Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Treatment Protocol
2.3. Echocardiography Data
2.4. Physiologic, Treatment and Outcome Data
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGivern, M.R.; Best, K.E.; Rankin, J.; Wellesley, D.; Greenlees, R.; Addor, M.C.; Arriola, L.; de Walle, H.; Barisic, I.; Beres, J.; et al. Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F137–F144. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.W.; Cilley, R.E.; Mauger, D.; Zachary, C.; Meier, A. The relationship of pulmonary artery pressure and survival in congenital diaphragmatic hernia. J. Pediatr. Surg. 2004, 39, 307–312; discussion 312. [Google Scholar] [CrossRef]
- Keller, R.L.; Tacy, T.A.; Hendricks-Munoz, K.; Xu, J.; Moon-Grady, A.J.; Neuhaus, J.; Moore, P.; Nobuhara, K.K.; Hawgood, S.; Fineman, J.R. Congenital diaphragmatic hernia: Endothelin-1, pulmonary hypertension, and disease severity. Am. J. Respir. Crit. Care Med. 2010, 182, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusk, L.A.; Wai, K.C.; Moon-Grady, A.J.; Steurer, M.A.; Keller, R.L. Persistence of pulmonary hypertension by echocardiography predicts short-term outcomes in congenital diaphragmatic hernia. J. Pediatr. 2015, 166, 251–256.e1. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Lally, P.A.; Kipfmueller, F.; Massolo, A.C.; Luco, M.; Van Meurs, K.P.; Lally, K.P.; Harting, M.T.; Congenital Diaphragmatic Hernia Study Group. Ventricular Dysfunction is a Critical Determinant of Mortality in Congenital Diaphragmatic Hernia. Am. J. Respir. Crit. Care Med. 2019, 200, 1522–1530. [Google Scholar] [CrossRef]
- Vijfhuize, S.; Schaible, T.; Kraemer, U.; Cohen-Overbeek, T.E.; Tibboel, D.; Reiss, I. Management of pulmonary hypertension in neonates with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 2012, 22, 374–383. [Google Scholar] [CrossRef]
- Ferguson, D.M.; Gupta, V.S.; Lally, P.A.; Luco, M.; Tsao, K.; Lally, K.P.; Patel, N.; Harting, M.T.; Congenital Diaphragmatic Hernia Study Group. Early, Postnatal Pulmonary Hypertension Severity Predicts Inpatient Outcomes in Congenital Diaphragmatic Hernia. Neonatology 2021, 118, 147–154. [Google Scholar] [CrossRef]
- Moenkemeyer, F.; Patel, N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr. Crit. Care Med. 2014, 15, 49–55. [Google Scholar] [CrossRef]
- Guner, Y.; Jancelewicz, T.; Di Nardo, M.; Yu, P.; Brindle, M.; Vogel, A.M.; Gowda, S.H.; Grover, T.R.; Johnston, L.; Mahmood, B.; et al. Management of Congenital Diaphragmatic Hernia Treated with Extracorporeal Life Support: Interim Guidelines Consensus Statement From the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 113–120. [Google Scholar] [CrossRef]
- Moreno-Alvarez, O.; Hernandez-Andrade, E.; Oros, D.; Jani, J.; Deprest, J.; Gratacos, E. Association between intrapulmonary arterial Doppler parameters and degree of lung growth as measured by lung-to-head ratio in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2008, 31, 164–170. [Google Scholar] [CrossRef]
- Patel, M.D.; Breatnach, C.R.; James, A.T.; Choudhry, S.; McNamara, P.J.; Jain, A.; Franklin, O.; Hamvas, A.; Mertens, L.; Singh, G.K.; et al. Echocardiographic Assessment of Right Ventricular Afterload in Preterm Infants: Maturational Patterns of Pulmonary Artery Acceleration Time Over the First Year of Age and Implications for Pulmonary Hypertension. J. Am. Soc. Echocardiogr. 2019, 32, 884–894.e4. [Google Scholar] [CrossRef] [PubMed]
- Koestenberger, M.; Grangl, G.; Avian, A.; Gamillscheg, A.; Grillitsch, M.; Cvirn, G.; Burmas, A.; Hansmann, G. Normal Reference Values and z Scores of the Pulmonary Artery Acceleration Time in Children and Its Importance for the Assessment of Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2017, 10, e005336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khuffash, A.; Lewandowski, A.J.; Jain, A.; Hamvas, A.; Singh, G.K.; Levy, P.T. Cardiac Performance in the First Year of Age among Preterm Infants Fed Maternal Breast Milk. JAMA Netw. Open 2021, 4, e2121206. [Google Scholar] [CrossRef] [PubMed]
- Koestenberger, M.; Avian, A.; Sallmon, H.; Gamillscheg, A.; Grangl, G.; Kurath-Koller, S.; Schweintzger, S.; Burmas, A.; Hansmann, G. The right ventricular outflow tract in pediatric pulmonary hypertension-Data from the European Pediatric Pulmonary Vascular Disease Network. Echocardiography 2018, 35, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Kipfmueller, F.; Heindel, K.; Schroeder, L.; Berg, C.; Dewald, O.; Reutter, H.; Bartmann, P.; Mueller, A. Early postnatal echocardiographic assessment of pulmonary blood flow in newborns with congenital diaphragmatic hernia. J. Perinat. Med. 2018, 46, 735–743. [Google Scholar] [CrossRef]
- Aggarwal, S.; Shanti, C.; Agarwal, P.; Lelli, J.; Natarajan, G. Echocardiographic measures of ventricular-vascular interactions in congenital diaphragmatic hernia. Early Hum. Dev. 2022, 165, 105534. [Google Scholar] [CrossRef]
- Baptista, M.J.; Rocha, G.; Clemente, F.; Azevedo, L.F.; Tibboel, D.; Leite-Moreira, A.F.; Guimaraes, H.; Areias, J.C.; Correia-Pinto, J. N-terminal-pro-B type natriuretic peptide as a useful tool to evaluate pulmonary hypertension and cardiac function in CDH infants. Neonatology 2008, 94, 22–30. [Google Scholar] [CrossRef]
- Snoek, K.G.; Reiss, I.K.; Greenough, A.; Capolupo, I.; Urlesberger, B.; Wessel, L.; Storme, L.; Deprest, J.; Schaible, T.; van Heijst, A.; et al. Standardized Postnatal Management of Infants with Congenital Diaphragmatic Hernia in Europe: The CDH EURO Consortium Consensus—2015 Update. Neonatology 2016, 110, 66–74. [Google Scholar] [CrossRef]
- Stiller, B.; Houmes, R.J.; Ruffer, A.; Kumpf, M.; Muller, A.; Kipfmuller, F.; Koditz, H.; Herber Jonat, S.; Schmoor, C.; Benk, C.; et al. Multicenter Experience with Mechanical Circulatory Support Using a New Diagonal Pump in 233 Children. Artif. Organs 2018, 42, 377–385. [Google Scholar] [CrossRef]
- Gupta, V.S.; Harting, M.T. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin. Perinatol. 2019, 44, 151167. [Google Scholar] [CrossRef]
- Hansmann, G.; Koestenberger, M.; Alastalo, T.P.; Apitz, C.; Austin, E.D.; Bonnet, D.; Budts, W.; D’Alto, M.; Gatzoulis, M.A.; Hasan, B.S.; et al. 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J. Heart Lung Transplant. 2019, 38, 879–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.; Kipfmueller, F. Cardiac dysfunction in congenital diaphragmatic hernia: Pathophysiology, clinical assessment, and management. Semin. Pediatr. Surg. 2017, 26, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Massolo, A.C.; Kipfmueller, F. Congenital diaphragmatic hernia-associated cardiac dysfunction. Semin. Perinatol. 2019, 44, 151168. [Google Scholar] [CrossRef] [PubMed]
- Tissot, C.; Singh, Y.; Sekarski, N. Echocardiographic Evaluation of Ventricular Function-For the Neonatologist and Pediatric Intensivist. Front. Pediatr. 2018, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Tissot, C. Echocardiographic Evaluation of Transitional Circulation for the Neonatologists. Front. Pediatr. 2018, 6, 140. [Google Scholar] [CrossRef] [Green Version]
- Nakahata, Y.; Hiraishi, S.; Oowada, N.; Ando, H.; Kimura, S.; Furukawa, S.; Ogata, S.; Ishii, M. Quantitative assessment of pulmonary vascular resistance and reactivity in children with pulmonary hypertension due to congenital heart disease using a noninvasive method: New Doppler-derived indexes. Pediatr. Cardiol. 2009, 30, 232–239. [Google Scholar] [CrossRef]
- Levy, P.T.; Patel, M.D.; Groh, G.; Choudhry, S.; Murphy, J.; Holland, M.R.; Hamvas, A.; Grady, M.R.; Singh, G.K. Pulmonary Artery Acceleration Time Provides a Reliable Estimate of Invasive Pulmonary Hemodynamics in Children. J. Am. Soc. Echocardiogr. 2016, 29, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, J.S.; Mercer-Rosa, L.M.; Glatz, A.C.; Jensen, E.A.; Capone, V.; Scott, C.; Appel, S.M.; Stoller, J.Z.; Fraga, M.V. Relationship between pulmonary artery acceleration time and pulmonary artery pressures in infants. Echocardiography 2019, 36, 1524–1531. [Google Scholar] [CrossRef]
- Kipfmueller, F.; Schroeder, L.; Berg, C.; Heindel, K.; Bartmann, P.; Mueller, A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr. Pulmonol. 2018, 53, 452–460. [Google Scholar] [CrossRef]
- Schroeder, L.; Gries, K.; Ebach, F.; Mueller, A.; Kipfmueller, F. Exploratory Assessment of Levosimendan in Infants With Congenital Diaphragmatic Hernia. Pediatr. Crit. Care Med. 2021, 22, e382–e390. [Google Scholar] [CrossRef]
- Bo, B.; Balks, J.; Gries, K.; Holdenrieder, S.; Mueller, A.; Kipfmueller, F. Increased N-terminal Pro-B-Type Natriuretic Peptide during Extracorporeal Life Support Is Associated with Poor Outcome in Neonates with Congenital Diaphragmatic Hernia. J. Pediatr. 2022, 241, 83–89.e2. [Google Scholar] [CrossRef] [PubMed]
- Heindel, K.; Holdenrieder, S.; Patel, N.; Bartmann, P.; Schroeder, L.; Berg, C.; Merz, W.M.; Mueller, A.; Kipfmueller, F. Early postnatal changes of circulating N-terminal-pro-B-type natriuretic peptide in neonates with congenital diaphragmatic hernia. Early Hum. Dev. 2020, 146, 105049. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.S.; Patel, N.; Kipfmueller, F.; Lally, P.A.; Lally, K.P.; Harting, M.T. Elevated proBNP levels are associated with disease severity, cardiac dysfunction, and mortality in congenital diaphragmatic hernia. J. Pediatr. Surg. 2021, 56, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
Entire Cohort | ECMO Patients | |||||
---|---|---|---|---|---|---|
Variables | Non-ECMO Group | ECMO Group | p-Value | ECMO Survivor | ECMO Non-Survivor | p-Value |
n = 48 | n = 39 | n = 22 | n = 17 | |||
Gestational age (days) | 38.1 (37.0–39.0) | 37.9 (36.0–38.4) | 0.138 | 38.0 (36.6–38.4) | 37.6 (35.7–38.3) | 0.107 |
Left-sided CDH, n | 44 (91.7%) | 29 (74.4%) | 0.030 | 81.8%) | 64.7% | 0.377 |
O/e LHR, % | 44.5 (37.3–53.8) | 32.0 (29.0–42.0) | <0.001 | 36.5 (29.5–43) | 31 (29–37) | 0.179 |
Liver-up, n | 15 (31.3%) | 30 (76.9%) | <0.001 | 13 (59.1%) | 17 (100%) | 0.029 |
Prenatal diagnosis | 45 (93.8%) | 37 (94.9%) | 0.824 | 20 (90.9%) | 17 (100%) | 0.644 |
FETO | 4 (8.3%) | 9 (23.1%) | 0.056 | 5 (22.7%) | 4 (23.5%) | 0.967 |
ECMO | ||||||
Survival | 48 (100%) | 22 (56.4%) | <0.001 | |||
Defect Size | <0.001 | 0.063 | ||||
A | 7 (14.6%) | 1 (2.6%) | 1 (4.5%) | 0 | ||
B | 24 (50.0%) | 3 (7.7%) | 2 (9.1%) | 1 (5.9%) | ||
C | 15 (31.3%) | 15 (38.5%) | 10 (45.5%) | 5 (29.4%) | ||
D | 2 (4.2%) | 16 (41.0%) | 9 (40.9%) | 7 (41.2%) | ||
N/R | 0 | 4 (10.3%) | 0 | 4 (23.5%) | ||
Death on device | 5 (12.8%) | 0 | 5 (29.4%) | 0.113 | ||
Age at ECMO inititiation, hours | 9.0 (5.8–21.8) | 14 (7.7–23.8) | 7.2 (5.0–10.4) | 0.045 | ||
Duration of ECMO, days | 8.1 (5.6–16.0) | 6.7 (5.8–8.1) | 11.8 (9.4–24.8) | 0.001 |
Cohort | n | Time of Echo | Outcome | AUC (95% CI) | p-Value | PAAT:ET Cut-Off | Patients below Cutoff (n, %) | Sensitivity | Specificity | PPV | NPV | Relative Risk |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Entire cohort | 87 | Baseline | ECMO | 0.815 (95% CI 0.717–0.913) | <0.001 | ≤0.290 | 41 (47.1%) | 79.5% | 79.2% | 75.6% | 82.6% | 4.3 |
Entire cohort | 87 | Baseline | Mortality | 0.715 (95% CI 0.569–0.860) | 0.006 | ≤0.256 | 25 (28.7%) | 70.6% | 81.4% | 48.0% | 91.9% | 6.0 |
87 | DOL 2 | Mortality | 0.745 (95% CI 0.603–0.886) | 0.002 | ≤0.290 | 32 (36.8%) | 82.4% | 70.0% | 40.0% | 94.2% | 6.9 | |
82 | DOL 5–7 | Mortality | 0.866 (95% CI 0.749–0.984) | <0.001 | ≤0.303 | 22 (26.8%) | 81.3% | 86.4% | 59.1% | 95.0% | 11.8 | |
Only ECMO-patients | 39 | Baseline | Mortality | 0.496 (95% CI 0.309–0.683) | 0.966 | |||||||
39 | DOL 2 | Mortality | 0.646 (95% CI 0.465–0.827) | 0.123 | ||||||||
34 | DOL 5–7 | Mortality | 0.788 (95% CI 0.632–0.944) | 0.004 | ≤0.310 | 19 (55.9%) | 81.3% | 66.7% | 68.4% | 80.0% | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kipfmueller, F.; Akkas, S.; Pugnaloni, F.; Bo, B.; Lemloh, L.; Schroeder, L.; Gembruch, U.; Geipel, A.; Berg, C.; Heydweiller, A.; et al. Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics. J. Clin. Med. 2022, 11, 3038. https://doi.org/10.3390/jcm11113038
Kipfmueller F, Akkas S, Pugnaloni F, Bo B, Lemloh L, Schroeder L, Gembruch U, Geipel A, Berg C, Heydweiller A, et al. Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics. Journal of Clinical Medicine. 2022; 11(11):3038. https://doi.org/10.3390/jcm11113038
Chicago/Turabian StyleKipfmueller, Florian, Suemeyra Akkas, Flaminia Pugnaloni, Bartolomeo Bo, Lotte Lemloh, Lukas Schroeder, Ulrich Gembruch, Annegret Geipel, Christoph Berg, Andreas Heydweiller, and et al. 2022. "Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics" Journal of Clinical Medicine 11, no. 11: 3038. https://doi.org/10.3390/jcm11113038
APA StyleKipfmueller, F., Akkas, S., Pugnaloni, F., Bo, B., Lemloh, L., Schroeder, L., Gembruch, U., Geipel, A., Berg, C., Heydweiller, A., & Mueller, A. (2022). Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics. Journal of Clinical Medicine, 11(11), 3038. https://doi.org/10.3390/jcm11113038