Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case–Control Study in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. The Association of HRNR rs877776 and FLG2 rs12568784 with Eczema
3.2. The Effects of HRNR rs877776 and FLG2 rs12568784 on Eczema-Associated Asthma
3.3. The Effects of HRNR rs877776 and FLG2 rs12568784 on Allergic Sensitization
3.4. Analysis of Interaction between HRNR rs877776 and FLG2 rs12568784 and FLG Mutations
3.5. HRNR rs877776 and FLG2 rs12568784 in the Prediction of Asthma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef]
- Deckers, I.A.; McLean, S.; Linssen, S.; Mommers, M.; van Schayck, C.P.; Sheikh, A. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: A systematic review of epidemiological studies. PLoS ONE 2012, 7, e39803. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.B. A practical overview of pediatric atopic dermatitis, part 1: Epidemiology and pathogenesis. Cutis 2016, 97, 267–271. [Google Scholar] [PubMed]
- Hill, D.A.; Spergel, J.M. The atopic march: Critical evidence and clinical relevance. Ann. Allergy Asthma Immunol. 2018, 120, 131–137. [Google Scholar] [CrossRef]
- Sprengler, J.M.; Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 2003, 112, S118–S128. [Google Scholar]
- Zheng, T.; Yu, J.; Oh, M.H.; Zhu, Z. The atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol. Res. 2011, 3, 67–73. [Google Scholar] [CrossRef]
- Maiello, N.; Comberiati, P.; Giannetti, A.; Ricci, G.; Carello, R.; Galli, E. New Directions in Understanding Atopic March Starting from Atopic Dermatitis. Children 2022, 9, 450. [Google Scholar] [CrossRef]
- Bieber, T.; D’Erme, A.M.; Akdis, C.A.; Traidl-Hoffmann, C.; Lauener, R.; Schäppi, G.; Schmid-Grendelmeier, P. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J. Allergy Clin. Immunol. 2017, 139, S58–S64. [Google Scholar] [CrossRef]
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. [Google Scholar] [CrossRef]
- Elias, P.M.; Hatano, Y.; Williams, M.L. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1337–1343. [Google Scholar] [CrossRef]
- Elias, P.M. Primary role of barrier dysfunction in the pathogenesis of atopic dermatitis. Exp. Dermatol. 2018, 27, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Bantz, S.K.; Zhu, Z.; Zheng, T. The atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 2014, 5, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Egawa, G.; Kabashima, K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J. Allergy Clin. Immunol. 2016, 138, 350–358.e1. [Google Scholar] [CrossRef]
- Leung, D.Y.M.; Berdyshev, E.; Goleva, E. Cutaneous barrier dysfunction in allergic diseases. J. Allergy Clin. Immunol. 2020, 145, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Leung, D.Y.M. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. Allergy Asthma Immunol. Res. 2018, 10, 207–215. [Google Scholar] [CrossRef]
- Drislane, C.; Irvine, A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 2020, 124, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lim, K.M. Skin barrier dysfunction and filaggrin. Arch. Pharm. Res. 2021, 44, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Estravís, M.; García-Sánchez, A.; Dávila, I.; Isidoro-García, M.; Sanz, C. Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes 2020, 11, 442. [Google Scholar] [CrossRef]
- Gupta, J.; Margolis, D.J. Filaggrin gene mutations with special reference to atopic dermatitis. Curr. Treat. Options Allergy 2020, 7, 403–413. [Google Scholar] [CrossRef]
- Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.; et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006, 38, 441–446. [Google Scholar] [CrossRef]
- Moosbrugger-Martinz, V.; Leprince, C.; Méchin, M.-C.; Simon, M.; Blunder, S.; Gruber, R.; Dubrac, S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int. J. Mol. Sci 2022, 23, 5318. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Baurecht, H.; Herberich, E.; Wagenpfeil, S.; Brown, S.J.; Cordell, H.J.; Irvine, A.D.; Weidinger, S. Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. J. Allergy Clin. Immunol. 2009, 123, 1361–1370.e7. [Google Scholar] [CrossRef] [PubMed]
- Van den Oord, R.A.; Sheikh, A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: Systematic review and meta-analysis. BMJ 2009, 339, b2433. [Google Scholar] [CrossRef]
- Tenn, M.W.; Ellis, A.K. The clinical relevance of filaggrin mutations: Effect on allergic disease. Ann. Allergy Asthma Immunol. 2016, 117, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Ziyab, A.H.; Karmaus, W.; Zhang, H.; Holloway, J.W.; Steck, S.E.; Ewart, S.; Arshad, S.H. Allergic sensitization and filaggrin variants predispose to the comorbidity of eczema, asthma, and rhinitis: Results from the Isle of Wight birth cohort. Clin. Exp. Allergy 2014, 44, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Stemmler, S.; Hoffjan, S. Trying to understand the genetics of atopic dermatitis. Mol. Cell Probes. 2016, 30, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; O`Sullivan, M.; Illig, T.; Baurecht, H.; Depner, M.; Rodriguez, E.; Ruethe, A.; Klopp, N.; Vogelberg, V.; Weiland, S.K.; et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J. Allergy Clin. Immunol. 2008, 121, 1203–1209. [Google Scholar] [CrossRef]
- Barker, J.N.; Palmer, C.N.; Zhao, Y.; Liao, H.; Hull, P.R.; Lee, S.P.; Allen, M.H.; Meggitt, S.J.; Reynolds, N.J.; Trembath, R.C.; et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J. Investig. Dermatol. 2007, 127, 564–567. [Google Scholar] [CrossRef]
- Stemmler, S.; Parwez, Q.; Petrasch-Parwez, E.; Epplen, J.T.; Hoffjan, S. Two common loss-of-function mutations within the filaggrin gene predispose for early onset of atopic dermatitis. J. Investig. Dermatol. 2007, 127, 722–724. [Google Scholar] [CrossRef]
- Baurecht, H.; Irvine, A.D.; Novak, N.; Illig, T.; Bühler, B.; Ring, J.; Wagenpfeil, S.; Weidinger, S. Toward a major risk factor for atopic eczema: Meta-analysis of filaggrin polymorphism data. J. Allergy Clin. Immunol 2007, 120, 1406–1412. [Google Scholar] [CrossRef]
- Zaniboni, M.C.; Samorano, L.P.; Orfali, R.L.; Aoki, V. Skin barrier in atopic dermatitis: Beyond filaggrin. An. Bras. Dermatol. 2016, 91, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, L.; Henry, J.; Hsu, C.Y.; Balica, S.; Jean-Decoster, C.; Méchin, M.C.; Hansmann, B.; Rodriguez, E.; Weindinger, S.; Schmitt, A.M.; et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J. Allergy Clin. Immunol. 2013, 131, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Pendaries, V.; Le Lamer, M.; Cau, L.; Hansmann, B.; Malaisse, J.; Kezic, S.; Serre, G.; Simon, M. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Dis. 2015, 6, e1656. [Google Scholar] [CrossRef] [PubMed]
- Tamari, M.; Hirota, T. Genome-wide association studies of atopic dermatitis. J. Dermatol. 2014, 41, 213–220. [Google Scholar] [CrossRef]
- Paternoster, L.; Standl, M.; Chen, C.M.; Ramasamy, A.; Bønnelykke, K.; Duijts, L.; Ferreira, M.A.; Alves, A.C.; Thyssen, J.P.; Albrecht, E.; et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 2012, 44, 187–192. [Google Scholar] [CrossRef]
- Sugiura, H.; Ebise, H.; Tazawa, T.; Tanaka, K.; Sugiura, Y.; Uehara, M.; Kikuchi, K.; Kimura, T. Large-scale DNA mikroarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene claster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br. J. Dermatol. 2005, 152, 146–149. [Google Scholar] [CrossRef]
- Esparza-Gordillo, J.; Wedinger, S.; Folster-Holst, R.; Bauerfeind, A.; Ruschendorf, F.; Patone, G.; Rohde, K.; Marenholz, I.; Schulz, F.; Kerscher, T.; et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. J. Investig. Dermatol. 2009, 131, 982–984. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Suarez-Farinas, M.; Chiricozzi, A.; Nograles, K.E.; Shemer, A.; Fuentes-Duculan, J.; Cardinale, I.; Lin, P.; Bergman, R.; Bowcock, A.M.; et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J. Allergy Clin. Immunol. 2009, 124, 1235–1244. [Google Scholar] [CrossRef]
- Mischke, D.; Korge, B.P.; Marenholz, I.; Volz, A.; Ziegler, A. Gene encoding structural proteins of epidermal cornification and S100 calcium-binding proteins form a gene complex („epidermal differentiation complex”) on human chromosome 1q21. J. Invest. Dermatol. 1996, 106, 989–992. [Google Scholar] [CrossRef]
- Marenholz, I.; Zirra, M.; Fischer, D.F.; Backendorf, C.; Ziegler, A.; Mischke, D. Identification of human epidermal differentiation complex (EDC)-encoded genes by substractive hybridization of entire YACs to a gridded keratinocyte cDNA library. Genome Res. 2001, 11, 134–155. [Google Scholar] [CrossRef]
- Kypriotou, M.; Huber, M.; Hohl, D. The human epidermal differentiation complex: Cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp. Dermatol. 2012, 21, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.; Toulza, E.; Hsu, C.Y.; Pellerin, L.; Balica, S.; Mazereeuw-Hautier, J.; Paul, C.; Serre, G.; Jonca, N.; Simon, M. Update on the epidermal differentiation complex. Front. Biosci. 2012, 17, 1517–1532. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hansmann, B.; Meyer-Hoffert, U.; Gläser, R.; Schröder, J.M. Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. PLoS ONE 2009, 4, e5227. [Google Scholar] [CrossRef] [PubMed]
- Hansmann, B.; Ahrens, K.; Wu, Z.; Proksch, E.; Meyer-Hoffert, U.; Schröder, J.M. Murine filaggrin-2 is involved in epithelial barrier function and down-regulated in metabolically induced skin barrier dysfunction. Exp. Dermatol. 2012, 21, 271–276. [Google Scholar] [CrossRef]
- Henry, J.; Hsu, C.Y.; Haftek, M.; Nachat, R.; de Koning, H.D.; Gardinal-Galera, I.; Hitomi, K.; Balica, S.; Jean-Decoster, C.; Schmitt, A.M.; et al. Hornerin is a component of the epidermal cornified cell envelopes. FASEB J. 2011, 25, 1567–1576. [Google Scholar] [CrossRef]
- Makino, T.; Mizawa, M.; Yamakoshi, T.; Takaishi, M.; Shimizu, T. Expression of filaggrin-2 protein in the epidermis of human skin diseases: A comparative analysis with filaggrin. Biochem. Biophys. Res. Commun. 2014, 449, 100–106. [Google Scholar] [CrossRef]
- Trzeciak, M.; Olszewska, B.; Sakowicz-Burkiewicz, M.; Sokołowska-Wojdyło, M.; Jankau, J.; Nowicki, R.J.; Pawełczyk, T. Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. Nutrients 2020, 12, 862. [Google Scholar] [CrossRef]
- Dębińska, A.; Danielewicz, H.; Drabik-Chamerska, A.; Kalita, D.; Boznański, A. Filaggrin loss-of-function mutations as a predictor for atopic eczema, allergic sensitization and eczema-associated asthma in Polish children population. Adv. Clin. Exp. Med. 2017, 26, 991–998. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Rajka, G. Diagnostic featrures of atopic dermatitis. Acta. Derm. Venerol. Suppl. 1980, 92, 44–47. [Google Scholar] [CrossRef]
- Knoll, M.J.; VanderWeele, T.J.; Groenwold, R.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposure. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef]
- Knoll, M.J.; VanderWelle, T.J. Recommendation for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 2012, 41, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. [Google Scholar] [CrossRef] [PubMed]
- Grobe, W.; Bieber, T.; Novak, N. Pathophysiology of atopic dermatitis. JDDG J. Der. Dtsch. Dermatol. Ges. 2019, 17, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Kido-Nakahara, M.; Tsuji, G.; Furue, M. Basics and recent advances in the pathophysiology of atopic dermatitis. J. Dermatol. 2020, 48, 130–139. [Google Scholar] [CrossRef]
- Agrawal, R.; Woodfolk, J.A. Skin barrier defects in atopic dermatitis. Curr. Allergy Asthma Rep. 2014, 14, 433. [Google Scholar] [CrossRef]
- Brown, S.J.; McLean, W.H. One remarkable molecule: Filaggrin. J. Investig. Dermatol. 2012, 132, 751–762. [Google Scholar] [CrossRef]
- Morar, N.; Cookson, W.O.C.M.; Harper, J.I.; Moffatt, M.F. Filaggrin mutations in children with severe atopic dermatitis. J. Investig. Dermatol. 2007, 127, 1667–1672. [Google Scholar] [CrossRef]
- de Guzman Strong, C.; Conlan, S.; Deming, C.B.; Cheng, J.; Sears, K.E.; Segre, J.A. A milieu of regulatory elements in the epidermal differentiation complex syntenic block: Implications for atopic dermatitis and psoriasis. Hum. Mol. Genet. 2010, 19, 1453–1460. [Google Scholar] [CrossRef]
- Sun, L.D.; Xiao, F.L.; Li, Y.; Zhou, W.M.; Tang, H.Y.; Tang, X.F.; Zhang, H.; Schaarschmidt, H.; Zuo, X.B.; Foelster-Holst, R.; et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet. 2011, 43, 690–694. [Google Scholar] [CrossRef]
- Hirota, T.; Takahashi, A.; Kubo, M.; Tsunoda, T.; Tomita, K.; Sakashita, M.; Yamada, T.; Fujieda, S.; Tanaka, S.; Miyatake, A.; et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 2012, 44, 1222–1226. [Google Scholar] [CrossRef]
- Ried, J.S.; Li, J.; Zuo, X.B.; Zheng, X.D.; Yin, X.Y.; Sun, L.D.; McAleer, M.A.; O’Regan, G.M.; Fahy, C.M.; Campbell, L.E. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 2015, 47, 1449–1456. [Google Scholar] [CrossRef]
- Toulza, E.; Mattiuzzo, N.R.; Galliano, M.F.; Jonca, N.; Dossat, C.; Jacob, D.; de Daruvar, A.; Wincker, P.; Serre, G.; Guerrin, M. Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol. 2007, 8, R107. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, G.M.; Campbell, L.E.; Cordell, H.J.; Irvine, A.D.; McLean, W.H.; Brown, S.J. Chromosome 11q13.5 variant associated with childhood eczema: An effect supplementary to filaggrin mutations. J. Allergy Clin. Immunol. 2010, 125, 170–174.e42. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Meyer-Hoffert, U.; Reithmayer, K.; Paus, R.; Hansmann, B.; He, Y.; Bartels, J.; Gläser, R.; Harder, J.; Schröder, J.M. Highly complex peptide aggregates of the S100 fused-type protein hornerin are present in human skin. J. Investig. Dermatol. 2009, 129, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Gasc, G.; Raymond, A.A.; Burlet-Schiltz, O.; Takahara, H.; Serre, G.; Méchin, M.C.; Simon, M. Deimination of Human Hornerin Enhances its Processing by Calpain-1 and its Cross-Linking by Transglutaminases. J. Investig. Dermatol. 2017, 137, 422–429. [Google Scholar] [CrossRef]
- Eaaswarkhanth, M.; Xu, D.; Flanagan, C.; Rzhetskaya, M.; Hayes, M.G.; Blekhman, R.; Jablonski, N.G.; Gokcumen, O. Atopic Dermatitis Susceptibility Variants in Filaggrin Hitchhike Hornerin Selective Sweep. Genome Biol. Evol. 2016, 8, 3240–3255. [Google Scholar] [CrossRef]
- Seykora, J.; Dentchev, T.; Margolis, D.J. Filaggrin-2 barrier protein inversely varies with skin inflammation. Exp. Dermatol. 2015, 24, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Marenholz, I.; Rivera, V.A.; Esparza-Gordillo, J.; Bauerfeind, A.; Lee-Kirsch, M.A.; Ciechanowicz, A.; Kurek, M.; Piskackova, T.; Macek, M.; Lee, Y.A. Association screening in the Epidermal Differentiation Complex (EDC) identifies an SPRR3 repeat number variant as a risk factor for eczema. J. Investig. Dermatol. 2011, 131, 1644–1649. [Google Scholar] [CrossRef]
- Margolis, D.J.; Gupta, J.; Apter, A.J.; Ganguly, T.; Hoffstad, O.; Papadopoulos, M.; Rebbeck, T.R.; Mitra, N. Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J. Allergy Clin. Immunol. 2014, 133, 784–789. [Google Scholar] [CrossRef]
- Berna, R.; Mitra, N.; Hoffstad, O.; Wubbenhorst, B.; Nathanson, K.L.; Margolis, D.J. Uncommon variants in FLG2 and TCHHL1 are associated with remission of atopic dermatitis in a large longitudinal US cohort. Arch. Dermatol. Res. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Hertz, A.; Azulay-Abulafia, L.; Nascimento, A.; Ohara, C.Y.; Kuschnir, F.C.; Porto, L.C. Analysis of filaggrin 2 gene polymorphisms in patients with atopic dermatitis. An. Bras. Dermatol. 2020, 95, 173–179. [Google Scholar] [CrossRef]
- Donovan, M.; Salamito, M.; Thomas- Collignon, A.; Simonetti, L.; Desbouis, S.; Rain, J.C.; Formstecher, E.; Bernard, D. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation. PLoS ONE 2020, 15, e0232679. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, M.M.; Dunn-Galvin, A.; Gray, C.; Murray, D.M.; Kiely, M.; Kenny, L.; McLean, W.; Irvine, A.D.; Hourihane, J.O. Skin barrier impairment at birth predicts food allergy at 2 years of age. J. Allergy Clin. Immunol. 2016, 137, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Nagao, K.; Amagai, M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Investig. 2012, 122, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fu, J.; Zhou, Y. Research Progress in Atopic March. Front. Immunol. 2020, 11, 1907. [Google Scholar] [CrossRef] [PubMed]
- Tham, E.H.; Leung, D.Y. Mechanisms by Which Atopic Dermatitis Predisposes to Food Allergy and the Atopic March. Allergy Asthma Immunol. Res. 2019, 11, 4–15. [Google Scholar] [CrossRef]
- Irvine, A.D.; McLean, W.H.; Leung, D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011, 365, 1315–1327. [Google Scholar] [CrossRef]
- Strid, J.; Hourihane, J.; Kimber, I.; Callard, R.; Strobel, S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur. J. Immunol. 2004, 34, 2100–2109. [Google Scholar] [CrossRef]
- Fallon, P.G.; Sasaki, T.; Sandilands, A.; Campbell, L.E.; Saunders, S.P.; Mangan, N.E.; Callanan, J.J.; Kawasaki, H.; Shiohama, A.; Kubo, A.; et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 2009, 41, 602–608. [Google Scholar] [CrossRef]
- Saunders, S.P.; Moran, T.; Floudas, A.; Wurlod, F.; Kaszlikowska, A.; Salimi, M.; Quinn, E.M.; Oliphant, C.J.; Núñez, G.; McManus, R.; et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J. Allergy Clin. Immunol. 2016, 137, 482–491. [Google Scholar] [CrossRef]
- Henderson, J.; Northstone, K.; Lee, S.P.; Liao, H.; Zhao, Y.; Pembrey, M.; Mukhopadhyay, S.; Smith, G.D.; Palmer, C.N.; McLean, W.H.; et al. The burden of disease associated with filaggrin mutations: A population-based, longitudinal birth cohort study. J. Allergy Clin. Immunol. 2008, 121, 872–877. [Google Scholar] [CrossRef]
- Ponińska, J.; Samoliński, B.; Tomaszewska, A.; Raciborski, F.; Samel-Kowalik, P.; Walkiewicz, A.; Lipiec, A.; Piekarska, B.; Komorowski, J.; Krzych-Fałta, E.; et al. Filaggrin gene defects are independent risk factors for atopic asthma in a Polish population: A Study in ECAP Cohort. PLoS ONE 2011, 6, e16933. [Google Scholar] [CrossRef]
- Bønnelykke, K.; Pipper, C.B.; Tavendale, R.; Palmer, C.N.; Bisgaard, H. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth. Pediatr. Allergy Immunol. 2010, 21, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Imoto, Y.; Enomoto, H.; Fujieda, S.; Okamoto, M.; Sakashita, M.; Susuki, D.; Okada, M.; Hirota, T.; Tamari, M.; Ebe, K.; et al. S2554X mutation in the filaggrin gene is associated with allergen sensitization in the Japanese population. J. Allergy Clin. Immunol. 2010, 125, 498–500.e2. [Google Scholar] [CrossRef] [PubMed]
- Marenholz, I.; Kerscher, T.; Bauerfeind, A.; Esparza-Gordillo, J.; Nickel, R.; Keil, T.; Lau, S.; Rohde, K.; Wahn, U.; Lee, Y.A. An interaction between filaggrin mutations and early food sensitization improves the prediction oh childhood asthma. J. Allergy Clin. Immunol. 2009, 123, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Rahrig, S.; Dettmann, J.M.; Brauns, B.; Lorenz, V.N.; Buhl, T.; Kezic, S.; Elias, P.M.; Weidinger, S.; Mempel, M.; Schön, M.P.; et al. Transient epidermal barrier deficiency and lowered allergic threshold in filaggrin-hornerin (FlgHrnr-/-) double-deficient mice. Allergy 2019, 74, 1327–1339. [Google Scholar] [CrossRef]
- Pinart, M.; Benet, M.; Annesi-Maesano, I.; von Berg, A.; Berdel, D.; Carlsen, K.C.; Carlsen, K.H.; Bindslev-Jensen, C.; Eller, E.; Fantini, M.P.; et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: A population-based cohort study. Lancet Respir. Med. 2014, 2, 131–140. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef]
- Flohr, C.; Mann, J. New insights into the epidemiology of childhood atopic dermatitis. Allergy 2014, 69, 3–16. [Google Scholar] [CrossRef]
- Kantor, R.; Silverberg, J.I. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev. Clin. Immunol. 2017, 13, 15–26. [Google Scholar] [CrossRef]
- Stefanovic, N.; Flohr, C.; Irvine, A.D. The exposome in atopic dermatitis. Allergy 2020, 75, 63–74. [Google Scholar] [CrossRef]
- Schram, M.E.; Tedja, A.M.; Spijker, R.; Bos, J.D.; Williams, H.C.; Spuls, P.I. Is there a rural/urban gradient in the prevalence of eczema? A systematic review. Brit. J. Dermatol. 2010, 162, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.; Chieosilapatham, P.; Kiatsurayanon, C.; Song, P.; Okumura, K.; Ogawa, H.; et al. Exogenous factors in the pathogenesis of atopic dermatitis: Irritants and cutaneous infections. Clin. Exp. Allergy 2021, 51, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Akdis, C.A. The epithelial barrier hypothesis proposes a comprehensive understanding of the origins of allergic and other chronic noncommunicable diseases. J. Allergy Clin. Immunol. 2022, 149, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Bonamonte, D.; Filoni, A.; Vestita, M.; Romita, P.; Foti, C.; Angelini, G. The Role of the Environmental Risk Factors in the Pathogenesis and Clinical Outcome of Atopic Dermatitis. BioMed Res. Int. 2019, 2019, 2450605. [Google Scholar] [CrossRef] [PubMed]
- Nedoszytko, B.; Reszka, E.; Gutowska-Owsiak, D.; Trzeciak, M.; Lange, M.; Jarczak, J.; Niedoszytko, M.; Jablonska, E.; Romantowski, J.; Strapagiel, D.; et al. Genetic and Epigenetic Aspects of Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 6484. [Google Scholar] [CrossRef]
- Blakeway, H.; Van-de-Velde, V.; Allen, V.B.; Kravvas, G.; Palla, L.; Page, M.J.; Flohr, C.; Weller, R.B.; Irvine, A.D.; McPherson, T.; et al. What is the evidence for interactions between filaggrin null mutations and environmental exposures in the aetiology of atopic dermatitis? A systematic review. Brit. J. Dermatol. 2020, 183, 443–451. [Google Scholar] [CrossRef]
- Berg, N.D.; Husemoen, L.L.; Thuesen, B.H.; Hersoug, L.G.; Elberling, J.; Thyssen, J.P.; Carlsen, B.C.; Johansen, J.D.; Menné, T.; Bønnelykke, K.; et al. Interaction between filaggrin null mutations and tobacco smoking in relation to asthma. J. Allergy Clin. Immunol. 2012, 129, 374–380.e2. [Google Scholar] [CrossRef]
Variable | Atopic Eczema | Control |
---|---|---|
Age at the time of recriutment, month (mean ± SD) | 13.6 ± 6.7 | 15.9 ± 5.6 |
Gender (male/female) | 63/40 | 44/41 |
Allergic sensitization (%) | 55 (53.4%) | 11 (12.9%) |
Asthma (%) | 28 (27.2%) | 0 |
SCORAD Mild Moderate Severe | 79 (76.7%) 24 (23.3%) 0 | 0 0 0 |
Atopic hereditary (%) | 57 (55.3%) | 0 |
Serum Total IgE, IU/mL, geometric mean, 95% CI | 24.6 (27.8 ÷ 53.4) | 17.7 (14.3 ÷ 22.2) |
HRNR rs877776 GG GC CC | 60 (58.3%) 37 (35.9%) 6 (5.8%) | 66 (77.6%) 15 (17.7%) 4 (4.7%) |
FLG2 rs12568784 GG GT TT | 74 (71.8%) 20 (19.5%) 9 (8.7%) | 72 (84.7%) 8 (9.4%) 5 (5.9%) |
Combined FLG genotype (R501X, 2282del14, R2447X, S3247X) Normal Null | 89 (86.5%) 14 (13.5%) | 83 (98%) 2 (2%) |
Phenotype | Total n(%) | HRNR rs877776 Genotype Status | |||
---|---|---|---|---|---|
GG (%) | GC + CC (%) | p-Value | OR (95% CI) | ||
A: Whole study population | |||||
Eczema | 103/188 (54.8%) | 60/126 (47.6%) | 43/62 (69.4%) | p = 0.005 | 2.48 (1.25 ÷ 4.99) |
Eczema Mild Moderate | 60/103 (58.3%) 43/103 (41.7%) | 34/60 (56.7%) 26/60 (43.3%) | 26/43 (60.5%) 17/43 (39.5%) | ----- p = 0.840 | 1.0 Reference 1.17 (0.48 ÷ 2.80) |
Asthma plus eczema | 28/188 (14.9%) | 11/126 (8.7%) | 17/62 (27.4%) | p = 0.002 | 3.94 (1.71 ÷ 9.10) |
Allergic sensitization | 66/188 (35.1%) | 37/126 (29.4%) | 29/62 (46.8%) | p = 0.023 | 2.14 (1.07 ÷ 4.16) |
Polysensitization (Sepc. IgE > 1) | 19/188 (10.1%) | 11/126 (8.7%) | 6/62 (12.9%) | p = 0.039 | 2.09 (1.11 ÷ 7.69) |
B: Eczema group | |||||
Asthma | 28/103 (27.2%) | 11/60 (18.3%) | 17/43 (39.5%) | p = 0.024 | 2.91 (1.19 ÷ 7.13) |
Allergic sensitization | 55/103 (53.4%) | 27/60 (45.0%) | 28/43 (65.1%) | p = 0.044 | 2.28 (1.02 ÷ 5.11) |
Phenotype | Total n(%) | FLG2 rs12568784 Genotype Status | |||
---|---|---|---|---|---|
GG (%) | GT + TT (%) | p-Value | OR (95% CI) | ||
A: Whole study population | |||||
Eczema | 103/188 (54.8%) | 74/146 (50.9%) | 29/42 (69.0%) | p = 0.035 | 2.17 (0.99 ÷ 4.81) |
Eczema Mild Moderate | 60/103 (58.3%) 43/103 (41.7%) | 50/60 (83.3%) 24/60 (40.0%) | 10/43 (23.3%) 19/43 (47.5%) | ----- p = 0.002 | 1.0 Reference 3.95 (1.46 ÷ 10.88) |
Asthma plus eczema | 28/188 (14.9%) | 13/146 (8.9%) | 15/42 (35.7%) | p = 0.000 | 5.68 (2.43 ÷ 13.3) |
Allergic sensitization | 66/188 (35.1%) | 41/146 (28.1%) | 25/42 (59.5%) | p = 0.000 | 3.76 (1.74 ÷ 8.19) |
Polysensitization (Sepc. IgE > 1) | 19/188 (10.1%) | 9/146 (6.2%) | 10/42 (23.8%) | p = 0.001 | 2.88 (1.33 ÷ 6.26) |
B: Eczema group | |||||
Asthma | 28/103 (27.2%) | 13/74 (17.6%) | 15/29 (51.7%) | p = 0.001 | 5.03 (1.95 ÷ 12.9) |
Allergic sensitization | 55/103 (53.4%) | 35/74 | 20/29 | p = 0.047 | 2.47 (0.99 ÷ 6.15) |
Genotype | FLG Normal p-Value OR (95% CI) | FLG Null p-Value OR (95% CI) |
---|---|---|
HRNR rs877776 | ||
Dominant model GG vs GC+CC | p = 0.007 2.47 (1.21 ÷ 5.06) | p = 0.180 2.60 (0.69 ÷ 9.27) |
Allele model G vs C | p = 0.011 2.04 (1.13 ÷ 3.70) | p = 0.005 3.48 (1.40 ÷ 8.62) |
FLG2 rs12568784 | ||
Dominant model GG vs GT+TT | p = 0.552 1.36 (0.58 ÷ 3.22) | p = 0.016 1.66 (0.96 ÷ 1.66) |
Allele model G vs T | p = 0.908 1.04 (0.50 ÷ 2.15) | p = 0.015 1.44 (0.99 ÷ 1.40) |
Genotype Combinations | Atopic Eczema n(%) | Control n(%) | p-Value | RR (95% CI) | |
---|---|---|---|---|---|
HRNR rs877776 GG FLG mutation (−) | 52 (50.5%) | 64 (75.3%) | ----- | 1.00 (Reference) - | RERI = −0.02; AP = −0.008; S = 0.02 ratio of RRs = 0.85 p = 0.9978 |
HRNR rs877776 GC+CC FLG mutation (−) | 37 (35.9%) | 19 (22.3%) | p = 0.010 | 1.47 (1.08 ÷ 1.92) | |
HRNR rs877776 GG FLG mutation (+) | 8 (7.8%) | 2 (2.4%) | p = 0.047 | 1.78 (0.94 ÷ 2.22) | |
HRNR rs877776 GC+CC FLG mutation (+) | 6 (5.8%) | 0 | p = 0.010 | 2.23 (1.12 ÷ 2.23) | |
FLG2 rs12568784 GG FLG mutation (−) | 71 (68.9%) | 70 (82.3%) | ----- | 1.00 (Reference) - | RERI = 0.64; AP = 0.32; S = 2.88 ratio of RRs = 1.45 p = 0.9980 |
FLG2 rs12568784 GT+TT FLG mutation (−) | 18 (17.5%) | 13 (15.3%) | p = 0.552 | 1.15 (0.75 ÷ 1.58) | |
FLG2 rs12568784 GG FLG mutation (+) | 3 (2.9%) | 2 (2.4%) | p = 1.000 | 1.19 (0.33 ÷ 1.88) | |
FLG2 rs12568784 GT+TT FLG mutation (+) | 11 (10.7%) | 0 | p = 0.001 | 1.98 (1.31 ÷ 1.98) | |
HRNR rs877776 GG FLG2 rs12568784 GG | 49 (47.6%) | 60 (70.6%) | ----- | 1.00 (Reference) - | RERI = −0.34; AP = −0.21; S = 0.63 ratio of RRs = 0.69 p = 0.4461 |
HRNR rs877776 GC+CC FLG2 rs12568784 GG | 25 (24.3%) | 12 (14.1%) | p = 0.022 | 1.50 (1.04 ÷ 1.98) | |
HRNR rs877776 GG FLG2 rs12568784 GT+TT | 11 (10.7%) | 6 (7.1%) | p = 1.191 | 1.44 (0.82 ÷ 2.01) | |
HRNR rs877776 GC+CC FLG2 rs12568784 GT+TT | 18 (17.4%) | 7 (8.2%) | p = 0.025 | 1.60 (1.05 ÷ 2.08) |
Genotype Combinations | Eczema-Associated Asthma n(%) | Control n(%) | p-Value | RR (95% CI) | |
---|---|---|---|---|---|
HRNR rs877776 GG FLG mutation (−) | 10 (35.7%) | 64 (75.3%) | ----- | 1.00 (Reference) - | RERI = 2.19; AP = 0.29; S = 1.52 ratio of RRs = 0.76 p = 0.9978 |
HRNR rs877776 GC+CC FLG mutation (−) | 12 (42.8%) | 19 (22.3%) | p = 0.004 | 3.01 (1.36 ÷ 6.60) | |
HRNR rs877776 GG FLG mutation (+) | 2 (7.2%) | 2 (2.4%) | p = 0.374 | 2.46 (0.12 ÷ 7.68) | |
HRNR rs877776 GC+CC FLG mutation (+) | 4 (14.3%) | 0 | p = 0.001 | 7.40 (2.48 ÷ 7.40) | |
FLG2 rs12568784 GG FLG mutation (−) | 10 (35.7%) | 70 (82.3%) | ----- | 1.00 (Reference) - | RERI = 0.36; AP = 0.045; S = 1.05 ratio of RRs = 0.43 p = 0.9982 |
FLG2 rs12568784 GT+TT FLG mutation (−) | 12 (42.8%) | 13 (15.3%) | p = 0.000 | 3.84 (1.74 ÷ 8.20) | |
FLG2 rs12568784 GG FLG mutation (+) | 3 (10.7%) | 2 (2.4%) | p = 0.024 | 4.80 (1.16 ÷ 8.84) | |
FLG2 rs12568784 GT+TT FLG mutation (+) | 3 (10.7%) | 0 | p = 0.003 | 8.00 (2.13 ÷ 8.00) | |
HRNR rs877776 GG FLG2 rs12568784 GG | 6 (21.4%) | 60 (70.6%) | ----- | 1.00 (Reference) - | RERI = −4.52; AP = −0.69; S = 0.77 ratio of RRs = 0.32 p = 0.3350 |
HRNR rs877776 GC+CC FLG2 rs12568784 GG | 7 (25.0%) | 12 (14.1%) | p = 0.007 | 4.05 (1.34 ÷ 11.1) | |
HRNR rs877776 GG FLG2 rs12568784 GT+TT | 5 (17.9%) | 6 (7.1%) | p = 0.007 | 5.00 (1.47 ÷ 14.3) | |
HRNR rs877776 GC+CC FLG2 rs12568784 GT+TT | 10 (35.7%) | 7 (8.2%) | p = 0.000 | 6.47 (2.52 ÷ 16.2) |
Predictor | Sensitivity, % (95% CI) | Specificity, % (95% CI) | Positive Predictive Value (PPV), % (95% CI) | Negative Predictive Value (NPV), % (95% CI) |
---|---|---|---|---|
HRNR rs877776 | 57.14 (37.18 ÷ 75.54) | 77.65 (67.31 ÷ 85.97) | 45.71 (32.59 ÷ 58.37) | 84.62 (77.94 ÷ 89.54) |
FLG2 rs12568784 | 53.57 (33.87 ÷ 72.49) | 84.71 (75.27 ÷ 91.60) | 53.57 (38.59 ÷ 67.93) | 84.71 (78.65 ÷ 89.28) |
FLG mutations | 30.00 (11.89 ÷ 54.28) | 97.65 (91.76 ÷ 99.71) | 75.00 (33.09 ÷ 93.34) | 85.57 (81.62 ÷ 88.78) |
HRNR rs877776 FLG mutations | 28.57 (8.38 ÷ 58.10) | 100.0 (94.40 ÷ 100.0) | 100.0 (68.9 ÷ 100.0) | 86.49 (82.13 ÷ 89.91) |
FLG2 rs12568784 FLG mutations | 23.08 (5.04 ÷ 53.81) | 100.0 (94.87 ÷ 100.0) | 100.0 (69.2 ÷ 100.0) | 87.50 (83.86 ÷ 90.41) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębińska, A.; Danielewicz, H.; Sozańska, B. Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case–Control Study in Children. J. Clin. Med. 2022, 11, 4865. https://doi.org/10.3390/jcm11164865
Dębińska A, Danielewicz H, Sozańska B. Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case–Control Study in Children. Journal of Clinical Medicine. 2022; 11(16):4865. https://doi.org/10.3390/jcm11164865
Chicago/Turabian StyleDębińska, Anna, Hanna Danielewicz, and Barbara Sozańska. 2022. "Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case–Control Study in Children" Journal of Clinical Medicine 11, no. 16: 4865. https://doi.org/10.3390/jcm11164865
APA StyleDębińska, A., Danielewicz, H., & Sozańska, B. (2022). Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case–Control Study in Children. Journal of Clinical Medicine, 11(16), 4865. https://doi.org/10.3390/jcm11164865