Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Preclinical Setting Lights
3.1.1. Mechanisms of Action
3.1.2. Biomarkers
3.2. Preclinical Setting—Shadows
3.2.1. Mechanisms of Action
3.2.2. Biomarkers
3.3. Clinical Setting—Lights
3.3.1. mCHT Alone
3.3.2. mCHT in Combination with Targeted Agents
- mCHT in Combination with Anti-HER2 Agents
- mCHT in Combination with Anti-Angiogenic Drugs
- mCHT in Combination with other Targeted Agents
3.4. Clinical Setting—Shadows
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cazzaniga, M.E.; Cordani, N.; Capici, S.; Cogliati, V.; Riva, F.; Cerrito, M.G. Metronomic Chemotherapy. Cancers 2021, 13, 2236. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Bergers, G.; Bergsland, E. Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Investig. 2000, 105, 1045–1047. [Google Scholar] [CrossRef]
- Browder, T.; Butterfield, C.E.; Kraling, B.M.; Shi, B.; Marshall, B.; O’Reilly, M.S.; Folkman, J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000, 60, 1878–1886. [Google Scholar]
- Wechman, S.L.; Emdad, L.; Sarkar, D.; Das, S.K.; Fisher, P.B. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv. Cancer Res. 2020, 148, 27–67. [Google Scholar] [CrossRef] [PubMed]
- Klement, G.; Huang, P.; Mayer, B.; Green, S.K.; Man, S.; Bohlen, P.; Hicklin, D.; Kerbel, R.S. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin. Cancer Res. 2002, 8, 221–232. [Google Scholar]
- Fouladzadeh, A.; Dorraki, M.; Min, K.K.M.; Cockshell, M.P.; Thompson, E.J.; Verjans, J.W.; Allison, A.; Bonder, C.S.; Abbott, D. The development of tumour vascular networks. Commun. Biol. 2021, 4, 1111. [Google Scholar] [CrossRef]
- Natale, G.; Bocci, G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett. 2018, 432, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Kerbel, R.S.; Kamen, B.A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 2004, 4, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis 2014, 17, 471–494. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Dastidar, D.; Ghosh, D.; Chakrabarti, G. Tumour vasculature targeted anti-cancer therapy. Vessel Plus 2020, 4, 14. [Google Scholar] [CrossRef]
- Di Desidero, T.; Xu, P.; Man, S.; Bocci, G.; Kerbel, R.S. Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer. Oncotarget 2015, 6, 42396–42410. [Google Scholar] [CrossRef]
- Andre, N.; Tsai, K.; Carre, M.; Pasquier, E. Metronomic Chemotherapy: Direct Targeting of Cancer Cells after all? Trends Cancer 2017, 3, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Parra, K.; Valenzuela, P.; Lerma, N.; Gallegos, A.; Reza, L.C.; Rodriguez, G.; Emmenegger, U.; Di Desidero, T.; Bocci, G.; Felder, M.S.; et al. Impact of CTLA-4 blockade in conjunction with metronomic chemotherapy on preclinical breast cancer growth. Br. J. Cancer 2017, 116, 324–334. [Google Scholar] [CrossRef]
- Khan, K.A.; Ponce de Leon, J.L.; Benguigui, M.; Xu, P.; Chow, A.; Cruz-Munoz, W.; Man, S.; Shaked, Y.; Kerbel, R.S. Immunostimulatory and anti-tumor metronomic cyclophosphamide regimens assessed in primary orthotopic and metastatic murine breast cancer. NPJ Breast Cancer 2020, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Orecchioni, S.; Talarico, G.; Labanca, V.; Calleri, A.; Mancuso, P.; Bertolini, F. Vinorelbine, cyclophosphamide and 5-FU effects on the circulating and intratumoural landscape of immune cells improve anti-PD-L1 efficacy in preclinical models of breast cancer and lymphoma. Br. J. Cancer 2018, 118, 1329–1336. [Google Scholar] [CrossRef]
- Shaked, Y.; Emmenegger, U.; Francia, G.; Chen, L.; Lee, C.R.; Man, S.; Paraghamian, A.; Ben-David, Y.; Kerbel, R.S. Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res. 2005, 65, 7045–7051. [Google Scholar] [CrossRef]
- Daenen, L.G.; Shaked, Y.; Man, S.; Xu, P.; Voest, E.E.; Hoffman, R.M.; Chaplin, D.J.; Kerbel, R.S. Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol. Cancer Ther. 2009, 8, 2872–2881. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Cramarossa, G.; Lee, E.K.; Sivanathan, L.; Georgsdottir, S.; Lien, K.; Santos, K.D.; Chan, K.; Emmenegger, U. A systematic literature analysis of correlative studies in low-dose metronomic chemotherapy trials. Biomark Med. 2014, 8, 893–911. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, T.; Ng, Q.S.; Tan, D.S.; Lim, W.T.; Ang, M.K.; Toh, C.K.; Chowbay, B.; Kanesvaran, R.; Tan, E.H. Metronomic chemotherapy: A relook at its basis and rationale. Cancer Lett. 2017, 388, 328–333. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.; Lee, S.; Kim, J.G. Changes in Breast-tumor Blood Flow in Response to Hypercapnia during Chemotherapy with Laser Speckle Flowmetry. Curr. Opt. Photonics 2019, 3, 555–565. [Google Scholar] [CrossRef]
- Filippone, M.G.; Gaglio, D.; Bonfanti, R.; Tucci, F.A.; Ceccacci, E.; Pennisi, R.; Bonanomi, M.; Jodice, G.; Tillhon, M.; Montani, F.; et al. CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer. Nat. Commun. 2022, 13, 2642. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Sarker, S.; Upadhyay, P.; Pal, A.; Adhikary, A.; Jana, K.; Ray, M. Methylglyoxal at metronomic doses sensitizes breast cancer cells to doxorubicin and cisplatin causing synergistic induction of programmed cell death and inhibition of stemness. Biochem. Pharmacol. 2018, 156, 322–339. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.R.; Martinez Pulido, P.; Sanchez, F.; Sanchez, Y.; Espanol, A.J.; Sales, M.E. Effect of low dose metronomic therapy on MCF-7 tumor cells growth and angiogenesis. Role of muscarinic acetylcholine receptors. Int. Immunopharmacol. 2020, 84, 106514. [Google Scholar] [CrossRef]
- Cerrito, M.G.; De Giorgi, M.; Pelizzoni, D.; Bonomo, S.M.; Digiacomo, N.; Scagliotti, A.; Bugarin, C.; Gaipa, G.; Grassilli, E.; Lavitrano, M.; et al. Metronomic combination of Vinorelbine and 5Fluorouracil is able to inhibit triple-negative breast cancer cells. Results from the proof-of-concept VICTOR-0 study. Oncotarget 2018, 9, 27448–27459. [Google Scholar] [CrossRef]
- Sukumar, J.; Gast, K.; Quiroga, D.; Lustberg, M.; Williams, N. Triple-negative breast cancer: Promising prognostic biomarkers currently in development. Expert Rev. Anticancer Ther. 2021, 21, 135–148. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, R.; Zheng, W.; Zhang, L.; Li, P.; Sun, X.; Shi, J. Metronomic paclitaxel improves the efficacy of PD-1 monoclonal antibodies in breast cancer by transforming the tumor immune microenvironment. Am. J. Transl. Res. 2020, 12, 519–530. [Google Scholar]
- Kamoun, W.S.; Dugast, A.S.; Suchy, J.J.; Grabow, S.; Fulton, R.B.; Sampson, J.F.; Luus, L.; Santiago, M.; Koshkaryev, A.; Sun, G.; et al. Synergy between EphA2-ILs-DTXp, a Novel EphA2-Targeted Nanoliposomal Taxane, and PD-1 Inhibitors in Preclinical Tumor Models. Mol. Cancer Ther. 2020, 19, 270–281. [Google Scholar] [CrossRef]
- Francia, G.; Man, S.; Lee, C.J.; Lee, C.R.; Xu, P.; Mossoba, M.E.; Emmenegger, U.; Medin, J.A.; Kerbel, R.S. Comparative impact of trastuzumab and cyclophosphamide on HER-2-positive human breast cancer xenografts. Clin. Cancer Res. 2009, 15, 6358–6366. [Google Scholar] [CrossRef]
- Vergato, C.; Doshi, K.A.; Roblyer, D.; Waxman, D.J. Type-I Interferon Signaling Is Essential for Robust Metronomic Chemo-Immunogenic Tumor Regression in Murine Breast Cancer. Cancer Res. Commun. 2022, 2, 246–257. [Google Scholar] [CrossRef]
- Fowler, A.M.; Mankoff, D.A.; Joe, B.N. Imaging Neoadjuvant Therapy Response in Breast Cancer. Radiology 2017, 285, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, S.; Tank, A.; Wang, F.; Karrobi, K.; Vergato, C.; Bigio, I.J.; Waxman, D.J.; Roblyer, D. Optical scattering as an early marker of apoptosis during chemotherapy and antiangiogenic therapy in murine models of prostate and breast cancer. Neoplasia 2021, 23, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Shaked, Y.; Pham, E.; Hariharan, S.; Magidey, K.; Beyar-Katz, O.; Xu, P.; Man, S.; Wu, F.T.; Miller, V.; Andrews, D.; et al. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Res. 2016, 76, 5983–5993. [Google Scholar] [CrossRef] [PubMed]
- Bocci, G.; Kerbel, R.S. Pharmacokinetics of metronomic chemotherapy: A neglected but crucial aspect. Nat. Rev. Clin. Oncol. 2016, 13, 659–673. [Google Scholar] [CrossRef]
- Colleoni, M.; Gray, K.P.; Gelber, S.; Lang, I.; Thurlimann, B.; Gianni, L.; Abdi, E.A.; Gomez, H.L.; Linderholm, B.K.; Puglisi, F.; et al. Low-Dose Oral Cyclophosphamide and Methotrexate Maintenance for Hormone Receptor-Negative Early Breast Cancer: International Breast Cancer Study Group Trial 22-00. J. Clin. Oncol. 2016, 34, 3400–3408. [Google Scholar] [CrossRef]
- Gebbia, V.; Boussen, H.; Valerio, M.R. Oral metronomic cyclophosphamide with and without methotrexate as palliative treatment for patients with metastatic breast carcinoma. Anticancer Res. 2012, 32, 529–536. [Google Scholar]
- Jung, L.; Miske, A.; Indorf, A.; Nelson, K.; Gadi, V.K.; Banda, K. A Retrospective Analysis of Metronomic Cyclophosphamide, Methotrexate, and Fluorouracil (CMF) Versus Docetaxel and Cyclophosphamide (TC) as Adjuvant Treatment in Early Stage, Hormone Receptor Positive, HER2 Negative Breast Cancer. Clin. Breast Cancer 2022, 22, e310–e318. [Google Scholar] [CrossRef]
- Mutlu, H.; Musri, F.Y.; Artac, M.; Kargi, A.; Ozdogan, M.; Bozcuk, H. Metronomic oral chemotherapy with old agents in patients with heavily treated metastatic breast cancer. J. Cancer Res. Ther. 2015, 11, 287–290. [Google Scholar] [CrossRef]
- Lu, Q.; Lee, K.; Xu, F.; Xia, W.; Zheng, Q.; Hong, R.; Jiang, K.; Zhai, Q.; Li, Y.; Shi, Y.; et al. Metronomic chemotherapy of cyclophosphamide plus methotrexate for advanced breast cancer: Real-world data analyses and experience of one center. Cancer Commun. 2020, 40, 222–233. [Google Scholar] [CrossRef]
- Briasoulis, E.; Pappas, P.; Puozzo, C.; Tolis, C.; Fountzilas, G.; Dafni, U.; Marselos, M.; Pavlidis, N. Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory cancer. Clin. Cancer Res. 2009, 15, 6454–6461. [Google Scholar] [CrossRef]
- Krajnak, S.; Decker, T.; Schollenberger, L.; Rose, C.; Ruckes, C.; Fehm, T.; Thomssen, C.; Harbeck, N.; Schmidt, M. Phase II study of metronomic treatment with daily oral vinorelbine as first-line chemotherapy in patients with advanced/metastatic HR+/HER2- breast cancer resistant to endocrine therapy: VinoMetro-AGO-B-046. J. Cancer Res. Clin. Oncol. 2021, 147, 3391–3400. [Google Scholar] [CrossRef]
- Montagna, E.; Palazzo, A.; Maisonneuve, P.; Cancello, G.; Iorfida, M.; Sciandivasci, A.; Esposito, A.; Cardillo, A.; Mazza, M.; Munzone, E.; et al. Safety and efficacy study of metronomic vinorelbine, cyclophosphamide plus capecitabine in metastatic breast cancer: A phase II trial. Cancer Lett. 2017, 400, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Brems-Eskildsen, A.S.; Linnet, S.; Dano, H.; Luczak, A.; Vestlev, P.M.; Jakobsen, E.H.; Neimann, J.; Jensen, C.B.; Dongsgaard, T.; Langkjer, S.T. Metronomic treatment of vinorelbine with oral capecitabine is tolerable in the randomized Phase 2 study XeNa including patients with HER2 non-amplified metastatic breast cancer. Acta Oncol. 2021, 60, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Krajnak, S.; Battista, M.; Brenner, W.; Almstedt, K.; Elger, T.; Heimes, A.S.; Hasenburg, A.; Schmidt, M. Explorative Analysis of Low-Dose Metronomic Chemotherapy with Cyclophosphamide and Methotrexate in a Cohort of Metastatic Breast Cancer Patients. Breast Care 2018, 13, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, M.E.; Torri, V.; Riva, F.; Porcu, L.; Cicchiello, F.; Capici, S.; Cortinovis, D.; Digiacomo, N.; Bidoli, P. Efficacy and safety of vinorelbine-capecitabine oral metronomic combination in elderly metastatic breast cancer patients: VICTOR-1 study. Tumori 2017, 103, e4–e8. [Google Scholar] [CrossRef]
- Cazzaniga, M.E.; Cortesi, L.; Ferzi, A.; Scaltriti, L.; Cicchiello, F.; Ciccarese, M.; Della Torre, S.; Villa, F.; Giordano, M.; Verusio, C.; et al. Metronomic chemotherapy with oral vinorelbine (mVNR) and capecitabine (mCAPE) in advanced HER2-negative breast cancer patients: Is it a way to optimize disease control? Final results of the VICTOR-2 study. Breast Cancer Res. Treat. 2016, 160, 501–509. [Google Scholar] [CrossRef]
- Cazzaniga, M.E.; Pinotti, G.; Montagna, E.; Amoroso, D.; Berardi, R.; Butera, A.; Cagossi, K.; Cavanna, L.; Ciccarese, M.; Cinieri, S.; et al. Metronomic chemotherapy for advanced breast cancer patients in the real world practice: Final results of the VICTOR-6 study. Breast 2019, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Montagna, E.; Pagan, E.; Cancello, G.; Sangalli, C.; Bagnardi, V.; Munzone, E.; Sale, E.O.; Malengo, D.; Cazzaniga, M.E.; Negri, M.; et al. The prolonged clinical benefit with metronomic chemotherapy (VEX regimen) in metastatic breast cancer patients. Anticancer Drugs 2022, 33, e628–e634. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.L.; Isakoff, S.J.; Klement, G.; Downing, S.R.; Chen, W.Y.; Hannagan, K.; Gelman, R.; Winer, E.P.; Burstein, H.J. Combination antiangiogenic therapy in advanced breast cancer: A phase 1 trial of vandetanib, a VEGFR inhibitor, and metronomic chemotherapy, with correlative platelet proteomics. Breast Cancer Res. Treat. 2012, 136, 169–178. [Google Scholar] [CrossRef]
- Colleoni, M.; Orlando, L.; Sanna, G.; Rocca, A.; Maisonneuve, P.; Peruzzotti, G.; Ghisini, R.; Sandri, M.T.; Zorzino, L.; Nole, F.; et al. Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: Antitumor activity and biological effects. Ann. Oncol. 2006, 17, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Wildiers, H.; Tryfonidis, K.; Dal Lago, L.; Vuylsteke, P.; Curigliano, G.; Waters, S.; Brouwers, B.; Altintas, S.; Touati, N.; Cardoso, F.; et al. Pertuzumab and trastuzumab with or without metronomic chemotherapy for older patients with HER2-positive metastatic breast cancer (EORTC 75111-10114): An open-label, randomised, phase 2 trial from the Elderly Task Force/Breast Cancer Group. Lancet. Oncol. 2018, 19, 323–336. [Google Scholar] [CrossRef]
- Dal Lago, L.; Uwimana, A.L.; Coens, C.; Vuylsteke, P.; Curigliano, G.; Brouwers, B.; Jagiello-Gruszfeld, A.; Altintas, S.; Tryfonidis, K.; Poncet, C.; et al. Health-related quality of life in older patients with HER2+ metastatic breast cancer: Comparing pertuzumab plus trastuzumab with or without metronomic chemotherapy in a randomised open-label phase II clinical trial. J. Geriatr. Oncol. 2022, 5, 582–593. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Ma, F.; Wang, J.; Luo, Y.; Fan, Y.; Yuan, P.; Zhang, P.; Li, Q.; Li, Q.; et al. Safety and efficacy study of oral metronomic vinorelbine combined with trastuzumab (mNH) in HER2-positive metastatic breast cancer: A phase II trial. Breast Cancer Res. Treat. 2021, 188, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Dellapasqua, S.; Bertolini, F.; Bagnardi, V.; Campagnoli, E.; Scarano, E.; Torrisi, R.; Shaked, Y.; Mancuso, P.; Goldhirsch, A.; Rocca, A.; et al. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J. Clin. Oncol. 2008, 26, 4899–4905. [Google Scholar] [CrossRef]
- Garcia-Saenz, J.A.; Martin, M.; Calles, A.; Bueno, C.; Rodriguez, L.; Bobokova, J.; Custodio, A.; Casado, A.; Diaz-Rubio, E. Bevacizumab in combination with metronomic chemotherapy in patients with anthracycline- and taxane-refractory breast cancer. J. Chemother. 2008, 20, 632–639. [Google Scholar] [CrossRef]
- Rochlitz, C.; Bigler, M.; von Moos, R.; Bernhard, J.; Matter-Walstra, K.; Wicki, A.; Zaman, K.; Anchisi, S.; Kung, M.; Na, K.J.; et al. SAKK 24/09: Safety and tolerability of bevacizumab plus paclitaxel vs. bevacizumab plus metronomic cyclophosphamide and capecitabine as first-line therapy in patients with HER2-negative advanced stage breast cancer—A multicenter, randomized phase III trial. BMC Cancer 2016, 16, 780. [Google Scholar] [CrossRef]
- Palazzo, A.; Dellapasqua, S.; Munzone, E.; Bagnardi, V.; Mazza, M.; Cancello, G.; Ghisini, R.; Iorfida, M.; Montagna, E.; Goldhirsch, A.; et al. Phase II Trial of Bevacizumab Plus Weekly Paclitaxel, Carboplatin, and Metronomic Cyclophosphamide With or Without Trastuzumab and Endocrine Therapy as Preoperative Treatment of Inflammatory Breast Cancer. Clin. Breast Cancer 2018, 18, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, F.; Paul, S.; Mancuso, P.; Monestiroli, S.; Gobbi, A.; Shaked, Y.; Kerbel, R.S. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003, 63, 4342–4346. [Google Scholar]
- Perroud, H.A.; Rico, M.J.; Alasino, C.M.; Queralt, F.; Mainetti, L.E.; Pezzotto, S.M.; Rozados, V.R.; Scharovsky, O.G. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol. 2013, 9, 451–462. [Google Scholar] [CrossRef]
- Perroud, H.A.; Alasino, C.M.; Rico, M.J.; Mainetti, L.E.; Queralt, F.; Pezzotto, S.M.; Rozados, V.R.; Scharovsky, O.G. Metastatic breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: Clinical outcomes and biomarkers of response. Cancer Chemother. Pharmacol. 2016, 77, 365–374. [Google Scholar] [CrossRef]
- Bazzola, L.; Foroni, C.; Andreis, D.; Zanoni, V.; Cappelletti, M.R.; Allevi, G.; Aguggini, S.; Strina, C.; Milani, M.; Venturini, S.; et al. Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer. Br. J. Cancer. 2015, 112, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Kummar, S.; Wade, J.L.; Oza, A.M.; Sullivan, D.; Chen, A.P.; Gandara, D.R.; Ji, J.; Kinders, R.J.; Wang, L.; Allen, D.; et al. Randomized phase II trial of cyclophosphamide and the oral poly (ADP-ribose) polymerase inhibitor veliparib in patients with recurrent, advanced triple-negative breast cancer. Investig. New Drugs 2016, 34, 355–363. [Google Scholar] [CrossRef]
- Anampa, J.; Chen, A.; Wright, J.; Patel, M.; Pellegrino, C.; Fehn, K.; Sparano, J.A.; Andreopoulou, E. Phase I Trial of Veliparib, a Poly ADP Ribose Polymerase Inhibitor, Plus Metronomic Cyclophosphamide in Metastatic HER2-negative Breast Cancer. Clin. Breast Cancer 2018, 18, e135–e142. [Google Scholar] [CrossRef]
- Cazzaniga, M.E.; Munzone, E.; Bocci, G.; Afonso, N.; Gomez, P.; Langkjer, S.; Petru, E.; Pivot, X.; Sanchez Rovira, P.; Wysocki, P.; et al. Pan-European Expert Meeting on the Use of Metronomic Chemotherapy in Advanced Breast Cancer Patients: The PENELOPE Project. Adv. Ther. 2019, 36, 381–406. [Google Scholar] [CrossRef]
- Lien, K.; Georgsdottir, S.; Sivanathan, L.; Chan, K.; Emmenegger, U. Low-dose metronomic chemotherapy: A systematic literature analysis. Eur. J. Cancer 2013, 49, 3387–3395. [Google Scholar] [CrossRef]
- Shaked, Y.; Emmenegger, U.; Man, S.; Cervi, D.; Bertolini, F.; Ben-David, Y.; Kerbel, R.S. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 2005, 106, 3058–3061. [Google Scholar] [CrossRef] [PubMed]
- Mishra-Kalyani, P.S.; Amiri Kordestani, L.; Rivera, D.R.; Singh, H.; Ibrahim, A.; DeClaro, R.A.; Shen, Y.; Tang, S.; Sridhara, R.; Kluetz, P.G.; et al. External control arms in oncology: Current use and future directions. Ann. Oncol. 2022, 33, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Grassilli, E.; Cerrito, M.G.; Lavitrano, M. BTK, the new kid on the (oncology) block? Front. Oncol. 2022, 12, 944538. [Google Scholar] [CrossRef]
- Grassilli, E.; Cerrito, M.G.; Bonomo, S.; Giovannoni, R.; Conconi, D.; Lavitrano, M. p65BTK Is a Novel Biomarker and Therapeutic Target in Solid Tumors. Front. Cell Dev. Biol. 2021, 9, 690365. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Park, J.; Noh, E.M.; Song, H.K.; Kang, S.Y.; Jung, S.H.; Kim, J.S.; Park, B.H.; Lee, Y.R.; Youn, H.J. Bruton’s agammaglobulinemia tyrosine kinase (Btk) regulates TPAinduced breast cancer cell invasion via PLCgamma2/PKCbeta/NFkappaB/AP1dependent matrix metalloproteinase9 activation. Oncol. Rep. 2021, 45, 56. [Google Scholar] [CrossRef] [PubMed]
- Grabinski, N.; Ewald, F. Ibrutinib (ImbruvicaTM) potently inhibits ErbB receptor phosphorylation and cell viability of ErbB2-positive breast cancer cells. Investig. New Drugs 2014, 32, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wong, J.; Sevinsky, C.J.; Kokabee, L.; Khan, F.; Sun, Y.; Conklin, D.S. Bruton’s Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells. Mol. Cancer Ther. 2016, 15, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Varikuti, S.; Singh, B.; Volpedo, G.; Ahirwar, D.K.; Jha, B.K.; Saljoughian, N.; Viana, A.G.; Verma, C.; Hamza, O.; Halsey, G.; et al. Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. Br. J. Cancer. 2020, 122, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Kerbel, R.S. A Decade of Experience in Developing Preclinical Models of Advanced- or Early-Stage Spontaneous Metastasis to Study Antiangiogenic Drugs, Metronomic Chemotherapy, and the Tumor Microenvironment. Cancer J. 2015, 21, 274–283. [Google Scholar] [CrossRef]
- Scharovsky, O.G.; Rico, M.J.; Mainetti, L.E.; Perroud, H.A.; Rozados, V.R. Achievements and challenges in the use of metronomics for the treatment of breast cancer. Biochem. Pharmacol. 2020, 175, 113909. [Google Scholar] [CrossRef]
- Krajnak, S.; Battista, M.J.; Hasenburg, A.; Schmidt, M. Metronomic Chemotherapy for Metastatic Breast Cancer. Oncol. Res. Treat. 2022, 45, 12–17. [Google Scholar] [CrossRef]
Author (Year) | Regimen | Toxicity Grade 1–2 1 | Toxicity Grade 3–4 1 |
---|---|---|---|
Krajnak (2021) [41] | VNR 30 mg/day, continuously | Increased AST/ALT 22% | Febrile neutropenia (Grade 5) |
Wang (2021) [53] | VNR 40 mg 3/week + trastuzumab 6 mg/kg (loading dose) | Nausea 15% Leukopenia 15% Increased ALT/AST 15% Diarrhoea 10% Peripheral neuropathy 10% | Neutropenia 10% |
Brems-Eskildsen (2020) [43] | Arm A: VNR 60 mg/m2 day 1 + day 8 in the first cycle followed by 80 mg/m2 day 1 + day 8 + CAPE 1000 mg bid × 14 days, Q21 Arm B: VNR 50 mg 3/week + CAPE 1000 mg bid × 14 days, Q21 | Arm A vs. Arm B Diarrhoea 53.2% vs. 46.5% Nausea 43.5% vs. 32.7% Mucositis 40.3% vs. 41.4% Fatigue 32.2% vs. 29.3% Hand-foot 48.4% vs. 44.8% Constipation 29% vs. 29.3% Neuropathy 29% vs. 25.9% Neutropenia 25.8% vs. 24.1% Dyspnea 24.2% vs. 18.9% Increased ALT/AST 20.9% vs. 17.2% Joint affection 19.4% vs. 17.2% Pain 19.3% Leucopenia 16.1% vs. 13.7% Fever 14.5% vs. 18.9% Abdominal pain 14.5% vs. 17.2% Back pain 11.3% | Fatigue 9.7% vs. 17.2% |
Cazzaniga (2019) [64] | Different schedules | Nausea/vomiting 15.4% Hematologic 14.0% Diarrhoea 12% Fatigue 10.3% | <10% |
Montagna (2022) [48] | VNR 40 mg 3/week + CTX 50 mg/day + CAPE 500 mg 3/day | Not reported | Hand-foot syndrome 7% |
Perroud HA (2013) [59] | CTX 50 mg/daily + celecoxib 200 mg bid | Leucopenia G1 13.3% Neutropenia G1 6.7% Thrombocytopenia G1 6.7% Neutropenia G2 13.3% Anaemia G2 26.7% | None |
Bazzola (2015) [61] | Letrozole 2.5 mg/day + CTX 50 mg + sorafenib 400 mg bid every 5th day | Alopecia 76.9% Neutropenia 38.5% Sensory neuropathy 38.5% Weight loss 38.5% Hand-foot syndrome 30.7% Fatigue 30.7% Rash 30.7% Dehydration 30.7% Anorexia 30.7% Arthralgias 23% Joint function 23% Hypertension 15.4% Mucositis 15.4% Acne 23% | Hand-foot syndrome 69.3% Rash 69.3% Diarrhoea 46.1% Dehydration 23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazzaniga, M.E.; Capici, S.; Cordani, N.; Cogliati, V.; Pepe, F.F.; Riva, F.; Cerrito, M.G. Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. J. Clin. Med. 2022, 11, 4710. https://doi.org/10.3390/jcm11164710
Cazzaniga ME, Capici S, Cordani N, Cogliati V, Pepe FF, Riva F, Cerrito MG. Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. Journal of Clinical Medicine. 2022; 11(16):4710. https://doi.org/10.3390/jcm11164710
Chicago/Turabian StyleCazzaniga, Marina Elena, Serena Capici, Nicoletta Cordani, Viola Cogliati, Francesca Fulvia Pepe, Francesca Riva, and Maria Grazia Cerrito. 2022. "Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows" Journal of Clinical Medicine 11, no. 16: 4710. https://doi.org/10.3390/jcm11164710
APA StyleCazzaniga, M. E., Capici, S., Cordani, N., Cogliati, V., Pepe, F. F., Riva, F., & Cerrito, M. G. (2022). Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. Journal of Clinical Medicine, 11(16), 4710. https://doi.org/10.3390/jcm11164710