Mental Health Condition among University Students of Bangladesh during the Critical COVID-19 Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Ethical Issues
2.2. Study Tool
2.3. Data Collection
2.4. Data Management and Analysis
3. Results
4. Discussion
4.1. Overall Mental Health Conditions
4.2. Determinants of Depression, Anxiety, and Stress
4.3. The Support from Universities
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Shaw, R. Identifying Research Trends and Gaps in the Context of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3370. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, Attitudes, and Practices towards COVID-19 among Chinese Residents during the Rapid Rise Period of the COVID-19 Outbreak: A Quick Online Cross-Sectional Survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Hayat, K.; Rosenthal, M.; Xu, S.; Arshed, M.; Li, P.; Zhai, P.; Desalegn, G.K.; Fang, Y. View of Pakistani Residents toward Coronavirus Disease (COVID-19) during a Rapid Outbreak: A Rapid Online Survey. Int. J. Environ. Res. Public Health 2020, 17, 3347. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 13 June 2020).
- COVID-19 Map. Available online: https://coronavirus.jhu.edu/map.html (accessed on 19 December 2020).
- Xu, S.; Li, Y. Beware of the Second Wave of COVID-19. Lancet 2020, 395, 1321–1322. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.J.; Sakib, M.S.; Chakma, S.; Procheta, N.F.; Mamun, Z.A.; Arony, A.; Rahman, F.; Rahman, M.M. Assessing the Psychological Condition among General People of Bangladesh during COVID-19 Pandemic. J. Hum. Behav. Soc. Environ. 2020, 31, 449–463. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.J.; Sakib, M.S.; Halim, M.A.; Rahman, M.M.; Asikunnaby; Jhinuk, J.M. COVID-19 Responses among University Students of Bangladesh: Assessment of Status and Individual View toward COVID-19. J. Hum. Behav. Soc. Environ. 2021, 31, 512–531. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.J.; Sakib, M.S.; Halim, M.A.; Rahman, F.; Rahman, M.M.; Jhinuk, J.M.; Nabila, N.H.; Yeasmin, M.T.M. COVID-19 Responses among General People of Bangladesh: Status and Individual View toward COVID-19 during Lockdown Period. Cogent. Psychol. 2021, 8, 1860186. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chisty, M.A.; Halim, M.A.; Sakib, M.S.; Quader, M.A.; Shobuj, I.A.; Rahman, F. Knowledge, attitude, and hesitancy towards COVID-19 vaccine among university students of Bangladesh. PLoS ONE 2022, 17, e0270684. [Google Scholar] [CrossRef]
- Md Mostafizur Rahman, P.; Tanbir Amin, B.S.S.; Saima Bintay Sultan, B.S.S.; Bithi, M.I.; Farzana Rahman, P.; Md Moshiur Rahman, P. Depression, Anxiety, and Stress among Public University Students in Bangladesh during the COVID-19 Pandemic. J. Emerg. Manag. 2021, 19, 99–107. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jhinuk, J.M.; Nabila, N.H.; Yeasmin, M.T.M.; Shobuj, I.A.; Sayma, T.H.; Faruk, F.; Shah, S.H. Knowledge, Attitude, and Practices towards COVID-19 during the Rapid Rise Period: A Cross-Sectional Survey among Public University Students of Bangladesh. SciMed. J. 2021, 3, 116–128. [Google Scholar] [CrossRef]
- Chisty, M.A.; Islam, M.A.; Munia, A.T.; Rahman, M.M.; Rahman, N.N.; Mohima, M. Risk Perception and Information-Seeking Behavior during Emergency: An Exploratory Study on COVID-19 Pandemic in Bangladesh. Int. J. Disaster Risk Reduct. 2021, 65, 102580. [Google Scholar] [CrossRef]
- Dubey, S.; Biswas, P.; Ghosh, R.; Chatterjee, S.; Dubey, M.J.; Chatterjee, S.; Lahiri, D.; Lavie, C.J. Psychosocial Impact of COVID-19. Diabetes Metab. Syndr. 2020, 14, 779–788. [Google Scholar] [CrossRef]
- Mamun, M.A.; Griffiths, M.D. First COVID-19 Suicide Case in Bangladesh Due to Fear of COVID-19 and Xenophobia: Possible Suicide Prevention Strategies. Asian J. Psychiatry 2020, 51, 102073. [Google Scholar] [CrossRef]
- Sakib, N.; Bhuiyan, A.K.M.I.; Hossain, S.; Al Mamun, F.; Hosen, I.; Abdullah, A.H.; Sarker, M.A.; Mohiuddin, M.S.; Rayhan, I.; Hossain, M.; et al. Psychometric Validation of the Bangla Fear of COVID-19 Scale: Confirmatory Factor Analysis and Rasch Analysis. Int. J. Ment. Health Addict. 2020, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Goldmann, E.; Galea, S. Mental Health Consequences of Disasters. Annu. Rev. Public Health 2014, 35, 169–183. [Google Scholar] [CrossRef]
- Norris, F.H.; Friedman, M.J.; Watson, P.J.; Byrne, C.M.; Diaz, E.; Kaniasty, K. 60,000 Disaster Victims Speak: Part I. An Empirical Review of the Empirical Literature, 1981–2001. Psychiatry Interpers. Biol. Process. 2002, 65, 207–239. [Google Scholar] [CrossRef] [Green Version]
- Van Ommeren, M.; Saxena, S.; Saraceno, B. Mental and Social Health during and after Acute Emergencies: Emerging Consensus? Bull. World Health Organ. 2005, 83, 71–75. [Google Scholar] [CrossRef]
- Herrman, H. Promoting Mental Health and Resilience after a Disaster. J. Exp. Clin. Med. 2012, 4, 82–87. [Google Scholar] [CrossRef]
- Xiang, Y.-T.; Yang, Y.; Li, W.; Zhang, L.; Zhang, Q.; Cheung, T.; Ng, C.H. Timely Mental Health Care for the 2019 Novel Coronavirus Outbreak Is Urgently Needed. Lancet Psychiatry 2020, 7, 228–229. [Google Scholar] [CrossRef] [Green Version]
- Md Mostafizur Rahman, P.; Abir Mohd Shakib Shahide, B.S.S.; Redoy, M.A.I.; Farzana Rahman, P.; Md Moshiur Rahman, P. Status and View toward COVID-19 and Mental Health among Vulnerable Group: A Cross-Sectional Rapid Survey among Rickshaw Pullers of Bangladesh. J. Emerg. Manag. 2022, 20, 109–121. [Google Scholar] [CrossRef]
- Hawryluck, L.; Gold, W.L.; Robinson, S.; Pogorski, S.; Galea, S.; Styra, R. SARS Control and Psychological Effects of Quarantine, Toronto, Canada. Emerg. Infect. Dis. 2004, 10, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Impact on International Higher Education Studies and Forecasts. Available online: https://www.daad.de/en/information-services-for-higher-education-institutions/centre-of-competence/covid-19-impact-on-international-higher-education-studies-and-forecasts/ (accessed on 13 June 2020).
- Sintema, E.J. Effect of COVID-19 on the Performance of Grade 12 Students: Implications for STEM Education. EURASIA J. Math. Sci. Tech. Ed. 2020, 16, em1851. [Google Scholar] [CrossRef] [Green Version]
- Al-Zaman, M.S. Healthcare crisis in Bangladesh during the COVID-19 pandemic. Am. J. Trop. Med. 2020, 103, 1357. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Nasrullah, M.; Hosen, M.J. COVID-19 and Bangladesh: Challenges and How to Address Them. Front. Public Health 2020, 8, 154. [Google Scholar] [CrossRef]
- IEDCR. Available online: https://iedcr.gov.bd/index.php/surveillance/190-denguereport (accessed on 18 April 2020).
- Islam, R. Higher Education in Bangladesh: Diversity, Quality and Accessibility. Science 2008, 29, 14–50. [Google Scholar]
- UGC. 2020. Available online: www.ugc.gov.bd (accessed on 11 June 2020).
- COVID-19 Dynamic Dashboard for Bangladesh COVID-19. Available online: http://dashboard.dghs.gov.bd/webportal/pages/covid19.php (accessed on 4 August 2022).
- Lovibond, P.F.; Lovibond, S.H. The Structure of Negative Emotional States: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Henry, J.D.; Crawford, J.R. The Short-Form Version of the Depression Anxiety Stress Scales (DASS-21): Construct Validity and Normative Data in a Large Non-Clinical Sample. Br. J. Clin. Psychol. 2005, 44, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, R.S.; Edwards, E.J.; MacIntyre, T.E. Mental Health Measurement in a Post Covid-19 World: Psychometric Properties and Invariance of the DASS-21 in Athletes and Non-Athletes. Front. Psychol. 2020, 11, 590559. [Google Scholar] [CrossRef]
- Wang, C.; Tee, M.; Roy, A.E.; Fardin, M.A.; Srichokchatchawan, W.; Habib, H.A.; Tran, B.X.; Hussain, S.; Hoang, M.T.; Le, X.T.; et al. The Impact of COVID-19 Pandemic on Physical and Mental Health of Asians: A Study of Seven Middle-Income Countries in Asia. PLoS ONE 2021, 16, e0246824. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; et al. A Longitudinal Study on the Mental Health of General Population during the COVID-19 Epidemic in China. Brain Behav. Immun. 2020, 87, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Planchuelo-Gómez, Á.; Odriozola-González, P.; Irurtia, M.J.; de Luis-García, R. Longitudinal Evaluation of the Psychological Impact of the COVID-19 Crisis in Spain. J. Affect. Disord. 2020, 277, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sujan, M.S.H.; Tasnim, R.; Sikder, M.T.; Potenza, M.N.; Os, J. van Psychological Responses during the COVID-19 Outbreak among University Students in Bangladesh. PLoS ONE 2020, 15, e0245083. [Google Scholar] [CrossRef]
- Math, S.B.; Nirmala, M.C.; Moirangthem, S.; Kumar, N.C. Disaster Management: Mental Health Perspective. Indian J. Psychol. Med. 2015, 37, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Alim, S.A.H.M.; Kibria, S.M.E.; Uddin, M.Z.; Nessa, M.; Wahab, M.A. Translation of DASS 21 into Bangla and Validation among Medical Students. Bangladesh J. Psychiatry 2014, 28, 67–70. [Google Scholar] [CrossRef]
- Sadiq, M.S.; Morshed, N.M.; Rahman, W.; Chowdhury, N.F.; Arafat, S.Y.; Mullick, M.S. Depression, Anxiety, Stress among Postgraduate Medical Residents: A Cross Sectional Observation in Bangladesh. Iran. J. Psychiatry 2019, 14, 192. [Google Scholar]
- Teh, C.K.; Ngo, C.W.; Binti Zulkifli, R.A.; Vellasamy, R.; Suresh, K. Depression, Anxiety and Stress among Undergraduate Students: A Cross Sectional Study. Open J. Epidemiol. 2015, 5, 260. [Google Scholar] [CrossRef] [Green Version]
- DeVellis, R.F.; Thorpe, C.T. Scale Development: Theory and Applications; Sage Publications: New York City, NY, USA, 2021. [Google Scholar]
- RStudio|Open Source & Professional Software for Data Science Teams. Available online: https://rstudio.com/ (accessed on 15 January 2021).
- Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 15 January 2021).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 15 January 2021).
- Tang, W.; Hu, T.; Hu, B.; Jin, C.; Wang, G.; Xie, C.; Chen, S.; Xu, J. Prevalence and Correlates of PTSD and Depressive Symptoms One Month after the Outbreak of the COVID-19 Epidemic in a Sample of Home-Quarantined Chinese University Students. J. Affect. Disord. 2020, 274, 1–7. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The Psychological Impact of the COVID-19 Epidemic on College Students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef]
- Islam, M.A.; Barna, S.D.; Raihan, H.; Khan, M.N.A.; Hossain, M.T. Depression and Anxiety among University Students during the COVID-19 Pandemic in Bangladesh: A Web-Based Cross-Sectional Survey. PLoS ONE 2020, 15, e0238162. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Ding, L.; Wang, L.; Deng, Y. Fear of COVID-19 Among College Students: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 846894. [Google Scholar] [CrossRef]
- Zhang, M.W.B.; Ho, C.S.H.; Ho, R.C.M. Methodology of Development and Students’ Perceptions of a Psychiatry Educational Smartphone Application. Technol. Health Care 2014, 22, 847–855. [Google Scholar] [CrossRef]
- Do, T.T.T.; Le, M.D.; Van Nguyen, T.; Tran, B.X.; Le, H.T.; Nguyen, H.D.; Nguyen, L.H.; Nguyen, C.T.; Tran, T.D.; Latkin, C.A.; et al. Receptiveness and Preferences of Health-Related Smartphone Applications among Vietnamese Youth and Young Adults. BMC Public Health 2018, 18, 764. [Google Scholar] [CrossRef]
- Albert, P.R. Why Is Depression More Prevalent in Women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Ford, D.E.; Erlinger, T.P. Depression and C-Reactive Protein in US Adults: Data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2004, 164, 1010–1014. [Google Scholar] [CrossRef] [Green Version]
- OECD Women at the Core of the Fight against COVID-19 Crisis. Available online: https://www.oecd.org/coronavirus/policy-responses/women-at-the-core-of-the-fight-against-covid-19-crisis-553a8269/ (accessed on 4 August 2022).
- Prowse, R.; Sherratt, F.; Abizaid, A.; Gabrys, R.L.; Hellemans, K.G.C.; Patterson, Z.R.; McQuaid, R.J. Coping With the COVID-19 Pandemic: Examining Gender Differences in Stress and Mental Health Among University Students. Front. Psychiatry 2021, 12, 650759. [Google Scholar] [CrossRef]
- Cohen, S.; Hoberman, H.M. Positive Events and Social Supports as Buffers of Life Change Stress1. J. Appl. Soc. Psychol. 1983, 13, 99–125. [Google Scholar] [CrossRef]
- Cohen, S.; Wills, T.A. Stress, Social Support, and the Buffering Hypothesis. Psychol. Bull. 1985, 98, 310. [Google Scholar] [CrossRef]
- Everson, S.A.; Maty, S.C.; Lynch, J.W.; Kaplan, G.A. Epidemiologic Evidence for the Relation between Socioeconomic Status and Depression, Obesity, and Diabetes. J. Psychosom. Res. 2002, 53, 891–895. [Google Scholar] [CrossRef]
- Karim, M.R.; Islam, M.T.; Talukder, B. COVID-19′s Impacts on Migrant Workers from Bangladesh: In Search of Policy Intervention. World Dev. 2020, 136, 105123. [Google Scholar] [CrossRef]
- Mamun, M.A.; Chandrima, R.M.; Griffiths, M.D. Mother and Son Suicide Pact Due to COVID-19-Related Online Learning Issues in Bangladesh: An Unusual Case Report. Int. J. Ment. Health Addict. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.N.; Biswas, B.; Miah, M.M. Assessing Institutional Support to Online Education at Tertiary Level in Bangladesh Coping with COVID-19 Pandemic: An Empirical Study. J. Digit. Educ. Technol. 2022, 2, ep2204. [Google Scholar] [CrossRef]
- Plakhotnik, M.S.; Volkova, N.V.; Jiang, C.; Yahiaoui, D.; Pheiffer, G.; McKay, K.; Newman, S.; Reißig-Thust, S. The Perceived Impact of COVID-19 on Student Well-Being and the Mediating Role of the University Support: Evidence from France, Germany, Russia, and the UK. Front. Psychol. 2021, 12, 642689. [Google Scholar] [CrossRef] [PubMed]
Rating | Depression | Anxiety | Stress |
---|---|---|---|
Normal | 0–9 | 0–7 | 0–14 |
Mild | 10–13 | 8–9 | 15–18 |
Moderate | 14–20 | 10–14 | 19–25 |
Severe | 21–27 | 15–19 | 26–33 |
Extremely Severe | 28+ | 20+ | 34+ |
Rating | Depression (n (%)) | Anxiety (n (%)) | Stress (n (%)) |
---|---|---|---|
Normal | 111 (30.41) | 158 (43.29) | 173 (47.40) |
Mild | 53 (14.52) | 25 (6.85) | 43 (11.78) |
Moderate | 84 (23.01) | 82 (22.47) | 54 (14.79) |
Severe | 33 (9.04) | 25 (6.85) | 49 (13.42) |
Extremely Severe | 84 (23.01) | 75 (20.55) | 46 (12.60) |
Depression | Anxiety | Stress | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Features | n (%) | R2 | β# (95% CI) | p | R2 | β (95% CI) | p | R2 | β (95% CI) | p |
1. Age | ||||||||||
a. 18–21 | 177 (48.49) | Reference | Reference | Reference | ||||||
b. 22–25 | 179 (49.04) | 0.004 | 0.90 (−1.56; 3.36) | 0.472 | 0.001 | 0.39 (−1.50; 2.26) | 0.688 | 0.004 | 0.73 (−1.64; 3.09) | 0.547 |
c. 26–30 | 08 (2.19) | 3.18 (−5.21; 11.57) | 0.456 | 1.99 (−4.43; 8.41) | 0.542 | 4.46 (−3.62; 12.54) | 0.278 | |||
d. 31–40 | 01 (0.27) | −8.32 (−31.59; 14.96) | 0.483 | 1.49 (−16.32; 19.31) | 0.869 | 2.96 (−19.45; 25.37) | 0.795 | |||
2. Gender | ||||||||||
a. Male | 160 (43.84) | 0.002 | −1.19 (−3.63; 1.25) | 0.339 | 0.012 | −1.97 (−3.83; −0.11) * | 0.0376 | 0.028 | −3.85 (−6.17; −1.53) ** | 0.001 |
b. Female | 205 (56.16) | Reference | Reference | Reference | ||||||
3. Current Location | ||||||||||
a. Dhaka | 233 (63.84) | 0.021 | Reference | 0.015 | Reference | 0.009 | Reference | |||
b. Outside Dhaka | 132 (36.16) | −3.54 (−6.04; −1.04) ** | 0.006 | −2.28 (−4.20; −0.37) * | 0.020 | −2.18 (−4.61; 0.24) | 0.077 | |||
4. Living with family | ||||||||||
a. Yes | 360 (98.63) | 0.002 | −4.46 (−14.89; 5.98) | 0.402 | 0.005 | −5.73 (−13.69; 2.23) | 0.158 | 0.004 | −6.59 (−16.62; 3.44) | 0.197 |
b. No | 05 (1.37) | Reference | Reference | Reference | ||||||
5. University Type | ||||||||||
a. Public | 256 (70.14) | 0.011 | 2.74 (0.11; 5.38) * | 0.041 | 0.001 | 0.49 (−1.54; 2.51) | 0.637 | 0.009 | (−0.22; 4.87) | 0.073 |
b. Private | 109 (29.86) | Reference | Reference | Reference | ||||||
6. University Location | ||||||||||
a. Dhaka | 327 (89.59) | 0.017 | Reference | 0.012 | Reference | 0.009 | Reference | |||
b. Outside Dhaka | 38 (10.41) | −5.01 (−8.95; −1.07) * | 0.013 | −3.24 (−6.26; −0.22) * | 0.035 | −3.61 (−7.42; 0.19) | 0.063 | |||
7.University Year | ||||||||||
a. First-year | 105 (28.77) | 0.011 | Reference | 0.011 | Reference | 0.014 | Reference | |||
b. Second-year | 81 (22.19) | −1.64 (5.07; 1.78) | 0.345 | 0.77 (−1.85; 3.39) | 0.563 | 1.17 (−2.12; 4.46) | 0.486 | |||
c. Third-year | 80 (21.92) | −1.10 (−4.54; 2.33) | 0.528 | −0.17 (−2.79; 2.46) | 0.899 | −0.31 (−3.61; 2.99) | 0.853 | |||
d. Fourth-year | 64 (17.53) | 0.72 (−2.95; 4.39) | 0.699 | 2.01 (−0.79; 4.82) | 0.159 | 1.10 (−2.43; 4.62) | 0.542 | |||
e. Masters | 35 (9.59) | 2.68 (−1.83; 7.20) | 0.243 | 2.50 (−0.96; 5.95) | 0.156 | 4.51 (0.17; 8.86) * | 0.042 | |||
8. Major | ||||||||||
a. Arts and Social Sciences | 139 (38.08) | Reference | Reference | Reference | ||||||
b. Business Studies and Economics | 93 (25.48) | 1.23 (−1.86; 4.32) | 0.436 | −1.28 (−3.66; 1.09) | 0.289 | −1.00 (−3.98; 1.99) | 0.511 | |||
c. Medical Studies | 30 (8.22) | 0.017 | −1.66 (−6.31; 2.99) | 0.482 | 0.009 | −2.64 (−6.21; 0.92) | 0.146 | 0.012 | −1.34 (−5.83; 3.14) | 0.556 |
d. Science and Engineering | 94 (25.75) | −2.65 (−5.73; 0.43) | 0.092 | −1.54 (−3.91; 0.82) | 0.201 | −3.10 (−6.08; −0.12) * | 0.041 | |||
e. Security and Strategic Studies | 9 (2.47) | −3.40 (−11.34; 4.54) | 0.401 | −1.04 (−7.14; 5.05) | 0.736 | −0.45 (−8.12; 7.21) | 0.907 |
Depression | Anxiety | Stress | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Features | n (%) | R2 | β# (95% CI) | p | R2 | β (95% CI) | p | R2 | β (95% CI) | p |
1. Concerned about Mental Health | ||||||||||
a. High | 202 (55.34) | Reference | Reference | Reference | ||||||
b. Moderate | 131 (35.89) | 0.077 | −6.23 (−8.73; −3.72) *** | <0.001 | 0.076 | −4.67 (−6.59; −2.76) *** | <0.001 | 0.07 | −4.99 (−7.41; −2.57) *** | <0.001 |
c. Low | 32 (8.77) | −7.78 (−12.03; −3.54) *** | <0.001 | −6.01 (−9.26; −2.77) *** | <0.001 | −8.75 (−12.85; −4.65) *** | <0.001 | |||
2. Confidence on Current Place for COVID-19 | ||||||||||
a. Very Safe | 7 (1.92) | −0.39 (−9.31; 8.53) | 0.931 | −1.09 (−7.92; 5.75) | 0.755 | −2.08 (−10.64; 6.49) | 0.634 | |||
b. Safe | 60 (16.44) | 0.01 (−3.53; 3.55) | 0.994 | 0.26 (−2.46; 2.97) | 0.853 | 0.71 (−2.69; 4.11) | 0.683 | |||
c. Moderately Safe | 144 (39.45) | 0.021 | Reference | 0.015 | Reference | 0.025 | Reference | |||
d. Unsafe | 107 (29.32) | 1.08 (−1.86; 4.02) | 0.472 | 1.21 (−1.04; 3.47) | 0.290 | 1.19 (−1.63; 4.01) | 0.408 | |||
e. Very Unsafe | 47 (12.88) | 5.24 (1.37; 9.11) ** | 0.008 | 3.29 (0.32; 6.26) * | 0.030 | 5.55 (1.83; 9.27) ** | 0.003 | |||
3. Perception of Current Social Life | ||||||||||
a. Very Satisfied | 15 (4.11) | −10.17 (−16.13; −4.22) *** | <0.001 | −3.47 (−8.12; 1.17) | 0.142 | −7.28 (−13.07; −1.48) * | 0.014 | |||
b. Satisfied | 115 (31.51) | 0.074 | −5.98 (−8.52; −3.43) *** | <0.001 | 0.036 | −3.56 (−5.54; −1.57) *** | <0.001 | 0.053 | −5.12 (−7.59; −2.64) *** | <0.001 |
c. Least Satisfied | 235 (64.38) | Reference | Reference | Reference | ||||||
4. Perception of Academic Performance | ||||||||||
a. Very Satisfied | 18 (4.93) | −3.86 (−9.61; 1.88) | 0.187 | 0.13 (−4.27; 4.52) | 0.955 | (−4.49; 6.64) | 0.705 | |||
b. Satisfied | 196 (53.70) | 0.015 | −2.86 (−5.35; −0.36) * | 0.025 | 0.011 | −1.90 (−3.81; 0.01) | 0.050 | 0.003 | (−3.52; 1.32) | 0.371 |
c. Least Satisfied | 151 (41.37) | Reference | Reference | Reference | ||||||
5. Concerned about Impairment of Study | ||||||||||
a. High | 213 (58.36) | Reference | Reference | Reference | ||||||
b. Medium | 126 (34.52) | 0.004 | −0.93 (−3.54; 1.67) | 0.481 | 0.006 | −0.02 (−2.01; 1.97) | 0.986 | 0.002 | −0.58 (−3.09; 1.93) | 0.648 |
c. Low | 26 (7.12) | −2.62 (−7.43; 2.19) | 0.285 | −2.63 (−6.31; 1.046) | 0.160 | −1.67 (−6.31; 2.97) | 0.480 | |||
6. Concerned about the Family Member’s Earnings | ||||||||||
a. High | 133 (36.44) | Reference | Reference | Reference | ||||||
b. Medium | 133 (36.44) | 0.014 | −3.19 (−6.01; −0.36) * | 0.027 | 0.007 | −0.71 (−2.88; 1.46) | 0.522 | 0.007 | −1.42 (−4.70; 0.76) | 0.157 |
c. Low | 99 (27.12) | −2.50 (−5.56; 0.56) | 0.108 | −1.90 (−4.25; 0.44) | 0.112 | −1.31 (−4.92; 0.99) | 0.192 |
Depression | Anxiety | Stress | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Features | n (%) | R2 | β# (95% CI) | p | R2 | β (95% CI) | p | R2 | β (95% CI) | p |
1. Subject Related to COVID-19 | ||||||||||
a. Yes | 125 (34.25) | −2.93 (−6.47; 0.61) | 0.104 | 0.12 (−2.59; 2.83) | 0.930 | −0.63 (−4.04; 2.78) | 0.717 | |||
b. No | 175 (47.95) | 0.008 | −1.17 (−4.53; 2.19) | 0.494 | 0.003 | 1.02 (1.56; 3.59) | 0.437 | 0.002 | 0.57 (−2.68; 3.81) | 0.732 |
c. Maybe | 65 (17.81) | Reference | Reference | Reference | ||||||
2. Financial/Mental Support for COVID-19 | ||||||||||
a. Yes | 140 (38.36) | 0.006 | −1.93 (−4.42; 0.56) | 0.128 | 0.013 | −2.11 (−4.01; −0.22) * | 0.029 | 0.001 | −0.67 (−3.08; 1.73) | 0.581 |
b. No | 225 (61.64) | Reference | Reference | Reference | ||||||
3. Online Class | ||||||||||
a. Yes | 308 (84.38) | 0.000 | 0.54 (−2.8; 3.88) | 0.752 | 0.006 | 1.92 (−0.62; 4.47) | 0.139 | 0.000 | −0.01 (−3.23; 3.21) | 0.996 |
b. No | 57 (15.62) | Reference | Reference | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Asikunnaby; Khan, S.J.; Arony, A.; Mamun, Z.A.; Procheta, N.F.; Sakib, M.S.; Aryal, K.R.; Rahman, F.; Islam, A.R.M.T. Mental Health Condition among University Students of Bangladesh during the Critical COVID-19 Period. J. Clin. Med. 2022, 11, 4617. https://doi.org/10.3390/jcm11154617
Rahman MM, Asikunnaby, Khan SJ, Arony A, Mamun ZA, Procheta NF, Sakib MS, Aryal KR, Rahman F, Islam ARMT. Mental Health Condition among University Students of Bangladesh during the Critical COVID-19 Period. Journal of Clinical Medicine. 2022; 11(15):4617. https://doi.org/10.3390/jcm11154617
Chicago/Turabian StyleRahman, Md Mostafizur, Asikunnaby, Saadmaan Jubayer Khan, Anuva Arony, Zahid Al Mamun, Nawwar Fatima Procheta, Mohammed Sadman Sakib, Komal Raj Aryal, Farzana Rahman, and Abu Reza Md. Towfiqul Islam. 2022. "Mental Health Condition among University Students of Bangladesh during the Critical COVID-19 Period" Journal of Clinical Medicine 11, no. 15: 4617. https://doi.org/10.3390/jcm11154617
APA StyleRahman, M. M., Asikunnaby, Khan, S. J., Arony, A., Mamun, Z. A., Procheta, N. F., Sakib, M. S., Aryal, K. R., Rahman, F., & Islam, A. R. M. T. (2022). Mental Health Condition among University Students of Bangladesh during the Critical COVID-19 Period. Journal of Clinical Medicine, 11(15), 4617. https://doi.org/10.3390/jcm11154617