E.; Biondi, C.S.; Cotorruelo, C.M. Genotyping approach for non-invasive foetal RHD detection in an admixed population. Blood Transfus. 2017, 15, 66–73. [Google Scholar] [CrossRef]
- Takahashi, K.; Migita, O.; Sasaki, A.; Nasu, M.; Kawashima, A.; Sekizawa, A.; Sato, T.; Ito, Y.; Sago, H.; Okamoto, A.; et al. Amplicon Sequencing-Based Noninvasive Fetal Genotyping for RHD-Positive D Antigen-Negative Alleles. Clin. Chem. 2019, 65, 1307–1316. [Google Scholar] [CrossRef]
- Tsui, N.B.; Hyland, C.A.; Gardener, G.J.; Danon, D.; Fisk, N.M.; Millard, G.; Flower, R.L.; Lo, Y.M. Noninvasive fetal RHD genotyping by microfluidics digital PCR using maternal plasma from two alloimmunized women with the variant RHD(IVS3 + 1G>A) allele. Prenat. Diagn. 2013, 33, 1214–1216. [Google Scholar] [CrossRef] [PubMed]
- Eryilmaz, M.; Muller, D.; Rink, G.; Kluter, H.; Bugert, P. Introduction of Noninvasive Prenatal Testing for Blood Group and Platelet Antigens from Cell-Free Plasma DNA Using Digital PCR. Transfus. Med. Hemother. 2020, 47, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Clausen, F.B.; Steffensen, R.; Christiansen, M.; Rudby, M.; Jakobsen, M.A.; Jakobsen, T.R.; Krog, G.R.; Madsen, R.D.; Nielsen, K.R.; Rieneck, K.; et al. Routine noninvasive prenatal screening for fetal RHD in plasma of RhD-negative pregnant women-2 years of screening experience from Denmark. Prenat. Diagn. 2014, 34, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.C.D.; Jacobs, L.H.J.; van den Berg, S.A.A.; van Deutekom, H.W.M.; Hamann, D.; Molenkamp, R.; Ruivenkamp, C.A.L.; Swen, J.J.; Tops, B.B.J.; Wamelink, M.M.C.; et al. The end of the laboratory developed test as we know it? Recommendations from a national multidisciplinary taskforce of laboratory specialists on the interpretation of the IVDR and its complications. Clin. Chem. Lab. Med. 2021, 59, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Publications Office of the European Union. Regulation (EU) 2017/746 of the European Parliament and of the Council of 5 April 2017 on in vitro Diagnostic Medical Devices and Repealing Directive 98/79/EC and Commission Decision 2010/227/EU (Text with EEA Relevance) Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0746 (accessed on 22 March 2022).
- Hawk, A.F.; Chang, E.Y.; Shields, S.M.; Simpson, K.N. Costs and clinical outcomes of noninvasive fetal RhD typing for targeted prophylaxis. Obstet. Gynecol. 2013, 122, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Gajic-Veljanoski, O.; Li, C.; Schaink, A.K.; Guo, J.; Shehata, N.; Charames, G.S.; de Vrijer, B.; Clarke, G.; Pechlivanoglou, P.; Okun, N.; et al. Cost-effectiveness of noninvasive fetal RhD blood group genotyping in nonalloimmunized and alloimmunized pregnancies. Transfusion 2022, 62, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Teitelbaum, L.; Metcalfe, A.; Clarke, G.; Parboosingh, J.S.; Wilson, R.D.; Johnson, J.M. Costs and benefits of non-invasive fetal RhD determination. Ultrasound Obstet. Gynecol. 2015, 45, 84–88. [Google Scholar] [CrossRef]
- Kamphuis, M.M.; Paridaans, N.; Porcelijn, L.; de Haas, M.; van der Schoot, C.E.; Brand, A.; Bonsel, G.J.; Oepkes, D. Screening in pregnancy for fetal or neonatal alloimmune thrombocytopenia: Systematic review. BJOG 2010, 117, 1335–1343. [Google Scholar] [CrossRef]
- Kjeldsen-Kragh, J.; Olsen, K.J. Risk of HPA-1a-immunization in HPA-1a-negative women after giving birth to an HPA-1a-positive child. Transfusion 2019, 59, 1344–1352. [Google Scholar] [CrossRef]
- Kjeldsen-Kragh, J.; Fergusson, D.A.; Kjaer, M.; Lieberman, L.; Greinacher, A.; Murphy, M.F.; Bussel, J.; Bakchoul, T.; Corke, S.; Bertrand, G.; et al. Fetal/neonatal alloimmune thrombocytopenia: A systematic review of impact of HLA-DRB3*01:01 on fetal/neonatal outcome. Blood Adv. 2020, 4, 3368–3377. [Google Scholar] [CrossRef]
- Gragert, L.; Madbouly, A.; Freeman, J.; Maiers, M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum. Immunol. 2013, 74, 1313–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, M.M.; Paridaans, N.P.; Porcelijn, L.; Lopriore, E.; Oepkes, D. Incidence and consequences of neonatal alloimmune thrombocytopenia: A systematic review. Pediatrics 2014, 133, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjeldsen-Kragh, J.; Bengtsson, J. Fetal and Neonatal Alloimmune Thrombocytopenia-New Prospects for Fetal Risk Assessment of HPA-1a-Negative Pregnant Women. Transfus. Med. Rev. 2020, 34, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Rossi, K.Q.; Lehman, K.J.; O’Shaughnessy, R.W. Effects of antepartum therapy for fetal alloimmune thrombocytopenia on maternal lifestyle. J. Matern.-Fetal Neonatal Med. 2016, 29, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Wienzek-Lischka, S.; Sawazki, A.; Ehrhardt, H.; Sachs, U.J.; Axt-Fliedner, R.; Bein, G. Non-invasive risk-assessment and bleeding prophylaxis with IVIG in pregnant women with a history of fetal and neonatal alloimmune thrombocytopenia: Management to minimize adverse events. Arch. Obstet. Gynaecol. 2020, 302, 355–363. [Google Scholar] [CrossRef]
- Rink, B.D.; Gonik, B.; Chmait, R.H.; O’Shaughnessy, R. Maternal hemolysis after intravenous immunoglobulin treatment in fetal and neonatal alloimmune thrombocytopenia. Obstet. Gynecol. 2013, 121, 471–473. [Google Scholar] [CrossRef]
- Herrmann, A.; Samelson-Jones, B.J.; Brake, S.; Samelson, R. IVIG-Associated Maternal Pancytopenia during Treatment for Neonatal Alloimmune Thrombocytopenia. AJP Rep. 2017, 7, e197–e200. [Google Scholar] [CrossRef] [Green Version]
- Nawrat, A. Why Are Patients Struggling to Access Life-Saving Immune Globulin? 2020. Available online: http://www.pharmaceutical-technology.com/features/immune-globulin-shortages/ (accessed on 2 March 2022).
- Turner, M.L.; Bessos, H.; Fagge, T.; Harkness, M.; Rentoul, F.; Seymour, J.; Wilson, D.; Gray, I.; Ahya, R.; Cairns, J.; et al. Prospective epidemiologic study of the outcome and cost-effectiveness of antenatal screening to detect neonatal alloimmune thrombocytopenia due to anti-HPA-1a. Transfusion 2005, 45, 1945–1956. [Google Scholar] [CrossRef]
- Williamson, L.M.; Hackett, G.; Rennie, J.; Palmer, C.R.; Maciver, C.; Hadfield, R.; Hughes, D.; Jobson, S.; Ouwehand, W.H. The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (PlA1, Zwa) as determined by antenatal screening. Blood 1998, 92, 2280–2287. [Google Scholar] [CrossRef]
- Kjeldsen-Kragh, J.; Killie, M.K.; Tomter, G.; Golebiowska, E.; Randen, I.; Hauge, R.; Aune, B.; Oian, P.; Dahl, L.B.; Pirhonen, J.; et al. A screening and intervention program aimed to reduce mortality and serious morbidity associated with severe neonatal alloimmune thrombocytopenia. Blood 2007, 110, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Killie, M.K.; Husebekk, A.; Kjeldsen-Kragh, J.; Skogen, B. A prospective study of maternal anti-HPA 1a antibody level as a potential predictor of alloimmune thrombocytopenia in the newborn. Haematologica 2008, 93, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Tiller, H.; Killie, M.K.; Chen, P.; Eksteen, M.; Husebekk, A.; Skogen, B.; Kjeldsen-Kragh, J.; Ni, H. Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: Induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model. Transfusion 2012, 52, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen-Kragh, J.; Ni, H.; Skogen, B. Towards a prophylactic treatment of HPA-related foetal and neonatal alloimmune thrombocytopenia. Curr. Opin. Hematol. 2012, 19, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Geisen, C.; Fleck, E.; Schäfer, S.M.G.; Walter, C.; Braeuninger, S.; Olsen, K.; Bhagwagar, Z.; Mortberg, A.; Wikman, A.; Kjaer, M.; et al. Rapid and complete clearance of HPA-1a mismatched platelets in a human model of fetal and neonatal alloimmune thrombocytopenia by a hyperimmune plasma derived polyclonal anti HPA-1a antibody [abstract]. Res. Pract. Thromb. Haemost. 2021, 5 (Suppl. S2). Available online: https://abstracts.isth.org/abstract/rapid-and-complete-clearance-of-hpa-1a-mismatched-platelets-in-a-human-model-of-fetal-and-neonatal-alloimmune-thrombocytopenia-by-a-hyperimmune-plasma-derived-polyclonal-anti-hpa-1a-antibody/ (accessed on 31 March 2022).
- Nogués, N. Recent advances in non-invasive fetal HPA-1a typing. Transfus Apher Sci 2020, 59, 102708. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, P.G.; Ait Soussan, A.; Verhagen, O.J.; Page-Christiaens, G.C.; Oepkes, D.; de Haas, M.; van der Schoot, C.E. Noninvasive fetal genotyping of human platelet antigen-1a. BJOG 2011, 118, 1392–1395. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Mamon, H.; Kulke, M.H.; Berbeco, R.; Makrigiorgos, G.M. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat. Med. 2008, 14, 579–584. [Google Scholar] [CrossRef]
- Ferro, M.; Macher, H.C.; Fornes, G.; Martin-Sanchez, J.; Jimenez-Arriscado, P.; Molinero, P.; Perez-Simon, J.A.; Guerrero, J.M.; Rubio, A. Noninvasive prenatal diagnosis by cell-free DNA screening for fetomaternal HPA-1a platelet incompatibility. Transfusion 2018, 58, 2272–2279. [Google Scholar] [CrossRef]
- Orzinska, A.; Kluska, A.; Balabas, A.; Piatkowska, M.; Kulecka, M.; Ostrowski, J.; Mikula, M.; Debska, M.; Uhrynowska, M.; Guz, K. Prediction of fetal blood group antigens from maternal plasma using Ion AmpliSeq HD technology. Transfusion 2022, 62, 458–468. [Google Scholar] [CrossRef]
- Wienzek-Lischka, S.; Krautwurst, A.; Frohner, V.; Hackstein, H.; Gattenlohner, S.; Brauninger, A.; Axt-Fliedner, R.; Degenhardt, J.; Deisting, C.; Santoso, S.; et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion 2015, 55, 1538–1544. [Google Scholar] [CrossRef]
- Orzinska, A.; Guz, K.; Uhrynowska, M.; Debska, M.; Mikula, M.; Ostrowski, J.; Ahlen, M.T.; Husebekk, A.; Brojer, E. Noninvasive prenatal HPA-1 typing in HPA-1a negative pregnancies selected in the Polish PREVFNAIT screening program. Transfusion 2018, 58, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Loganathan, N.; Agarwalla, S.; Yang, C.; Yuan, W.; Zeng, J.; Wu, R.; Wang, W.; Duraiswamy, S. Current commercial dPCR platforms: Technology and market review. Crit. Rev. Biotechnol. 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Ouzegdouh Mammasse, Y.; Chenet, C.; Drubay, D.; Martageix, C.; Cartron, J.P.; Vainchenker, W.; Petermann, R. A new efficient tool for non-invasive diagnosis of fetomaternal platelet antigen incompatibility. Br. J. Haematol. 2020, 190, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, V.; Urbinati, D.; Visser, G.H.A.; Di Renzo, G.C.; Zipursky, A.; Stotler, B.A.; Spitalnik, S.L. Hemolytic disease of the fetus and newborn due to Rh(D) incompatibility: A preventable disease that still produces significant morbidity and mortality in children. PLoS ONE 2020, 15, e0235807. [Google Scholar] [CrossRef] [PubMed]
- Visser, G.H.A.; Di Renzo, G.C.; Spitalnik, S.L. The continuing burden of Rh disease 50 years after the introduction of anti-Rh(D) immunoglobin prophylaxis: Call to action. Am. J. Obstet. Gynecol. 2019, 221, 227.e1–227.e4. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.R.; Bussel, J.B.; Manco-Johnson, M.J.; Aster, R.H.; McFarland, J.G. Fetal and neonatal alloimmune thrombocytopenia in pregnancies involving in vitro fertilization: A report of four cases. Am. J. Obstet. Gynecol. 2005, 192, 543–547. [Google Scholar] [CrossRef]
- Storry, J.R. Don’t ask, don’t tell: The ART of silence can jeopardize assisted pregnancies. Transfusion 2010, 50, 2070–2072. [Google Scholar] [CrossRef]
Devyser RHD | NIMoTest® | FetoGnost® Kit RHD | Free DNA Fetal Kit® RhD | |
---|---|---|---|---|
Fetal RHD qPCR Kit | ||||
Use for immunized women | yes | no | no | yes |
Use for antenatal RHD screening | yes | yes | yes | yes |
Detection of | Exon 4 | Exons 5, 7 | Exons 5, 7, 10 | Exons 5, 7, 10 |
Extraction control | GAPDH | Synthetic DNA | FetoGnost® Kit IPC | Maize DNA |
Use from gestational week | 10 | 11 | 11 | 9 |
Maximal age of sample in EDTA tube | 5 days | 72 h | # | 48 h ‡ |
Need to repeat negative results | no | yes ¤ | no | yes ¤ |
Distinction of maternal RHD*08N.01 | no | yes | yes | yes |
Suitable for automation | yes | yes | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjeldsen-Kragh, J.; Hellberg, Å. Noninvasive Prenatal Testing in Immunohematology—Clinical, Technical and Ethical Considerations. J. Clin. Med. 2022, 11, 2877. https://doi.org/10.3390/jcm11102877
Kjeldsen-Kragh J, Hellberg Å. Noninvasive Prenatal Testing in Immunohematology—Clinical, Technical and Ethical Considerations. Journal of Clinical Medicine. 2022; 11(10):2877. https://doi.org/10.3390/jcm11102877
Chicago/Turabian StyleKjeldsen-Kragh, Jens, and Åsa Hellberg. 2022. "Noninvasive Prenatal Testing in Immunohematology—Clinical, Technical and Ethical Considerations" Journal of Clinical Medicine 11, no. 10: 2877. https://doi.org/10.3390/jcm11102877
APA StyleKjeldsen-Kragh, J., & Hellberg, Å. (2022). Noninvasive Prenatal Testing in Immunohematology—Clinical, Technical and Ethical Considerations. Journal of Clinical Medicine, 11(10), 2877. https://doi.org/10.3390/jcm11102877