In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCD Group Inclusion Criteria
2.2. SCD Group Characterization
2.3. Control Group Inclusion Criteria
2.4. Control Group Characterization
2.5. Clinical Course of the SCD Group
2.6. Laboratory Investigations
2.7. Statistical Analysis
2.8. Statistical Methods
3. Results
3.1. SCD HU− Subgroup
3.2. SCD HU+ Subgroup
3.3. SCD HU− vs. SCD HU+ Subgroups
3.4. SCD Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piel, F.B.; Steinberg, M.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 1561–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hoss, S.; Cochet, S.; Marin, M.; Lapouméroulie, C.; Dussiot, M.; Bouazza, N.; Elie, C.; De Montalembert, M.; Arnaud, C.; Guitton, C.; et al. Insights into determinants of spleen injury in sickle cell anemia. Blood Adv. 2019, 3, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Brousse, V.; Buffet, P.; Rees, D. The spleen and sickle cell disease: The sick(led) spleen. Br. J. Haematol. 2014, 166, 165–176. [Google Scholar] [CrossRef]
- El Hoss, S.; Brousse, V. Considering the spleen in sickle cell disease. Expert Rev. Hematol. 2019, 12, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Ochocinski, D.; Dalal, M.; Black, L.V.; Carr, S.; Lew, J.; Sullivan, K.; Kissoon, N. Life-Threatening Infectious Complications in Sickle Cell Disease: A Concise Narrative Review. Front. Pediatr. 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Porto, A.P.N.A.; Lammers, A.J.J.; Bennink, R.J.; ten Berge, I.J.M.; Speelman, P.; Hoekstra, J.B.L. Assessment of splenic function. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, A.; Carsetti, R.; Corazza, G.R. Post-splenectomy and hyposplenic states. Lancet 2011, 378, 86–97. [Google Scholar] [CrossRef]
- Hankins, J.S.; Helton, K.J.; McCarville, M.B.; Li, C.-S.; Wang, W.C.; Ware, R.E. Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea. Pediatr. Blood Cancer 2008, 50, 293–297. [Google Scholar] [CrossRef]
- Zimmerman, S.A.; Schultz, W.H.; Davis, J.S.; Pickens, C.V.; Mortier, N.A.; Howard, T.A.; Ware, R.E. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 2004, 103, 2039–2045. [Google Scholar] [CrossRef]
- Wang, W.C.; Ware, R.E.; Miller, S.T.; Iyer, R.V.; Casella, J.F.; Minniti, C.P.; Rana, S.; Thornburg, C.D.; Rogers, Z.R.; Kalpatthi, R.V.; et al. Hydroxycarbamide in very young children with sickle-cell anaemia: A multicentre, randomised, controlled trial (BABY HUG). Lancet 2011, 377, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Charache, S.; Terrin, M.L.; Moore, R.D.; Dover, G.J.; Barton, F.B.; Eckert, S.V.; McMahon, R.P.; Bonds, D.R. Effect of Hydroxyurea on the Frequency of Painful Crises in Sickle Cell Anemia. N. Engl. J. Med. 1995, 332, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Hankins, J.S.; Ware, R.E.; Rogers, Z.R.; Wynn, L.W.; Lane, P.A.; Scott, J.P.; Wang, W.C. Long-term hydroxyurea therapy for infants with sickle cell anemia: The HUSOFT extension study. Blood 2005, 106, 2269–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana, S.S.; Pitanga, T.N.; De Santana, J.M.; Zanette, D.L.; Vieira, J.D.J.; Yahouédéhou, S.C.M.A.; Adanho, C.S.A.; Viana, S.D.M.; Luz, N.F.; Borges, V.M.; et al. Hydroxyurea Scavenges Free Radicals and Induces the Expression of Antioxidant Genes in Human Cell Cultures Treated with Hemin. Front. Immunol. 2020, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Guarda, C.C.; Silveira-Mattos, P.S.M.; Yahouédéhou, S.C.M.A.; Santiago, R.P.; Aleluia, M.M.; Figueiredo, C.V.B.; Fiuza, L.M.; Carvalho, S.P.; Oliveira, R.M.; Nascimento, V.M.L.; et al. Hydroxyurea alters circulating monocyte subsets and dampens its inflammatory potential in sickle cell anemia patients. Sci. Rep. 2019, 9, 14829. [Google Scholar] [CrossRef] [Green Version]
- Balandya, E.; Reynolds, T.; Obaro, S.; Makani, J. Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses. Am. J. Hematol. 2016, 91, 938–946. [Google Scholar] [CrossRef] [Green Version]
- Koffi, K.G.; Sawadogo, D.; Meite, M.; Nanho, D.C.; Tanoh, E.S.; Attia, A.K.; Sanogo, I.; Sangare, A. Reduced levels of T-cell subsets CD4+ and CD8+ in homozygous sickle cell anaemia patients with splenic defects. Hematol. J. 2003, 4, 363–365. [Google Scholar] [CrossRef]
- Kaaba, S.A.; Al-Harbi, S.A. Reduced levels of CD2+ cells and T-cell subsets in patients with sickle cell anaemia. Immunol. Lett. 1993, 37, 77–81. [Google Scholar] [CrossRef]
- Rautonen, N.; Martin, N.L.; Rautonen, J.; Rooks, Y.; Mentzer, W.C.; Wara, D.W. Low number of antibody producing cells in patients with sickle cell anemia. Immunol. Lett. 1992, 34, 207–211. [Google Scholar] [CrossRef]
- Daltro, P.B.; Ribeiro, T.O.; Daltro, G.C.; Meyer, R.J.; Fortuna, V. CD4+ T Cell Profile and Activation Response in Sickle Cell Disease Patients with Osteonecrosis. Mediat. Inflamm. 2020, 2020, 1747894. [Google Scholar] [CrossRef]
- Lederman, H.M.; Connolly, M.A.; Kalpatthi, R.; Ware, R.E.; Wang, W.C.; Luchtman-Jones, L.; Waclawiw, M.; Goldsmith, J.C.; Swift, A.; Casella, J.F. Immunologic effects of hydroxyurea in sickle cell anemia. Pediatrics 2014, 134, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Nickel, R.S.; Osunkwo, I.; Garrett, A.; Robertson, J.; Archer, D.R.; Promislow, D.E.; Horan, J.T.; Hendrickson, J.E.; Kean, L.S. Immune parameter analysis of children with sickle cell disease on hydroxycarbamide or chronic transfusion therapy. Br. J. Haematol. 2015, 169, 574–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.Y.; Lee, S.-T.; Kim, S.-H. Performance evaluation of the new hematology analyzer Sysmex XN-series. Int. J. Lab. Hematol. 2015, 37, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Maecker, H.T.; McCoy, J.P.; Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 2012, 12, 191–200. [Google Scholar] [CrossRef] [Green Version]
- De, N. Quantitation of serum immunoglobulins. CRC Crit. Rev. Clin. Lab. Sci. 1982, 17, 103–170. [Google Scholar] [CrossRef]
- Lammers, A.J.; de Porto, A.P.; Bennink, R.J.; van Leeuwen, E.M.; Biemond, B.J.; Goslings, J.C.; van Marle, J.; Berge, I.J.T.; Speelman, P.; Hoekstra, J.B. Hyposplenism: Comparison of different methods for determining splenic function. Am. J. Hematol. 2012, 87, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.A.; Lang, H.; Meier, E.R.; Nickel, R.S.; Dean, M.; Lawal, N.; Speller-Brown, B.; Wang, Y.; Kean, L.; Bollard, C.M. Characterization of Natural Killer cells Expressing Markers Associated with Maturity and Cytotoxicity in Children and Young Adults with Sickle Cell Disease. Pediatr. Blood Cancer 2019, 66, e27601. [Google Scholar] [CrossRef] [PubMed]
- Crome, S.; Lang, P.A.; Lang, K.; Ohashi, P.S. Natural killer cells regulate diverse T cell responses. Trends Immunol. 2013, 34, 342–349. [Google Scholar] [CrossRef]
- Pallmer, K.; Oxenius, A. Recognition and Regulation of T Cells by NK Cells. Front. Immunol. 2016, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Unger, S.; Seidl, M.; van Schouwenburg, P.; Rakhmanov, M.; Bulashevska, A.; Frede, N.; Grimbacher, B.; Pfeiffer, J.; Schrenk, K.; Munoz, L.; et al. The TH1 phenotype of follicular helper T cells indicates an IFN-γ–associated immune dysregulation in patients with CD21low common variable immunodeficiency. J. Allergy Clin. Immunol. 2018, 141, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Cherif-Alami, S.; Hau, I.; Arnaud, C.; Kamdem, A.; Coulon, B.; Idoux, E.; Bechet, S.; Creidy, R.; Bernaudin, F.; Epaud, R.; et al. Serum Immunoglobulin Levels in Children with Sickle Cell Disease: A Large Prospective Study. J. Clin. Med. 2019, 8, 1688. [Google Scholar] [CrossRef] [Green Version]
- Gavrilis, P.; Rothenberg, S.P.; Guy, R. Correlation of low serum IgM levels with absence of functional splenic tissue in sickle cell disease syndromes. Am. J. Med. 1974, 57, 542–545. [Google Scholar] [CrossRef]
- Mamani-Matsuda, M.; Cosma, A.; Weller, S.; Faili, A.; Staib, C.; Garçon, L.; Hermine, O.; Beyne-Rauzy, O.; Fieschi, C.; Pers, J.-O.; et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 2008, 111, 4653–4659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, S.; Geanes, E.S.; Bradley, T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front. Cell. Infect. Microbiol. 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.; Peppa, D.; Pedroza-Pacheco, I.; Li, D.; Cain, D.W.; Henao, R.; Venkat, V.; Hora, B.; Chen, Y.; Vandergrift, N.A.; et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 2018, 175, 387–399.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarasinghe, A.; Rosch, J.W. Convergence of Inflammatory Pathways in Allergic Asthma and Sickle Cell Disease. Front. Immunol. 2019, 10, 3058. [Google Scholar] [CrossRef]
- Wardemann, H.; Boehm, T.; Dear, N.; Carsetti, R. B-1a B Cells that Link the Innate and Adaptive Immune Responses Are Lacking in the Absence of the Spleen. J. Exp. Med. 2002, 195, 771–780. [Google Scholar] [CrossRef]
- Yawn, B.P.; Buchanan, G.R.; Afenyi-Annan, A.N.; Ballas, S.K.; Hassell, K.L.; James, A.H.; Jordan, L.; Lanzkron, S.M.; Lottenberg, R.; Savage, W.J.; et al. Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members. JAMA 2014, 312, 1033–1048. [Google Scholar] [CrossRef]
- Thornburg, C.D.; Files, B.A.; Luo, Z.; Miller, S.T.; Kalpatthi, R.; Iyer, R.; Seaman, P.; Lebensburger, J.; Alvarez, O.; Thompson, B.; et al. Impact of hydroxyurea on clinical events in the BABY HUG trial. Blood 2012, 120, 4304–4310. [Google Scholar] [CrossRef] [Green Version]
- Estepp, J.H.; Smeltzer, M.; Kang, G.; Li, C.; Wang, W.C.; Abrams, C.; Aygun, B.; Ware, R.E.; Nottage, K.; Hankins, J.S. A clinically meaningful fetal hemoglobin threshold for children with sickle cell anemia during hydroxyurea therapy. Am. J. Hematol. 2017, 92, 1333–1339. [Google Scholar] [CrossRef]
- Jarduli, L.R. Neogênese de células T e B em pacientes com doença falciforme tratados com diferentes modalidades terapêuticas. Ph.D. Thesis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil, 2018. [Google Scholar] [CrossRef] [Green Version]
- Weill, J.-C.; Reynaud, C.-A. IgM memory B cells: Specific effectors of innate-like and adaptive responses. Curr. Opin. Immunol. 2020, 63, 1–6. [Google Scholar] [CrossRef]
- Carsetti, R.; Di Sabatino, A.; Rosado, M.M.; Cascioli, S.; Mortari, E.P.; Milito, C.; Grimsholm, O.; Aranburu, A.; Giorda, E.; Tinozzi, F.P.; et al. Lack of Gut Secretory Immunoglobulin A in Memory B-Cell Dysfunction-Associated Disorders: A Possible Gut-Spleen Axis. Front. Immunol. 2020, 10, 2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, Z.R.; Wang, W.C.; Luo, Z.; Iyer, R.V.; Shalaby-Rana, E.; Dertinger, S.D.; Shulkin, B.L.; Miller, J.H.; Files, B.; Lane, P.A.; et al. Biomarkers of splenic function in infants with sickle cell anemia: Baseline data from the BABYHUG trial. Blood 2011, 117, 2614–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total SCD Cohort (n = 19) | HU+ Group (n = 12) | HU− Group (n = 7) | Splenectomized Group (n = 3) | Unsplenectomized Group (n = 16) | ||
---|---|---|---|---|---|---|
Categorical Variables | No. | No. | No. | No. | No. | |
Gender | Male | 10 | 06 | 04 | 02 | 08 |
Female | 09 | 06 | 03 | 01 | 08 | |
Ethnicity | African | 14 | 07 | 07 | 02 | 12 |
Caucasian | 05 | 05 | 00 | 01 | 04 | |
SCD genotype | Hb SS | 12 | 07 | 05 | 02 | 10 |
Hb Sβ0-thalassemia | 06 | 05 | 02 | 01 | 06 | |
Hb SC | 01 | 00 | 01 | 00 | 01 | |
Patients with more than two painful crises per year | / | 08 | / | 02 | 06 | |
Patients on chemoprophylaxis | 7 | 3 | 4 | 0 | 7 | |
Continuous Variables | Mean | Mean | Mean | Mean | Mean | |
Age at enrollment in the study (range 3–23) (years) | 11 | 13 | 07 | 18 | 10 | |
Age at the start of hydroxyurea (y) | / | 10 | / | 17 | 11 | |
Duration of therapy with hydroxyurea (years) | / | 04 | / | 02 | 05 | |
Dosage of hydroxyurea (mg/kg/die) | 21 | / | 21 | 21 | 21 | |
Time between splenectomy and enrollment (years) | / | / | / | 12 | / |
Control Group (n = 24) | ||
---|---|---|
Categorical Variables | No. (%) | |
Gender | Male | 13 (54%) |
Female | 11 (46%) | |
Ethnicity | Caucasian | 23 (96%) |
Asian | 01 (4%) | |
Cause of referral to hospital | Recurrent URTI | 13 (54%) |
Recurrent fever | 05 (21%) | |
Recurrent tonsillitis | 01 (4%) | |
EBV virus infection | 01 (4%) | |
Recurrent herpetic infection | 01 (4%) | |
Reactive lymphadenopathy | 01 (4%) | |
Recurrent abdominal pain | 01 (4%) | |
Transient childhood hypogammaglobulinemia | 01 (4%) | |
Continuous Variables | Mean | |
Age at enrollment in the study (range 1–24) (y) | 06 |
Control Group (n = 24) | SCD HU− Subgroup (n = 7) | T-Test (Controls vs. SCD HU− Group) | SCD HU+ Subgroup (n = 12) | T-Test (Controls vs. SCD HU+ Group) | ||
---|---|---|---|---|---|---|
Variables | Mean ± SE | Mean ± SE | p-Value | Mean ± SE | p-Value | |
Basic features | WBC (cell/uL) | 8058.72 ± 545.18 | 12877.14 ± 1688.76 | * 0.001 | 8365.83 ± 1060.16 | 0.776 |
Neutrophils (cell/uL) | 3621.40 ± 375.92 | 6072.15 ± 1251.19 | * 0.016 | 4319.35 ± 700.68 | 0.342 | |
Neutrophils (%†) | 43.73 ± 2.53 | 45.89 ± 5.08 | 0.693 | 49.84 ± 3.37 | 0.164 | |
Lymphocytes (cell/uL) | 3657.5 ± 305.48 | 4615.71 ± 688.74 | 0.166 | 3382.00 ± 304.18 | 0.573 | |
Lymphocytes (%†) | 46.32 ± 2.33 | 38.51 ± 5.97 | 0.155 | 39.94 ± 2.97 | 0.112 | |
CD3+ PAN-T cells (%‡) | 68.75 ± 1.25 | 53.28 ± 4.09 | * 0.000 | 67.08 ± 2.90 | 0.541 | |
CD4+/CD8+ ratio | 1.81 ± 0.11 | 1.84 ± 0.24 | 0.917 | 1.85 ± 0.09 | 0.818 | |
CD4+ T-cell subsets | CD3+CD4+ T cells (cell/uL) | 1426.17 ± 115.71 | 1553.85 ± 221.58 | 0.603 | 1534.16 ± 223.95 | 0.637 |
CD3+CD4+ T cells (%‡) | 39.66 ± 1.29 | 34.00 ± 1.25 | * 0.032 | 40.16 ± 2.09 | 0.833 | |
CD4+CD45RA+CCR7+ naїve T cells (%§) | 71.79 ± 1.41 | 53.43 ± 5.98 | * 0.021 | 63.75 ± 3.40 | * 0.045 | |
CD4+CD45RA−CCR7+ central memory T cells (%§) | 19.31 ± 1.13 | 27.00 ± 1.79 | * 0.002 | 24.16 ± 2.65 | 0.056 | |
CD4+CD45RA−CCR7− effector memory T cells (%§) | 7.87 ± 0.71 | 17.57 ± 3.69 | * 0.039 | 10.58 ± 1.33 | 0.057 | |
CD4+CD45RA+CCR7− terminal effector memory T cells (%§) | 1.08 ± 0.16 | 2.43 ± 1.15 | 0.290 | 1.41 ± 0.43 | 0.486 | |
CD4+CD127−CCR7+CD25++ regulatory T cells (%§) | 4.16 ± 0.29 | 3.71 ± 0.36 | 0.449 | 3.16 ± 0.42 | 0.061 | |
CD8+ T-cell subsets | CD3+CD8+ T cells (cell/uL) | 830.62 ± 63.83 | 900.86 ± 153.12 | 0.628 | 751.42 ± 85.10 | 0.471 |
CD3+CD8+ T cells (%‡) | 23.04 ± 1.05 | 20.14 ± 2.35 | 0.222 | 22.16 ± 1.42 | 0.630 | |
CD8+CD45RA+CCR7+ naїve T cells (%¶) | 52.33 ± 2.93 | 39.42 ± 7.17 | 0.061 | 53.50 ± 2.54 | 0.799 | |
CD8+CD45RA−CCR7+ central memory T cells (%¶) | 4.20 ± 0.47 | 4.85 ± 0.94 | 0.520 | 4.50 ± 0.73 | 0.727 | |
CD8+CD45RA−CCR7− effector memory T cells (%¶) | 17.25 ± 1.34 | 19.00 ± 5.81 | 0.778 | 16.08 ± 2.33 | 0.645 | |
CD8+CD45RA+CCR7− late effector T cells (%¶) | 26.40 ± 3.22 | 36.42 ± 5.83 | 0.148 | 25.83 ± 2.12 | 0.883 | |
Other cell subsets | CD56+CD16+CD3− natural killer cells (%‡) | 11.04 ± 1.03 | 15.28 ± 1.11 | * 0.044 | 11.00 ± 1.39 | 0.981 |
TCRαβ+CD3+CD4−CD8− double negative T cells (%††) | 1.21 ± 0.12 | 1.42 ± 0.20 | 0.405 | 1.18 ± 0.15 | 0.888 | |
CD3+γ+δ+ (%‡) | 5.41 ± 0.42 | 4.57 ± 0.72 | 0.344 | 4.66 ± 0.59 | 0.314 | |
CD19+ B-cell subsets | CD19+ PAN-B cells (cell/uL) | 753.00 ± 140.62 | 1206.28 ± 247.84 | 0.128 | 702.33 ± 101.89 | 0.772 |
CD19+ PAN-B cells (%‡) | 19.32 ± 1.34 | 25.17 ± 2.90 | 0.055 | 21.23 ± 2.90 | 0.496 | |
CD19+IgD+CD27− naïve B cells (%‡‡) | 73.50 ± 1.77 | 86.42 ± 2.20 | * 0.001 | 76.25 ± 7.16 | 0.715 | |
CD19+IgM++CD38++ transitional B cells (%‡‡) | 5.80 ± 1.02 | 8.85 ± 1.62 | 0.156 | 6.25 ± 0.89 | 0.781 | |
CD19+IgD+CD27+ memory B cells (%‡‡) | 10.71 ± 0.87 | 3.21 ± 0.65 | * 0.000 | 10.63 ± 7.05 | 0.992 | |
CD19+IgD−CD27+ switched memory B cells (%‡‡) | 9.97 ± 0.81 | 5.41 ± 1.26 | * 0.009 | 6.65 ± 0.79 | *0.014 | |
CD19+CD21+lCD38− CD21low B cells (%‡‡) | 3.63 ± 0.29 | 2.15 ± 0.66 | * 0.029 | 3.27 ± 0.74 | 0.659 | |
CD19+IgM−+CD38++ plasmablasts (%‡‡) | 1.22 ± 0.24 | 1.40 ± 0.45 | 0.728 | 0.99 ± 0.16 | 0.440 | |
Immunoglobulin levels | IgG (mg/dL) §§ | 910.66 ± 34.28 | 1233.71 ± 124.63 | * 0.001 | 1596.33 ± 82.02 | * 0.000 |
IgA (mg/dL) §§ | 114.5 ± 10.13 | 147.42 ± 30.15 | 0.191 | 233.83 ± 22.64 | * 0.000 | |
IgM (mg/dL) §§ | 101.83 ± 8.66 | 79.28 ± 11.08 | 0.201 | 86.75 ± 11.67 | 0.315 | |
IgE (mg/dL) §§ | 90.37 ± 24.75 | 293.71 ± 99.06 | 0.088 | 147.58 ± 84.05 | 0.525 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giulietti, G.; Zama, D.; Conti, F.; Moratti, M.; Presutti, M.T.; Belotti, T.; Cantarini, M.E.; Facchini, E.; Bassi, M.; Selva, P.; et al. In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy. J. Clin. Med. 2022, 11, 3037. https://doi.org/10.3390/jcm11113037
Giulietti G, Zama D, Conti F, Moratti M, Presutti MT, Belotti T, Cantarini ME, Facchini E, Bassi M, Selva P, et al. In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy. Journal of Clinical Medicine. 2022; 11(11):3037. https://doi.org/10.3390/jcm11113037
Chicago/Turabian StyleGiulietti, Giulia, Daniele Zama, Francesca Conti, Mattia Moratti, Maria Teresa Presutti, Tamara Belotti, Maria Elena Cantarini, Elena Facchini, Mirna Bassi, Paola Selva, and et al. 2022. "In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy" Journal of Clinical Medicine 11, no. 11: 3037. https://doi.org/10.3390/jcm11113037
APA StyleGiulietti, G., Zama, D., Conti, F., Moratti, M., Presutti, M. T., Belotti, T., Cantarini, M. E., Facchini, E., Bassi, M., Selva, P., Magrini, E., Lanari, M., & Pession, A. (2022). In-Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy. Journal of Clinical Medicine, 11(11), 3037. https://doi.org/10.3390/jcm11113037