Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review
Abstract
:1. Introduction
2. Patient and Methods
2.1. Case Description
2.2. Brain Magnetic Resonance Imaging (MRI)
2.3. Neurophysiological Investigations
2.4. Biochemical Investigations
2.5. Molecular Analysis
3. Results
3.1. Brain MRI
3.2. Molecular, Biochemical and Neurophysiological Findings
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Dijk, T.; Barth, P.; Baas, F.; Reneman, L.; Poll-The, B.T. Postnatal Brain Growth Patterns in Pontocerebellar Hypoplasia. Neuropediatrics 2021, 52, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Rudnik-Schöneborn, S.; Barth, P.G.; Zerres, K. Pontocerebellar hypoplasia. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166, 173–183. [Google Scholar] [CrossRef]
- Nuovo, S.; Micalizzi, A.; Romaniello, R.; Arrigoni, F.; Ginevrino, M.; Casella, A.; Serpieri, V.; D’Arrigo, S.; Briguglio, M.; Salerno, G.G.; et al. Refining the mutational spectrum and gene-phenotype correlates in pontocerebellar hypoplasia: Results of a multicentric study. J. Med. Genet. 2021, 59, 399–409. [Google Scholar] [CrossRef]
- Bizzari, S.; Hamzeh, A.R.; Mohamed, M.; Al-Ali, M.T.; Bastaki, F. Expanded PCH1D phenotype linked to EXOSC9 mutation. Eur. J. Med. Genet. 2020, 63, 103622. [Google Scholar] [CrossRef]
- Müller, J.S.; Burns, D.T.; Griffin, H.; Wells, G.R.; Zendah, R.A.; Munro, B.; Schneider, C.; Horvath, R. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci. Alliance 2020, 3, e202000678. [Google Scholar] [CrossRef]
- Sakamoto, M.; Iwama, K.; Sekiguchi, F.; Mashimo, H.; Kumada, S.; Ishigaki, K.; Okamoto, N.; Behnam, M.; Ghadami, M.; Koshimizu, E.; et al. Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. J. Hum. Genet. 2020, 66, 401–407. [Google Scholar] [CrossRef]
- Schneider, C.; Tollervey, D. Threading the barrel of the RNA exosome. Trends Biochem. Sci. 2013, 38, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.T.; Donkervoort, S.; Müller, J.S.; Knierim, E.; Bharucha-Goebel, D.; Faqeih, E.A.; Bell, S.K.; AlFaifi, A.Y.; Monies, D.; Millan, F.; et al. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am. J. Hum. Genet. 2018, 102, 858–873. [Google Scholar] [CrossRef]
- Yoshino, S.; Matsui, Y.; Fukui, Y.; Seki, M.; Yamaguchi, K.; Kanamori, A.; Saitoh, Y.; Shimamura, T.; Suzuki, Y.; Furukawa, Y.; et al. EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Sci. Rep. 2020, 10, 9275. [Google Scholar] [CrossRef]
- Boczonadi, V.; Müller, J.S.; Pyle, A.; Munkley, J.; Dor, T.; Quartararo, J.; Ferrero, I.; Karcagi, V.; Giunta, M.; Polvikoski, T.; et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat. Commun. 2014, 5, 4287. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.J.; Kuiper, E.G.; Jones, S.K.; Leung, S.W.; Corbett, A.H.; Fasken, M.B. The RNA exosome and RNA exosome-linked disease. RNA 2018, 24, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.S.; Giunta, M.; Horvath, R. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. J. Neuromuscul. Dis. 2015, 2 (Suppl. S2), S31–S37. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Yourshaw, M.; Mamsa, H.; Rudnik-Schöneborn, S.; Menezes, M.P.; Hong, J.E.; Leong, D.W.; Senderek, J.; Salman, M.S.; Chitayat, D.; et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 2012, 44, 704–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Donato, N.; Neuhann, T.; Kahlert, A.K.; Klink, B.; Hackmann, K.; Neuhann, I.; Novotna, B.; Schallner, J.; Krause, C.; Glass, I.A.; et al. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J. Med. Genet. 2016, 53, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bayat, V.; DiDonato, N.; Zhao, Y.; Zarnegar, B.; Siprashvili, Z.; Lopez-Pajares, V.; Sun, T.; Tao, S.; Li, C.; et al. Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. Hum. Mol. Genet. 2019, 29, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Giunta, M.; Edvardson, S.; Xu, Y.; Schuelke, M.; Gomez-Duran, A.; Boczonadi, V.; Elpeleg, O.; Müller, J.S.; Horvath, R. Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy. Hum. Mol. Genet. 2016, 25, 2985–2996. [Google Scholar] [PubMed] [Green Version]
- Brun, R. Zur Kenntnis der Bildungsfehler des Kleinhirns; Art. Institut Orell Füssli: Zurich, Switzerland, 1917. [Google Scholar]
- Namavar, Y.; Barth, P.G.; Poll-The, B.T.; Baas, F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet. J. Rare Dis. 2011, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Gonzaga-Jauregui, C.; Lotze, T.; Jamal, L.; Penney, S.; Campbell, I.M.; Pehlivan, D.; Hunter, J.V.; Woodbury, S.L.; Raymond, G.; Adesina, A.M.; et al. Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurol. 2013, 70, 1491–1498. [Google Scholar]
- Renbaum, P.; Kellerman, E.; Jaron, R.; Geiger, D.; Segel, R.; Lee, M.; King, M.C.; Levy-Lahad, E. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am. J. Hum. Genet. 2009, 85, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Stoll, M.; Teoh, H.; Lee, J.; Reddel, S.; Zhu, Y.; Buckley, M.; Sampaio, H.; Roscioli, T.; Farrar, M.; Nicholson, G. Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia. Neurology 2016, 87, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Eggens, V.R.; Barth, P.G.; Niermeijer, J.M.; Berg, J.N.; Darin, N.; Dixit, A.; Fluss, J.; Foulds, N.; Fowler, D.; Hortobágyi, T.; et al. EXOSC3 mutations in pontocerebellar hypoplasia type 1: Novel mutations and genotype-phenotype correlations. Orphanet J. Rare Dis. 2014, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijk, T.; Rudnik-Schöneborn, S.; Senderek, J.; Hajmousa, G.; Mei, H.; Dusl, M.; Aronica, E.; Barth, P.; Baas, F. Pontocerebellar hypoplasia with spinal muscular atrophy (PCH1): Identification of SLC25A46 mutations in the original Dutch PCH1 family. Brain 2017, 140, e46. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Steffen, J.; Yourshaw, M.; Mamsa, H.; Andersen, E.; Rudnik-Schöneborn, S.; Pope, K.; Howell, K.B.; McLean, C.A.; Kornberg, A.J.; et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain 2016, 139, 2877–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patients | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Age at onset (months) | 8 | Birth | Birth | 0.5 | 36 | 10 | 11 | 15 | 2 | 10 |
Homozygous (H)/compound heterozygous (CH) | H | CH | H | H | H | H | CH | CH | H | CH |
NM_001034194.1 EXOSC9 variant 1 cDNA | c.41T>C | c.41T>C | c.41T>C | c.41T>C | c.41T>C | c.41T>C | c.239T>G | c.239T>G | c.151G>C | c.41T>C |
EXOSC9 variant 1 protein | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Leu80Arg | p.Leu80Arg | p.Gly51Arg | p.Leu14Pro |
NM_001034194.1 EXOSC9 variant 2 cDNA | c.41T>C | c.481C>T | c.41T>C | c.41T>C | c.41T>C | c.41T>C | c.484dupA | c.484dupA | c.151G>C | c.643C>T |
EXOSC9 variant 2 protein | p.Leu14Pro | p.Arg161* | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Leu14Pro | p.Arg162Lysfs*3 | p.Arg162Lysfs*3 | p.Gly51Arg | p.Arg212* |
References | Burns et al. (2018) [8] | Burns et al. (2018) [8] | Burns et al. (2018) [8] | Burns et al. (2018) [8] | S. Bizzari et al. 2020 [4] | S. Bizzari et al. 2020 [4] | M. Sakamoto et al. 2021 [6] | M. Sakamoto et al. 2021 [6] | M. Sakamoto et al. 2021 [6] | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabaj, I.; Hassani, A.; Burglen, L.; Qebibo, L.; Guerrot, A.-M.; Marret, S.; Tebani, A.; Bekri, S. Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review. J. Clin. Med. 2022, 11, 4335. https://doi.org/10.3390/jcm11154335
Dabaj I, Hassani A, Burglen L, Qebibo L, Guerrot A-M, Marret S, Tebani A, Bekri S. Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review. Journal of Clinical Medicine. 2022; 11(15):4335. https://doi.org/10.3390/jcm11154335
Chicago/Turabian StyleDabaj, Ivana, Adnan Hassani, Lydie Burglen, Leila Qebibo, Anne-Marie Guerrot, Stéphane Marret, Abdellah Tebani, and Soumeya Bekri. 2022. "Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review" Journal of Clinical Medicine 11, no. 15: 4335. https://doi.org/10.3390/jcm11154335
APA StyleDabaj, I., Hassani, A., Burglen, L., Qebibo, L., Guerrot, A. -M., Marret, S., Tebani, A., & Bekri, S. (2022). Pontocerebellar Hypoplasia Type 1D: A Case Report and Comprehensive Literature Review. Journal of Clinical Medicine, 11(15), 4335. https://doi.org/10.3390/jcm11154335